xref: /onnv-gate/usr/src/cmd/mdb/common/modules/genunix/memory.c (revision 11459:976cd2e02041)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <mdb/mdb_param.h>
27 #include <mdb/mdb_modapi.h>
28 #include <mdb/mdb_ks.h>
29 #include <sys/types.h>
30 #include <sys/memlist.h>
31 #include <sys/swap.h>
32 #include <sys/systm.h>
33 #include <sys/thread.h>
34 #include <vm/anon.h>
35 #include <vm/as.h>
36 #include <vm/page.h>
37 #include <sys/thread.h>
38 #include <sys/swap.h>
39 #include <sys/memlist.h>
40 #include <sys/vnode.h>
41 #include <vm/seg_map.h>
42 #include <vm/seg_vn.h>
43 #if defined(__i386) || defined(__amd64)
44 #include <sys/balloon_impl.h>
45 #endif
46 
47 #include "avl.h"
48 
49 /*
50  * Page walker.
51  * By default, this will walk all pages in the system.  If given an
52  * address, it will walk all pages belonging to the vnode at that
53  * address.
54  */
55 
56 /*
57  * page_walk_data
58  *
59  * pw_hashleft is set to -1 when walking a vnode's pages, and holds the
60  * number of hash locations remaining in the page hash table when
61  * walking all pages.
62  *
63  * The astute reader will notice that pw_hashloc is only used when
64  * reading all pages (to hold a pointer to our location in the page
65  * hash table), and that pw_first is only used when reading the pages
66  * belonging to a particular vnode (to hold a pointer to the first
67  * page).  While these could be combined to be a single pointer, they
68  * are left separate for clarity.
69  */
70 typedef struct page_walk_data {
71 	long		pw_hashleft;
72 	void		**pw_hashloc;
73 	uintptr_t	pw_first;
74 } page_walk_data_t;
75 
76 int
77 page_walk_init(mdb_walk_state_t *wsp)
78 {
79 	page_walk_data_t	*pwd;
80 	void	**ptr;
81 	size_t	hashsz;
82 	vnode_t	vn;
83 
84 	if (wsp->walk_addr == NULL) {
85 
86 		/*
87 		 * Walk all pages
88 		 */
89 
90 		if ((mdb_readvar(&ptr, "page_hash") == -1) ||
91 		    (mdb_readvar(&hashsz, "page_hashsz") == -1) ||
92 		    (ptr == NULL) || (hashsz == 0)) {
93 			mdb_warn("page_hash, page_hashsz not found or invalid");
94 			return (WALK_ERR);
95 		}
96 
97 		/*
98 		 * Since we are walking all pages, initialize hashleft
99 		 * to be the remaining number of entries in the page
100 		 * hash.  hashloc is set the start of the page hash
101 		 * table.  Setting the walk address to 0 indicates that
102 		 * we aren't currently following a hash chain, and that
103 		 * we need to scan the page hash table for a page.
104 		 */
105 		pwd = mdb_alloc(sizeof (page_walk_data_t), UM_SLEEP);
106 		pwd->pw_hashleft = hashsz;
107 		pwd->pw_hashloc = ptr;
108 		wsp->walk_addr = 0;
109 	} else {
110 
111 		/*
112 		 * Walk just this vnode
113 		 */
114 
115 		if (mdb_vread(&vn, sizeof (vnode_t), wsp->walk_addr) == -1) {
116 			mdb_warn("unable to read vnode_t at %#lx",
117 			    wsp->walk_addr);
118 			return (WALK_ERR);
119 		}
120 
121 		/*
122 		 * We set hashleft to -1 to indicate that we are
123 		 * walking a vnode, and initialize first to 0 (it is
124 		 * used to terminate the walk, so it must not be set
125 		 * until after we have walked the first page).  The
126 		 * walk address is set to the first page.
127 		 */
128 		pwd = mdb_alloc(sizeof (page_walk_data_t), UM_SLEEP);
129 		pwd->pw_hashleft = -1;
130 		pwd->pw_first = 0;
131 
132 		wsp->walk_addr = (uintptr_t)vn.v_pages;
133 	}
134 
135 	wsp->walk_data = pwd;
136 
137 	return (WALK_NEXT);
138 }
139 
140 int
141 page_walk_step(mdb_walk_state_t *wsp)
142 {
143 	page_walk_data_t	*pwd = wsp->walk_data;
144 	page_t		page;
145 	uintptr_t	pp;
146 
147 	pp = wsp->walk_addr;
148 
149 	if (pwd->pw_hashleft < 0) {
150 
151 		/* We're walking a vnode's pages */
152 
153 		/*
154 		 * If we don't have any pages to walk, we have come
155 		 * back around to the first one (we finished), or we
156 		 * can't read the page we're looking at, we are done.
157 		 */
158 		if (pp == NULL || pp == pwd->pw_first)
159 			return (WALK_DONE);
160 		if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
161 			mdb_warn("unable to read page_t at %#lx", pp);
162 			return (WALK_ERR);
163 		}
164 
165 		/*
166 		 * Set the walk address to the next page, and if the
167 		 * first page hasn't been set yet (i.e. we are on the
168 		 * first page), set it.
169 		 */
170 		wsp->walk_addr = (uintptr_t)page.p_vpnext;
171 		if (pwd->pw_first == NULL)
172 			pwd->pw_first = pp;
173 
174 	} else if (pwd->pw_hashleft > 0) {
175 
176 		/* We're walking all pages */
177 
178 		/*
179 		 * If pp (the walk address) is NULL, we scan through
180 		 * the page hash table until we find a page.
181 		 */
182 		if (pp == NULL) {
183 
184 			/*
185 			 * Iterate through the page hash table until we
186 			 * find a page or reach the end.
187 			 */
188 			do {
189 				if (mdb_vread(&pp, sizeof (uintptr_t),
190 				    (uintptr_t)pwd->pw_hashloc) == -1) {
191 					mdb_warn("unable to read from %#p",
192 					    pwd->pw_hashloc);
193 					return (WALK_ERR);
194 				}
195 				pwd->pw_hashleft--;
196 				pwd->pw_hashloc++;
197 			} while (pwd->pw_hashleft && (pp == NULL));
198 
199 			/*
200 			 * We've reached the end; exit.
201 			 */
202 			if (pp == NULL)
203 				return (WALK_DONE);
204 		}
205 
206 		if (mdb_vread(&page, sizeof (page_t), pp) == -1) {
207 			mdb_warn("unable to read page_t at %#lx", pp);
208 			return (WALK_ERR);
209 		}
210 
211 		/*
212 		 * Set the walk address to the next page.
213 		 */
214 		wsp->walk_addr = (uintptr_t)page.p_hash;
215 
216 	} else {
217 		/* We've finished walking all pages. */
218 		return (WALK_DONE);
219 	}
220 
221 	return (wsp->walk_callback(pp, &page, wsp->walk_cbdata));
222 }
223 
224 void
225 page_walk_fini(mdb_walk_state_t *wsp)
226 {
227 	mdb_free(wsp->walk_data, sizeof (page_walk_data_t));
228 }
229 
230 /*
231  * allpages walks all pages in the system in order they appear in
232  * the memseg structure
233  */
234 
235 #define	PAGE_BUFFER	128
236 
237 int
238 allpages_walk_init(mdb_walk_state_t *wsp)
239 {
240 	if (wsp->walk_addr != 0) {
241 		mdb_warn("allpages only supports global walks.\n");
242 		return (WALK_ERR);
243 	}
244 
245 	if (mdb_layered_walk("memseg", wsp) == -1) {
246 		mdb_warn("couldn't walk 'memseg'");
247 		return (WALK_ERR);
248 	}
249 
250 	wsp->walk_data = mdb_alloc(sizeof (page_t) * PAGE_BUFFER, UM_SLEEP);
251 	return (WALK_NEXT);
252 }
253 
254 int
255 allpages_walk_step(mdb_walk_state_t *wsp)
256 {
257 	const struct memseg *msp = wsp->walk_layer;
258 	page_t *buf = wsp->walk_data;
259 	size_t pg_read, i;
260 	size_t pg_num = msp->pages_end - msp->pages_base;
261 	const page_t *pg_addr = msp->pages;
262 
263 	while (pg_num > 0) {
264 		pg_read = MIN(pg_num, PAGE_BUFFER);
265 
266 		if (mdb_vread(buf, pg_read * sizeof (page_t),
267 		    (uintptr_t)pg_addr) == -1) {
268 			mdb_warn("can't read page_t's at %#lx", pg_addr);
269 			return (WALK_ERR);
270 		}
271 		for (i = 0; i < pg_read; i++) {
272 			int ret = wsp->walk_callback((uintptr_t)&pg_addr[i],
273 			    &buf[i], wsp->walk_cbdata);
274 
275 			if (ret != WALK_NEXT)
276 				return (ret);
277 		}
278 		pg_num -= pg_read;
279 		pg_addr += pg_read;
280 	}
281 
282 	return (WALK_NEXT);
283 }
284 
285 void
286 allpages_walk_fini(mdb_walk_state_t *wsp)
287 {
288 	mdb_free(wsp->walk_data, sizeof (page_t) * PAGE_BUFFER);
289 }
290 
291 /*
292  * Hash table + LRU queue.
293  * This table is used to cache recently read vnodes for the memstat
294  * command, to reduce the number of mdb_vread calls.  This greatly
295  * speeds the memstat command on on live, large CPU count systems.
296  */
297 
298 #define	VN_SMALL	401
299 #define	VN_LARGE	10007
300 #define	VN_HTABLE_KEY(p, hp)	((p) % ((hp)->vn_htable_buckets))
301 
302 struct vn_htable_list {
303 	uint_t vn_flag;				/* v_flag from vnode	*/
304 	uintptr_t vn_ptr;			/* pointer to vnode	*/
305 	struct vn_htable_list *vn_q_next;	/* queue next pointer	*/
306 	struct vn_htable_list *vn_q_prev;	/* queue prev pointer	*/
307 	struct vn_htable_list *vn_h_next;	/* hash table pointer	*/
308 };
309 
310 /*
311  * vn_q_first        -> points to to head of queue: the vnode that was most
312  *                      recently used
313  * vn_q_last         -> points to the oldest used vnode, and is freed once a new
314  *                      vnode is read.
315  * vn_htable         -> hash table
316  * vn_htable_buf     -> contains htable objects
317  * vn_htable_size    -> total number of items in the hash table
318  * vn_htable_buckets -> number of buckets in the hash table
319  */
320 typedef struct vn_htable {
321 	struct vn_htable_list  *vn_q_first;
322 	struct vn_htable_list  *vn_q_last;
323 	struct vn_htable_list **vn_htable;
324 	struct vn_htable_list  *vn_htable_buf;
325 	int vn_htable_size;
326 	int vn_htable_buckets;
327 } vn_htable_t;
328 
329 
330 /* allocate memory, initilize hash table and LRU queue */
331 static void
332 vn_htable_init(vn_htable_t *hp, size_t vn_size)
333 {
334 	int i;
335 	int htable_size = MAX(vn_size, VN_LARGE);
336 
337 	if ((hp->vn_htable_buf = mdb_zalloc(sizeof (struct vn_htable_list)
338 	    * htable_size, UM_NOSLEEP|UM_GC)) == NULL) {
339 		htable_size = VN_SMALL;
340 		hp->vn_htable_buf = mdb_zalloc(sizeof (struct vn_htable_list)
341 		    * htable_size, UM_SLEEP|UM_GC);
342 	}
343 
344 	hp->vn_htable = mdb_zalloc(sizeof (struct vn_htable_list *)
345 	    * htable_size, UM_SLEEP|UM_GC);
346 
347 	hp->vn_q_first  = &hp->vn_htable_buf[0];
348 	hp->vn_q_last   = &hp->vn_htable_buf[htable_size - 1];
349 	hp->vn_q_first->vn_q_next = &hp->vn_htable_buf[1];
350 	hp->vn_q_last->vn_q_prev = &hp->vn_htable_buf[htable_size - 2];
351 
352 	for (i = 1; i < (htable_size-1); i++) {
353 		hp->vn_htable_buf[i].vn_q_next = &hp->vn_htable_buf[i + 1];
354 		hp->vn_htable_buf[i].vn_q_prev = &hp->vn_htable_buf[i - 1];
355 	}
356 
357 	hp->vn_htable_size = htable_size;
358 	hp->vn_htable_buckets = htable_size;
359 }
360 
361 
362 /*
363  * Find the vnode whose address is ptr, and return its v_flag in vp->v_flag.
364  * The function tries to find needed information in the following order:
365  *
366  * 1. check if ptr is the first in queue
367  * 2. check if ptr is in hash table (if so move it to the top of queue)
368  * 3. do mdb_vread, remove last queue item from queue and hash table.
369  *    Insert new information to freed object, and put this object in to the
370  *    top of the queue.
371  */
372 static int
373 vn_get(vn_htable_t *hp, struct vnode *vp, uintptr_t ptr)
374 {
375 	int hkey;
376 	struct vn_htable_list *hent, **htmp, *q_next, *q_prev;
377 	struct vn_htable_list  *q_first = hp->vn_q_first;
378 
379 	/* 1. vnode ptr is the first in queue, just get v_flag and return */
380 	if (q_first->vn_ptr == ptr) {
381 		vp->v_flag = q_first->vn_flag;
382 
383 		return (0);
384 	}
385 
386 	/* 2. search the hash table for this ptr */
387 	hkey = VN_HTABLE_KEY(ptr, hp);
388 	hent = hp->vn_htable[hkey];
389 	while (hent && (hent->vn_ptr != ptr))
390 		hent = hent->vn_h_next;
391 
392 	/* 3. if hent is NULL, we did not find in hash table, do mdb_vread */
393 	if (hent == NULL) {
394 		struct vnode vn;
395 
396 		if (mdb_vread(&vn, sizeof (vnode_t), ptr) == -1) {
397 			mdb_warn("unable to read vnode_t at %#lx", ptr);
398 			return (-1);
399 		}
400 
401 		/* we will insert read data into the last element in queue */
402 		hent = hp->vn_q_last;
403 
404 		/* remove last hp->vn_q_last object from hash table */
405 		if (hent->vn_ptr) {
406 			htmp = &hp->vn_htable[VN_HTABLE_KEY(hent->vn_ptr, hp)];
407 			while (*htmp != hent)
408 				htmp = &(*htmp)->vn_h_next;
409 			*htmp = hent->vn_h_next;
410 		}
411 
412 		/* insert data into new free object */
413 		hent->vn_ptr  = ptr;
414 		hent->vn_flag = vn.v_flag;
415 
416 		/* insert new object into hash table */
417 		hent->vn_h_next = hp->vn_htable[hkey];
418 		hp->vn_htable[hkey] = hent;
419 	}
420 
421 	/* Remove from queue. hent is not first, vn_q_prev is not NULL */
422 	q_next = hent->vn_q_next;
423 	q_prev = hent->vn_q_prev;
424 	if (q_next == NULL)
425 		hp->vn_q_last = q_prev;
426 	else
427 		q_next->vn_q_prev = q_prev;
428 	q_prev->vn_q_next = q_next;
429 
430 	/* Add to the front of queue */
431 	hent->vn_q_prev = NULL;
432 	hent->vn_q_next = q_first;
433 	q_first->vn_q_prev = hent;
434 	hp->vn_q_first = hent;
435 
436 	/* Set v_flag in vnode pointer from hent */
437 	vp->v_flag = hent->vn_flag;
438 
439 	return (0);
440 }
441 
442 /* Summary statistics of pages */
443 typedef struct memstat {
444 	struct vnode    *ms_kvp;	/* Cached address of kernel vnode */
445 	struct vnode    *ms_unused_vp;	/* Unused pages vnode pointer	  */
446 	struct vnode    *ms_zvp;	/* Cached address of zio vnode    */
447 	uint64_t	ms_kmem;	/* Pages of kernel memory	  */
448 	uint64_t	ms_zfs_data;	/* Pages of zfs data		  */
449 	uint64_t	ms_anon;	/* Pages of anonymous memory	  */
450 	uint64_t	ms_vnode;	/* Pages of named (vnode) memory  */
451 	uint64_t	ms_exec;	/* Pages of exec/library memory	  */
452 	uint64_t	ms_cachelist;	/* Pages on the cachelist (free)  */
453 	uint64_t	ms_total;	/* Pages on page hash		  */
454 	vn_htable_t	*ms_vn_htable;	/* Pointer to hash table	  */
455 	struct vnode	ms_vn;		/* vnode buffer			  */
456 } memstat_t;
457 
458 #define	MS_PP_ISKAS(pp, stats)				\
459 	((pp)->p_vnode == (stats)->ms_kvp)
460 
461 #define	MS_PP_ISZFS_DATA(pp, stats)			\
462 	(((stats)->ms_zvp != NULL) && ((pp)->p_vnode == (stats)->ms_zvp))
463 
464 /*
465  * Summarize pages by type and update stat information
466  */
467 
468 /* ARGSUSED */
469 static int
470 memstat_callback(page_t *page, page_t *pp, memstat_t *stats)
471 {
472 	struct vnode *vp = &stats->ms_vn;
473 
474 	if (pp->p_vnode == NULL || pp->p_vnode == stats->ms_unused_vp)
475 		return (WALK_NEXT);
476 	else if (MS_PP_ISKAS(pp, stats))
477 		stats->ms_kmem++;
478 	else if (MS_PP_ISZFS_DATA(pp, stats))
479 		stats->ms_zfs_data++;
480 	else if (PP_ISFREE(pp))
481 		stats->ms_cachelist++;
482 	else if (vn_get(stats->ms_vn_htable, vp, (uintptr_t)pp->p_vnode))
483 		return (WALK_ERR);
484 	else if (IS_SWAPFSVP(vp))
485 		stats->ms_anon++;
486 	else if ((vp->v_flag & VVMEXEC) != 0)
487 		stats->ms_exec++;
488 	else
489 		stats->ms_vnode++;
490 
491 	stats->ms_total++;
492 
493 	return (WALK_NEXT);
494 }
495 
496 /* ARGSUSED */
497 int
498 memstat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
499 {
500 	pgcnt_t total_pages, physmem;
501 	ulong_t freemem;
502 	memstat_t stats;
503 	GElf_Sym sym;
504 	vn_htable_t ht;
505 	struct vnode *kvps;
506 	uintptr_t vn_size = 0;
507 #if defined(__i386) || defined(__amd64)
508 	bln_stats_t bln_stats;
509 	ssize_t bln_size;
510 #endif
511 
512 	bzero(&stats, sizeof (memstat_t));
513 
514 	/*
515 	 * -s size, is an internal option. It specifies the size of vn_htable.
516 	 * Hash table size is set in the following order:
517 	 * If user has specified the size that is larger than VN_LARGE: try it,
518 	 * but if malloc failed default to VN_SMALL. Otherwise try VN_LARGE, if
519 	 * failed to allocate default to VN_SMALL.
520 	 * For a better efficiency of hash table it is highly recommended to
521 	 * set size to a prime number.
522 	 */
523 	if ((flags & DCMD_ADDRSPEC) || mdb_getopts(argc, argv,
524 	    's', MDB_OPT_UINTPTR, &vn_size, NULL) != argc)
525 		return (DCMD_USAGE);
526 
527 	/* Initialize vnode hash list and queue */
528 	vn_htable_init(&ht, vn_size);
529 	stats.ms_vn_htable = &ht;
530 
531 	/* Total physical memory */
532 	if (mdb_readvar(&total_pages, "total_pages") == -1) {
533 		mdb_warn("unable to read total_pages");
534 		return (DCMD_ERR);
535 	}
536 
537 	/* Artificially limited memory */
538 	if (mdb_readvar(&physmem, "physmem") == -1) {
539 		mdb_warn("unable to read physmem");
540 		return (DCMD_ERR);
541 	}
542 
543 	/* read kernel vnode array pointer */
544 	if (mdb_lookup_by_obj(MDB_OBJ_EXEC, "kvps",
545 	    (GElf_Sym *)&sym) == -1) {
546 		mdb_warn("unable to read kvps");
547 		return (DCMD_ERR);
548 	}
549 	kvps = (struct vnode *)(uintptr_t)sym.st_value;
550 	stats.ms_kvp =  &kvps[KV_KVP];
551 
552 	/*
553 	 * Read the zio vnode pointer.
554 	 */
555 	stats.ms_zvp = &kvps[KV_ZVP];
556 
557 	/*
558 	 * If physmem != total_pages, then the administrator has limited the
559 	 * number of pages available in the system.  Excluded pages are
560 	 * associated with the unused pages vnode.  Read this vnode so the
561 	 * pages can be excluded in the page accounting.
562 	 */
563 	if (mdb_lookup_by_obj(MDB_OBJ_EXEC, "unused_pages_vp",
564 	    (GElf_Sym *)&sym) == -1) {
565 		mdb_warn("unable to read unused_pages_vp");
566 		return (DCMD_ERR);
567 	}
568 	stats.ms_unused_vp = (struct vnode *)(uintptr_t)sym.st_value;
569 
570 	/* walk all pages, collect statistics */
571 	if (mdb_walk("allpages", (mdb_walk_cb_t)memstat_callback,
572 	    &stats) == -1) {
573 		mdb_warn("can't walk memseg");
574 		return (DCMD_ERR);
575 	}
576 
577 #define	MS_PCT_TOTAL(x)	((ulong_t)((((5 * total_pages) + ((x) * 1000ull))) / \
578 		((physmem) * 10)))
579 
580 	mdb_printf("Page Summary                Pages                MB"
581 	    "  %%Tot\n");
582 	mdb_printf("------------     ----------------  ----------------"
583 	    "  ----\n");
584 	mdb_printf("Kernel           %16llu  %16llu  %3lu%%\n",
585 	    stats.ms_kmem,
586 	    (uint64_t)stats.ms_kmem * PAGESIZE / (1024 * 1024),
587 	    MS_PCT_TOTAL(stats.ms_kmem));
588 
589 	if (stats.ms_zfs_data != 0)
590 		mdb_printf("ZFS File Data    %16llu  %16llu  %3lu%%\n",
591 		    stats.ms_zfs_data,
592 		    (uint64_t)stats.ms_zfs_data * PAGESIZE / (1024 * 1024),
593 		    MS_PCT_TOTAL(stats.ms_zfs_data));
594 
595 	mdb_printf("Anon             %16llu  %16llu  %3lu%%\n",
596 	    stats.ms_anon,
597 	    (uint64_t)stats.ms_anon * PAGESIZE / (1024 * 1024),
598 	    MS_PCT_TOTAL(stats.ms_anon));
599 	mdb_printf("Exec and libs    %16llu  %16llu  %3lu%%\n",
600 	    stats.ms_exec,
601 	    (uint64_t)stats.ms_exec * PAGESIZE / (1024 * 1024),
602 	    MS_PCT_TOTAL(stats.ms_exec));
603 	mdb_printf("Page cache       %16llu  %16llu  %3lu%%\n",
604 	    stats.ms_vnode,
605 	    (uint64_t)stats.ms_vnode * PAGESIZE / (1024 * 1024),
606 	    MS_PCT_TOTAL(stats.ms_vnode));
607 	mdb_printf("Free (cachelist) %16llu  %16llu  %3lu%%\n",
608 	    stats.ms_cachelist,
609 	    (uint64_t)stats.ms_cachelist * PAGESIZE / (1024 * 1024),
610 	    MS_PCT_TOTAL(stats.ms_cachelist));
611 
612 	/*
613 	 * occasionally, we double count pages above.  To avoid printing
614 	 * absurdly large values for freemem, we clamp it at zero.
615 	 */
616 	if (physmem > stats.ms_total)
617 		freemem = physmem - stats.ms_total;
618 	else
619 		freemem = 0;
620 
621 #if defined(__i386) || defined(__amd64)
622 	/* Are we running under Xen?  If so, get balloon memory usage. */
623 	if ((bln_size = mdb_readvar(&bln_stats, "bln_stats")) != -1) {
624 		if (freemem > bln_stats.bln_hv_pages)
625 			freemem -= bln_stats.bln_hv_pages;
626 		else
627 			freemem = 0;
628 	}
629 #endif
630 
631 	mdb_printf("Free (freelist)  %16lu  %16llu  %3lu%%\n", freemem,
632 	    (uint64_t)freemem * PAGESIZE / (1024 * 1024),
633 	    MS_PCT_TOTAL(freemem));
634 
635 #if defined(__i386) || defined(__amd64)
636 	if (bln_size != -1) {
637 		mdb_printf("Balloon          %16lu  %16llu  %3lu%%\n",
638 		    bln_stats.bln_hv_pages,
639 		    (uint64_t)bln_stats.bln_hv_pages * PAGESIZE / (1024 * 1024),
640 		    MS_PCT_TOTAL(bln_stats.bln_hv_pages));
641 	}
642 #endif
643 
644 	mdb_printf("\nTotal            %16lu  %16lu\n",
645 	    physmem,
646 	    (uint64_t)physmem * PAGESIZE / (1024 * 1024));
647 
648 	if (physmem != total_pages) {
649 		mdb_printf("Physical         %16lu  %16lu\n",
650 		    total_pages,
651 		    (uint64_t)total_pages * PAGESIZE / (1024 * 1024));
652 	}
653 
654 #undef MS_PCT_TOTAL
655 
656 	return (DCMD_OK);
657 }
658 
659 void
660 pagelookup_help(void)
661 {
662 	mdb_printf(
663 	    "Finds the page with name { %<b>vp%</b>, %<b>offset%</b> }.\n"
664 	    "\n"
665 	    "Can be invoked three different ways:\n\n"
666 	    "    ::pagelookup -v %<b>vp%</b> -o %<b>offset%</b>\n"
667 	    "    %<b>vp%</b>::pagelookup -o %<b>offset%</b>\n"
668 	    "    %<b>offset%</b>::pagelookup -v %<b>vp%</b>\n"
669 	    "\n"
670 	    "The latter two forms are useful in pipelines.\n"
671 	    );
672 }
673 
674 int
675 pagelookup(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
676 {
677 	uintptr_t vp = -(uintptr_t)1;
678 	uint64_t offset = -(uint64_t)1;
679 
680 	uintptr_t pageaddr;
681 	int hasaddr = (flags & DCMD_ADDRSPEC);
682 	int usedaddr = 0;
683 
684 	if (mdb_getopts(argc, argv,
685 	    'v', MDB_OPT_UINTPTR, &vp,
686 	    'o', MDB_OPT_UINT64, &offset,
687 	    0) != argc) {
688 		return (DCMD_USAGE);
689 	}
690 
691 	if (vp == -(uintptr_t)1) {
692 		if (offset == -(uint64_t)1) {
693 			mdb_warn(
694 			    "pagelookup: at least one of -v vp or -o offset "
695 			    "required.\n");
696 			return (DCMD_USAGE);
697 		}
698 		vp = addr;
699 		usedaddr = 1;
700 	} else if (offset == -(uint64_t)1) {
701 		offset = mdb_get_dot();
702 		usedaddr = 1;
703 	}
704 	if (usedaddr && !hasaddr) {
705 		mdb_warn("pagelookup: address required\n");
706 		return (DCMD_USAGE);
707 	}
708 	if (!usedaddr && hasaddr) {
709 		mdb_warn(
710 		    "pagelookup: address specified when both -v and -o were "
711 		    "passed");
712 		return (DCMD_USAGE);
713 	}
714 
715 	pageaddr = mdb_page_lookup(vp, offset);
716 	if (pageaddr == 0) {
717 		mdb_warn("pagelookup: no page for {vp = %p, offset = %llp)\n",
718 		    vp, offset);
719 		return (DCMD_OK);
720 	}
721 	mdb_printf("%#lr\n", pageaddr);		/* this is PIPE_OUT friendly */
722 	return (DCMD_OK);
723 }
724 
725 /*ARGSUSED*/
726 int
727 page_num2pp(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
728 {
729 	uintptr_t pp;
730 
731 	if (argc != 0 || !(flags & DCMD_ADDRSPEC)) {
732 		return (DCMD_USAGE);
733 	}
734 
735 	pp = mdb_pfn2page((pfn_t)addr);
736 	if (pp == 0) {
737 		return (DCMD_ERR);
738 	}
739 
740 	if (flags & DCMD_PIPE_OUT) {
741 		mdb_printf("%#lr\n", pp);
742 	} else {
743 		mdb_printf("%lx has page_t at %#lx\n", (pfn_t)addr, pp);
744 	}
745 
746 	return (DCMD_OK);
747 }
748 
749 int
750 page(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
751 {
752 	page_t	p;
753 
754 	if (!(flags & DCMD_ADDRSPEC)) {
755 		if (mdb_walk_dcmd("page", "page", argc, argv) == -1) {
756 			mdb_warn("can't walk pages");
757 			return (DCMD_ERR);
758 		}
759 		return (DCMD_OK);
760 	}
761 
762 	if (DCMD_HDRSPEC(flags)) {
763 		mdb_printf("%<u>%?s %?s %16s %8s %3s %3s %2s %2s %2s%</u>\n",
764 		    "PAGE", "VNODE", "OFFSET", "SELOCK",
765 		    "LCT", "COW", "IO", "FS", "ST");
766 	}
767 
768 	if (mdb_vread(&p, sizeof (page_t), addr) == -1) {
769 		mdb_warn("can't read page_t at %#lx", addr);
770 		return (DCMD_ERR);
771 	}
772 
773 	mdb_printf("%0?lx %?p %16llx %8x %3d %3d %2x %2x %2x\n",
774 	    addr, p.p_vnode, p.p_offset, p.p_selock, p.p_lckcnt, p.p_cowcnt,
775 	    p.p_iolock_state, p.p_fsdata, p.p_state);
776 
777 	return (DCMD_OK);
778 }
779 
780 int
781 swap_walk_init(mdb_walk_state_t *wsp)
782 {
783 	void	*ptr;
784 
785 	if ((mdb_readvar(&ptr, "swapinfo") == -1) || ptr == NULL) {
786 		mdb_warn("swapinfo not found or invalid");
787 		return (WALK_ERR);
788 	}
789 
790 	wsp->walk_addr = (uintptr_t)ptr;
791 
792 	return (WALK_NEXT);
793 }
794 
795 int
796 swap_walk_step(mdb_walk_state_t *wsp)
797 {
798 	uintptr_t	sip;
799 	struct swapinfo	si;
800 
801 	sip = wsp->walk_addr;
802 
803 	if (sip == NULL)
804 		return (WALK_DONE);
805 
806 	if (mdb_vread(&si, sizeof (struct swapinfo), sip) == -1) {
807 		mdb_warn("unable to read swapinfo at %#lx", sip);
808 		return (WALK_ERR);
809 	}
810 
811 	wsp->walk_addr = (uintptr_t)si.si_next;
812 
813 	return (wsp->walk_callback(sip, &si, wsp->walk_cbdata));
814 }
815 
816 int
817 swapinfof(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
818 {
819 	struct swapinfo	si;
820 	char		*name;
821 
822 	if (!(flags & DCMD_ADDRSPEC)) {
823 		if (mdb_walk_dcmd("swapinfo", "swapinfo", argc, argv) == -1) {
824 			mdb_warn("can't walk swapinfo");
825 			return (DCMD_ERR);
826 		}
827 		return (DCMD_OK);
828 	}
829 
830 	if (DCMD_HDRSPEC(flags)) {
831 		mdb_printf("%<u>%?s %?s %9s %9s %s%</u>\n",
832 		    "ADDR", "VNODE", "PAGES", "FREE", "NAME");
833 	}
834 
835 	if (mdb_vread(&si, sizeof (struct swapinfo), addr) == -1) {
836 		mdb_warn("can't read swapinfo at %#lx", addr);
837 		return (DCMD_ERR);
838 	}
839 
840 	name = mdb_alloc(si.si_pnamelen, UM_SLEEP | UM_GC);
841 	if (mdb_vread(name, si.si_pnamelen, (uintptr_t)si.si_pname) == -1)
842 		name = "*error*";
843 
844 	mdb_printf("%0?lx %?p %9d %9d %s\n",
845 	    addr, si.si_vp, si.si_npgs, si.si_nfpgs, name);
846 
847 	return (DCMD_OK);
848 }
849 
850 int
851 memlist_walk_step(mdb_walk_state_t *wsp)
852 {
853 	uintptr_t	mlp;
854 	struct memlist	ml;
855 
856 	mlp = wsp->walk_addr;
857 
858 	if (mlp == NULL)
859 		return (WALK_DONE);
860 
861 	if (mdb_vread(&ml, sizeof (struct memlist), mlp) == -1) {
862 		mdb_warn("unable to read memlist at %#lx", mlp);
863 		return (WALK_ERR);
864 	}
865 
866 	wsp->walk_addr = (uintptr_t)ml.next;
867 
868 	return (wsp->walk_callback(mlp, &ml, wsp->walk_cbdata));
869 }
870 
871 int
872 memlist(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
873 {
874 	struct memlist	ml;
875 
876 	if (!(flags & DCMD_ADDRSPEC)) {
877 		uintptr_t ptr;
878 		uint_t list = 0;
879 		int i;
880 		static const char *lists[] = {
881 			"phys_install",
882 			"phys_avail",
883 			"virt_avail"
884 		};
885 
886 		if (mdb_getopts(argc, argv,
887 		    'i', MDB_OPT_SETBITS, (1 << 0), &list,
888 		    'a', MDB_OPT_SETBITS, (1 << 1), &list,
889 		    'v', MDB_OPT_SETBITS, (1 << 2), &list, NULL) != argc)
890 			return (DCMD_USAGE);
891 
892 		if (!list)
893 			list = 1;
894 
895 		for (i = 0; list; i++, list >>= 1) {
896 			if (!(list & 1))
897 				continue;
898 			if ((mdb_readvar(&ptr, lists[i]) == -1) ||
899 			    (ptr == NULL)) {
900 				mdb_warn("%s not found or invalid", lists[i]);
901 				return (DCMD_ERR);
902 			}
903 
904 			mdb_printf("%s:\n", lists[i]);
905 			if (mdb_pwalk_dcmd("memlist", "memlist", 0, NULL,
906 			    ptr) == -1) {
907 				mdb_warn("can't walk memlist");
908 				return (DCMD_ERR);
909 			}
910 		}
911 		return (DCMD_OK);
912 	}
913 
914 	if (DCMD_HDRSPEC(flags))
915 		mdb_printf("%<u>%?s %16s %16s%</u>\n", "ADDR", "BASE", "SIZE");
916 
917 	if (mdb_vread(&ml, sizeof (struct memlist), addr) == -1) {
918 		mdb_warn("can't read memlist at %#lx", addr);
919 		return (DCMD_ERR);
920 	}
921 
922 	mdb_printf("%0?lx %16llx %16llx\n", addr, ml.address, ml.size);
923 
924 	return (DCMD_OK);
925 }
926 
927 int
928 seg_walk_init(mdb_walk_state_t *wsp)
929 {
930 	if (wsp->walk_addr == NULL) {
931 		mdb_warn("seg walk must begin at struct as *\n");
932 		return (WALK_ERR);
933 	}
934 
935 	/*
936 	 * this is really just a wrapper to AVL tree walk
937 	 */
938 	wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree;
939 	return (avl_walk_init(wsp));
940 }
941 
942 /*ARGSUSED*/
943 int
944 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
945 {
946 	struct seg s;
947 
948 	if (argc != 0)
949 		return (DCMD_USAGE);
950 
951 	if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) {
952 		mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n",
953 		    "SEG", "BASE", "SIZE", "DATA", "OPS");
954 	}
955 
956 	if (mdb_vread(&s, sizeof (s), addr) == -1) {
957 		mdb_warn("failed to read seg at %p", addr);
958 		return (DCMD_ERR);
959 	}
960 
961 	mdb_printf("%?p %?p %?lx %?p %a\n",
962 	    addr, s.s_base, s.s_size, s.s_data, s.s_ops);
963 
964 	return (DCMD_OK);
965 }
966 
967 /*ARGSUSED*/
968 static int
969 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres)
970 {
971 	uintptr_t pp =
972 	    mdb_page_lookup((uintptr_t)anon->an_vp, (u_offset_t)anon->an_off);
973 
974 	if (pp != NULL)
975 		(*nres)++;
976 
977 	return (WALK_NEXT);
978 }
979 
980 static int
981 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
982 {
983 
984 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
985 
986 	if (segvn == (uintptr_t)seg->s_ops) {
987 		struct segvn_data svn;
988 		int nres = 0;
989 
990 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
991 
992 		if (svn.amp == NULL) {
993 			mdb_printf(" %8s", "");
994 			goto drive_on;
995 		}
996 
997 		/*
998 		 * We've got an amp for this segment; walk through
999 		 * the amp, and determine mappings.
1000 		 */
1001 		if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon,
1002 		    &nres, (uintptr_t)svn.amp) == -1)
1003 			mdb_warn("failed to walk anon (amp=%p)", svn.amp);
1004 
1005 		mdb_printf(" %7dk", (nres * PAGESIZE) / 1024);
1006 drive_on:
1007 
1008 		if (svn.vp != NULL) {
1009 			char buf[29];
1010 
1011 			mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf));
1012 			mdb_printf(" %s", buf);
1013 		} else
1014 			mdb_printf(" [ anon ]");
1015 	}
1016 
1017 	mdb_printf("\n");
1018 	return (WALK_NEXT);
1019 }
1020 
1021 static int
1022 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn)
1023 {
1024 	mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024);
1025 
1026 	if (segvn == (uintptr_t)seg->s_ops) {
1027 		struct segvn_data svn;
1028 
1029 		(void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data);
1030 
1031 		if (svn.vp != NULL) {
1032 			mdb_printf(" %0?p", svn.vp);
1033 		} else {
1034 			mdb_printf(" [ anon ]");
1035 		}
1036 	}
1037 
1038 	mdb_printf("\n");
1039 	return (WALK_NEXT);
1040 }
1041 
1042 /*ARGSUSED*/
1043 int
1044 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1045 {
1046 	uintptr_t segvn;
1047 	proc_t proc;
1048 	uint_t quick = FALSE;
1049 	mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg;
1050 
1051 	GElf_Sym sym;
1052 
1053 	if (!(flags & DCMD_ADDRSPEC))
1054 		return (DCMD_USAGE);
1055 
1056 	if (mdb_getopts(argc, argv,
1057 	    'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc)
1058 		return (DCMD_USAGE);
1059 
1060 	if (mdb_vread(&proc, sizeof (proc), addr) == -1) {
1061 		mdb_warn("failed to read proc at %p", addr);
1062 		return (DCMD_ERR);
1063 	}
1064 
1065 	if (mdb_lookup_by_name("segvn_ops", &sym) == 0)
1066 		segvn = (uintptr_t)sym.st_value;
1067 	else
1068 		segvn = NULL;
1069 
1070 	mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE");
1071 
1072 	if (quick) {
1073 		mdb_printf("VNODE\n");
1074 		cb = (mdb_walk_cb_t)pmap_walk_seg_quick;
1075 	} else {
1076 		mdb_printf("%8s %s\n", "RES", "PATH");
1077 	}
1078 
1079 	if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) {
1080 		mdb_warn("failed to walk segments of as %p", proc.p_as);
1081 		return (DCMD_ERR);
1082 	}
1083 
1084 	return (DCMD_OK);
1085 }
1086 
1087 typedef struct anon_walk_data {
1088 	uintptr_t *aw_levone;
1089 	uintptr_t *aw_levtwo;
1090 	int aw_nlevone;
1091 	int aw_levone_ndx;
1092 	int aw_levtwo_ndx;
1093 	struct anon_map aw_amp;
1094 	struct anon_hdr aw_ahp;
1095 } anon_walk_data_t;
1096 
1097 int
1098 anon_walk_init(mdb_walk_state_t *wsp)
1099 {
1100 	anon_walk_data_t *aw;
1101 
1102 	if (wsp->walk_addr == NULL) {
1103 		mdb_warn("anon walk doesn't support global walks\n");
1104 		return (WALK_ERR);
1105 	}
1106 
1107 	aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP);
1108 
1109 	if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) {
1110 		mdb_warn("failed to read anon map at %p", wsp->walk_addr);
1111 		mdb_free(aw, sizeof (anon_walk_data_t));
1112 		return (WALK_ERR);
1113 	}
1114 
1115 	if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp),
1116 	    (uintptr_t)(aw->aw_amp.ahp)) == -1) {
1117 		mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp);
1118 		mdb_free(aw, sizeof (anon_walk_data_t));
1119 		return (WALK_ERR);
1120 	}
1121 
1122 	if (aw->aw_ahp.size <= ANON_CHUNK_SIZE ||
1123 	    (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) {
1124 		aw->aw_nlevone = aw->aw_ahp.size;
1125 		aw->aw_levtwo = NULL;
1126 	} else {
1127 		aw->aw_nlevone =
1128 		    (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT;
1129 		aw->aw_levtwo =
1130 		    mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP);
1131 	}
1132 
1133 	aw->aw_levone =
1134 	    mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP);
1135 
1136 	aw->aw_levone_ndx = 0;
1137 	aw->aw_levtwo_ndx = 0;
1138 
1139 	mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t),
1140 	    (uintptr_t)aw->aw_ahp.array_chunk);
1141 
1142 	if (aw->aw_levtwo != NULL) {
1143 		while (aw->aw_levone[aw->aw_levone_ndx] == NULL) {
1144 			aw->aw_levone_ndx++;
1145 			if (aw->aw_levone_ndx == aw->aw_nlevone) {
1146 				mdb_warn("corrupt anon; couldn't"
1147 				    "find ptr to lev two map");
1148 				goto out;
1149 			}
1150 		}
1151 
1152 		mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t),
1153 		    aw->aw_levone[aw->aw_levone_ndx]);
1154 	}
1155 
1156 out:
1157 	wsp->walk_data = aw;
1158 	return (0);
1159 }
1160 
1161 int
1162 anon_walk_step(mdb_walk_state_t *wsp)
1163 {
1164 	int status;
1165 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1166 	struct anon anon;
1167 	uintptr_t anonptr;
1168 
1169 again:
1170 	/*
1171 	 * Once we've walked through level one, we're done.
1172 	 */
1173 	if (aw->aw_levone_ndx == aw->aw_nlevone)
1174 		return (WALK_DONE);
1175 
1176 	if (aw->aw_levtwo == NULL) {
1177 		anonptr = aw->aw_levone[aw->aw_levone_ndx];
1178 		aw->aw_levone_ndx++;
1179 	} else {
1180 		anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx];
1181 		aw->aw_levtwo_ndx++;
1182 
1183 		if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) {
1184 			aw->aw_levtwo_ndx = 0;
1185 
1186 			do {
1187 				aw->aw_levone_ndx++;
1188 
1189 				if (aw->aw_levone_ndx == aw->aw_nlevone)
1190 					return (WALK_DONE);
1191 			} while (aw->aw_levone[aw->aw_levone_ndx] == NULL);
1192 
1193 			mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE *
1194 			    sizeof (uintptr_t),
1195 			    aw->aw_levone[aw->aw_levone_ndx]);
1196 		}
1197 	}
1198 
1199 	if (anonptr != NULL) {
1200 		mdb_vread(&anon, sizeof (anon), anonptr);
1201 		status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata);
1202 	} else
1203 		goto again;
1204 
1205 	return (status);
1206 }
1207 
1208 void
1209 anon_walk_fini(mdb_walk_state_t *wsp)
1210 {
1211 	anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data;
1212 
1213 	if (aw->aw_levtwo != NULL)
1214 		mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t));
1215 
1216 	mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t));
1217 	mdb_free(aw, sizeof (anon_walk_data_t));
1218 }
1219 
1220 /*
1221  * Grumble, grumble.
1222  */
1223 #define	SMAP_HASHFUNC(vp, off)	\
1224 	((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \
1225 	((off) >> MAXBSHIFT)) & smd_hashmsk)
1226 
1227 int
1228 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1229 {
1230 	long smd_hashmsk;
1231 	int hash;
1232 	uintptr_t offset = 0;
1233 	struct smap smp;
1234 	uintptr_t saddr, kaddr;
1235 	uintptr_t smd_hash, smd_smap;
1236 	struct seg seg;
1237 
1238 	if (!(flags & DCMD_ADDRSPEC))
1239 		return (DCMD_USAGE);
1240 
1241 	if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) {
1242 		mdb_warn("failed to read smd_hashmsk");
1243 		return (DCMD_ERR);
1244 	}
1245 
1246 	if (mdb_readvar(&smd_hash, "smd_hash") == -1) {
1247 		mdb_warn("failed to read smd_hash");
1248 		return (DCMD_ERR);
1249 	}
1250 
1251 	if (mdb_readvar(&smd_smap, "smd_smap") == -1) {
1252 		mdb_warn("failed to read smd_hash");
1253 		return (DCMD_ERR);
1254 	}
1255 
1256 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
1257 		mdb_warn("failed to read segkmap");
1258 		return (DCMD_ERR);
1259 	}
1260 
1261 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
1262 		mdb_warn("failed to read segkmap at %p", kaddr);
1263 		return (DCMD_ERR);
1264 	}
1265 
1266 	if (argc != 0) {
1267 		const mdb_arg_t *arg = &argv[0];
1268 
1269 		if (arg->a_type == MDB_TYPE_IMMEDIATE)
1270 			offset = arg->a_un.a_val;
1271 		else
1272 			offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str);
1273 	}
1274 
1275 	hash = SMAP_HASHFUNC(addr, offset);
1276 
1277 	if (mdb_vread(&saddr, sizeof (saddr),
1278 	    smd_hash + hash * sizeof (uintptr_t)) == -1) {
1279 		mdb_warn("couldn't read smap at %p",
1280 		    smd_hash + hash * sizeof (uintptr_t));
1281 		return (DCMD_ERR);
1282 	}
1283 
1284 	do {
1285 		if (mdb_vread(&smp, sizeof (smp), saddr) == -1) {
1286 			mdb_warn("couldn't read smap at %p", saddr);
1287 			return (DCMD_ERR);
1288 		}
1289 
1290 		if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) {
1291 			mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n",
1292 			    addr, offset, saddr, ((saddr - smd_smap) /
1293 			    sizeof (smp)) * MAXBSIZE + seg.s_base);
1294 			return (DCMD_OK);
1295 		}
1296 
1297 		saddr = (uintptr_t)smp.sm_hash;
1298 	} while (saddr != NULL);
1299 
1300 	mdb_printf("no smap for vnode %p, offs %p\n", addr, offset);
1301 	return (DCMD_OK);
1302 }
1303 
1304 /*ARGSUSED*/
1305 int
1306 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv)
1307 {
1308 	uintptr_t kaddr;
1309 	struct seg seg;
1310 	struct segmap_data sd;
1311 
1312 	if (!(flags & DCMD_ADDRSPEC))
1313 		return (DCMD_USAGE);
1314 
1315 	if (mdb_readvar(&kaddr, "segkmap") == -1) {
1316 		mdb_warn("failed to read segkmap");
1317 		return (DCMD_ERR);
1318 	}
1319 
1320 	if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) {
1321 		mdb_warn("failed to read segkmap at %p", kaddr);
1322 		return (DCMD_ERR);
1323 	}
1324 
1325 	if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) {
1326 		mdb_warn("failed to read segmap_data at %p", seg.s_data);
1327 		return (DCMD_ERR);
1328 	}
1329 
1330 	mdb_printf("%p is smap %p\n", addr,
1331 	    ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) *
1332 	    sizeof (struct smap) + (uintptr_t)sd.smd_sm);
1333 
1334 	return (DCMD_OK);
1335 }
1336