1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <mdb/mdb_param.h> 30 #include <mdb/mdb_modapi.h> 31 #include <mdb/mdb_ks.h> 32 #include <mdb/mdb_ctf.h> 33 34 #include <sys/types.h> 35 #include <sys/thread.h> 36 #include <sys/session.h> 37 #include <sys/user.h> 38 #include <sys/proc.h> 39 #include <sys/var.h> 40 #include <sys/t_lock.h> 41 #include <sys/callo.h> 42 #include <sys/priocntl.h> 43 #include <sys/class.h> 44 #include <sys/regset.h> 45 #include <sys/stack.h> 46 #include <sys/cpuvar.h> 47 #include <sys/vnode.h> 48 #include <sys/vfs.h> 49 #include <sys/flock_impl.h> 50 #include <sys/kmem_impl.h> 51 #include <sys/vmem_impl.h> 52 #include <sys/kstat.h> 53 #include <vm/seg_vn.h> 54 #include <vm/anon.h> 55 #include <vm/as.h> 56 #include <vm/seg_map.h> 57 #include <sys/dditypes.h> 58 #include <sys/ddi_impldefs.h> 59 #include <sys/sysmacros.h> 60 #include <sys/sysconf.h> 61 #include <sys/task.h> 62 #include <sys/project.h> 63 #include <sys/taskq.h> 64 #include <sys/taskq_impl.h> 65 #include <sys/errorq_impl.h> 66 #include <sys/cred_impl.h> 67 #include <sys/zone.h> 68 #include <sys/panic.h> 69 #include <regex.h> 70 #include <sys/port_impl.h> 71 72 #include "contract.h" 73 #include "cpupart_mdb.h" 74 #include "devinfo.h" 75 #include "leaky.h" 76 #include "lgrp.h" 77 #include "list.h" 78 #include "log.h" 79 #include "kgrep.h" 80 #include "kmem.h" 81 #include "bio.h" 82 #include "streams.h" 83 #include "cyclic.h" 84 #include "findstack.h" 85 #include "ndievents.h" 86 #include "mmd.h" 87 #include "net.h" 88 #include "nvpair.h" 89 #include "ctxop.h" 90 #include "tsd.h" 91 #include "thread.h" 92 #include "memory.h" 93 #include "sobj.h" 94 #include "sysevent.h" 95 #include "rctl.h" 96 #include "typegraph.h" 97 #include "ldi.h" 98 #include "vfs.h" 99 #include "zone.h" 100 #include "modhash.h" 101 102 /* 103 * Surely this is defined somewhere... 104 */ 105 #define NINTR 16 106 107 #ifndef STACK_BIAS 108 #define STACK_BIAS 0 109 #endif 110 111 static char 112 pstat2ch(uchar_t state) 113 { 114 switch (state) { 115 case SSLEEP: return ('S'); 116 case SRUN: return ('R'); 117 case SZOMB: return ('Z'); 118 case SIDL: return ('I'); 119 case SONPROC: return ('O'); 120 case SSTOP: return ('T'); 121 default: return ('?'); 122 } 123 } 124 125 #define PS_PRTTHREADS 0x1 126 #define PS_PRTLWPS 0x2 127 #define PS_PSARGS 0x4 128 #define PS_TASKS 0x8 129 #define PS_PROJECTS 0x10 130 #define PS_ZONES 0x20 131 132 static int 133 ps_threadprint(uintptr_t addr, const void *data, void *private) 134 { 135 const kthread_t *t = (const kthread_t *)data; 136 uint_t prt_flags = *((uint_t *)private); 137 138 static const mdb_bitmask_t t_state_bits[] = { 139 { "TS_FREE", UINT_MAX, TS_FREE }, 140 { "TS_SLEEP", TS_SLEEP, TS_SLEEP }, 141 { "TS_RUN", TS_RUN, TS_RUN }, 142 { "TS_ONPROC", TS_ONPROC, TS_ONPROC }, 143 { "TS_ZOMB", TS_ZOMB, TS_ZOMB }, 144 { "TS_STOPPED", TS_STOPPED, TS_STOPPED }, 145 { NULL, 0, 0 } 146 }; 147 148 if (prt_flags & PS_PRTTHREADS) 149 mdb_printf("\tT %?a <%b>\n", addr, t->t_state, t_state_bits); 150 151 if (prt_flags & PS_PRTLWPS) 152 mdb_printf("\tL %?a ID: %u\n", t->t_lwp, t->t_tid); 153 154 return (WALK_NEXT); 155 } 156 157 int 158 ps(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 159 { 160 uint_t prt_flags = 0; 161 proc_t pr; 162 struct pid pid, pgid, sid; 163 sess_t session; 164 cred_t cred; 165 task_t tk; 166 kproject_t pj; 167 zone_t zn; 168 169 if (!(flags & DCMD_ADDRSPEC)) { 170 if (mdb_walk_dcmd("proc", "ps", argc, argv) == -1) { 171 mdb_warn("can't walk 'proc'"); 172 return (DCMD_ERR); 173 } 174 return (DCMD_OK); 175 } 176 177 if (mdb_getopts(argc, argv, 178 'f', MDB_OPT_SETBITS, PS_PSARGS, &prt_flags, 179 'l', MDB_OPT_SETBITS, PS_PRTLWPS, &prt_flags, 180 'T', MDB_OPT_SETBITS, PS_TASKS, &prt_flags, 181 'P', MDB_OPT_SETBITS, PS_PROJECTS, &prt_flags, 182 'z', MDB_OPT_SETBITS, PS_ZONES, &prt_flags, 183 't', MDB_OPT_SETBITS, PS_PRTTHREADS, &prt_flags, NULL) != argc) 184 return (DCMD_USAGE); 185 186 if (DCMD_HDRSPEC(flags)) { 187 mdb_printf("%<u>%1s %6s %6s %6s %6s ", 188 "S", "PID", "PPID", "PGID", "SID"); 189 if (prt_flags & PS_TASKS) 190 mdb_printf("%5s ", "TASK"); 191 if (prt_flags & PS_PROJECTS) 192 mdb_printf("%5s ", "PROJ"); 193 if (prt_flags & PS_ZONES) 194 mdb_printf("%5s ", "ZONE"); 195 mdb_printf("%6s %10s %?s %s%</u>\n", 196 "UID", "FLAGS", "ADDR", "NAME"); 197 } 198 199 mdb_vread(&pr, sizeof (pr), addr); 200 mdb_vread(&pid, sizeof (pid), (uintptr_t)pr.p_pidp); 201 mdb_vread(&pgid, sizeof (pgid), (uintptr_t)pr.p_pgidp); 202 mdb_vread(&cred, sizeof (cred), (uintptr_t)pr.p_cred); 203 mdb_vread(&session, sizeof (session), (uintptr_t)pr.p_sessp); 204 mdb_vread(&sid, sizeof (sid), (uintptr_t)session.s_sidp); 205 if (prt_flags & (PS_TASKS | PS_PROJECTS)) 206 mdb_vread(&tk, sizeof (tk), (uintptr_t)pr.p_task); 207 if (prt_flags & PS_PROJECTS) 208 mdb_vread(&pj, sizeof (pj), (uintptr_t)tk.tk_proj); 209 if (prt_flags & PS_ZONES) 210 mdb_vread(&zn, sizeof (zone_t), (uintptr_t)pr.p_zone); 211 212 mdb_printf("%c %6d %6d %6d %6d ", 213 pstat2ch(pr.p_stat), pid.pid_id, pr.p_ppid, pgid.pid_id, 214 sid.pid_id); 215 if (prt_flags & PS_TASKS) 216 mdb_printf("%5d ", tk.tk_tkid); 217 if (prt_flags & PS_PROJECTS) 218 mdb_printf("%5d ", pj.kpj_id); 219 if (prt_flags & PS_ZONES) 220 mdb_printf("%5d ", zn.zone_id); 221 mdb_printf("%6d 0x%08x %0?p %s\n", 222 cred.cr_uid, pr.p_flag, addr, 223 (prt_flags & PS_PSARGS) ? pr.p_user.u_psargs : pr.p_user.u_comm); 224 225 if (prt_flags & ~PS_PSARGS) 226 (void) mdb_pwalk("thread", ps_threadprint, &prt_flags, addr); 227 228 return (DCMD_OK); 229 } 230 231 #define PG_NEWEST 0x0001 232 #define PG_OLDEST 0x0002 233 #define PG_PIPE_OUT 0x0004 234 235 typedef struct pgrep_data { 236 uint_t pg_flags; 237 uint_t pg_psflags; 238 uintptr_t pg_xaddr; 239 hrtime_t pg_xstart; 240 const char *pg_pat; 241 #ifndef _KMDB 242 regex_t pg_reg; 243 #endif 244 } pgrep_data_t; 245 246 /*ARGSUSED*/ 247 static int 248 pgrep_cb(uintptr_t addr, const void *pdata, void *data) 249 { 250 const proc_t *prp = pdata; 251 pgrep_data_t *pgp = data; 252 #ifndef _KMDB 253 regmatch_t pmatch; 254 #endif 255 256 /* 257 * kmdb doesn't have access to the reg* functions, so we fall back 258 * to strstr. 259 */ 260 #ifdef _KMDB 261 if (strstr(prp->p_user.u_comm, pgp->pg_pat) == NULL) 262 return (WALK_NEXT); 263 #else 264 if (regexec(&pgp->pg_reg, prp->p_user.u_comm, 1, &pmatch, 0) != 0) 265 return (WALK_NEXT); 266 #endif 267 268 if (pgp->pg_flags & (PG_NEWEST | PG_OLDEST)) { 269 hrtime_t start; 270 271 start = (hrtime_t)prp->p_user.u_start.tv_sec * NANOSEC + 272 prp->p_user.u_start.tv_nsec; 273 274 if (pgp->pg_flags & PG_NEWEST) { 275 if (pgp->pg_xaddr == NULL || start > pgp->pg_xstart) { 276 pgp->pg_xaddr = addr; 277 pgp->pg_xstart = start; 278 } 279 } else { 280 if (pgp->pg_xaddr == NULL || start < pgp->pg_xstart) { 281 pgp->pg_xaddr = addr; 282 pgp->pg_xstart = start; 283 } 284 } 285 286 } else if (pgp->pg_flags & PG_PIPE_OUT) { 287 mdb_printf("%p\n", addr); 288 289 } else { 290 if (mdb_call_dcmd("ps", addr, pgp->pg_psflags, 0, NULL) != 0) { 291 mdb_warn("can't invoke 'ps'"); 292 return (WALK_DONE); 293 } 294 pgp->pg_psflags &= ~DCMD_LOOPFIRST; 295 } 296 297 return (WALK_NEXT); 298 } 299 300 /*ARGSUSED*/ 301 int 302 pgrep(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 303 { 304 pgrep_data_t pg; 305 int i; 306 #ifndef _KMDB 307 int err; 308 #endif 309 310 if (flags & DCMD_ADDRSPEC) 311 return (DCMD_USAGE); 312 313 pg.pg_flags = 0; 314 pg.pg_xaddr = 0; 315 316 i = mdb_getopts(argc, argv, 317 'n', MDB_OPT_SETBITS, PG_NEWEST, &pg.pg_flags, 318 'o', MDB_OPT_SETBITS, PG_OLDEST, &pg.pg_flags, 319 NULL); 320 321 argc -= i; 322 argv += i; 323 324 if (argc != 1) 325 return (DCMD_USAGE); 326 327 /* 328 * -n and -o are mutually exclusive. 329 */ 330 if ((pg.pg_flags & PG_NEWEST) && (pg.pg_flags & PG_OLDEST)) 331 return (DCMD_USAGE); 332 333 if (argv->a_type != MDB_TYPE_STRING) 334 return (DCMD_USAGE); 335 336 if (flags & DCMD_PIPE_OUT) 337 pg.pg_flags |= PG_PIPE_OUT; 338 339 pg.pg_pat = argv->a_un.a_str; 340 if (DCMD_HDRSPEC(flags)) 341 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP | DCMD_LOOPFIRST; 342 else 343 pg.pg_psflags = DCMD_ADDRSPEC | DCMD_LOOP; 344 345 #ifndef _KMDB 346 if ((err = regcomp(&pg.pg_reg, pg.pg_pat, REG_EXTENDED)) != 0) { 347 size_t nbytes; 348 char *buf; 349 350 nbytes = regerror(err, &pg.pg_reg, NULL, 0); 351 buf = mdb_alloc(nbytes + 1, UM_SLEEP | UM_GC); 352 (void) regerror(err, &pg.pg_reg, buf, nbytes); 353 mdb_warn("%s\n", buf); 354 355 return (DCMD_ERR); 356 } 357 #endif 358 359 if (mdb_walk("proc", pgrep_cb, &pg) != 0) { 360 mdb_warn("can't walk 'proc'"); 361 return (DCMD_ERR); 362 } 363 364 if (pg.pg_xaddr != 0 && (pg.pg_flags & (PG_NEWEST | PG_OLDEST))) { 365 if (pg.pg_flags & PG_PIPE_OUT) { 366 mdb_printf("%p\n", pg.pg_xaddr); 367 } else { 368 if (mdb_call_dcmd("ps", pg.pg_xaddr, pg.pg_psflags, 369 0, NULL) != 0) { 370 mdb_warn("can't invoke 'ps'"); 371 return (DCMD_ERR); 372 } 373 } 374 } 375 376 return (DCMD_OK); 377 } 378 379 int 380 task(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 381 { 382 task_t tk; 383 kproject_t pj; 384 385 if (!(flags & DCMD_ADDRSPEC)) { 386 if (mdb_walk_dcmd("task_cache", "task", argc, argv) == -1) { 387 mdb_warn("can't walk task_cache"); 388 return (DCMD_ERR); 389 } 390 return (DCMD_OK); 391 } 392 if (DCMD_HDRSPEC(flags)) { 393 mdb_printf("%<u>%?s %6s %6s %6s %6s %10s%</u>\n", 394 "ADDR", "TASKID", "PROJID", "ZONEID", "REFCNT", "FLAGS"); 395 } 396 if (mdb_vread(&tk, sizeof (task_t), addr) == -1) { 397 mdb_warn("can't read task_t structure at %p", addr); 398 return (DCMD_ERR); 399 } 400 if (mdb_vread(&pj, sizeof (kproject_t), (uintptr_t)tk.tk_proj) == -1) { 401 mdb_warn("can't read project_t structure at %p", addr); 402 return (DCMD_ERR); 403 } 404 mdb_printf("%0?p %6d %6d %6d %6u 0x%08x\n", 405 addr, tk.tk_tkid, pj.kpj_id, pj.kpj_zoneid, tk.tk_hold_count, 406 tk.tk_flags); 407 return (DCMD_OK); 408 } 409 410 int 411 project(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 412 { 413 kproject_t pj; 414 415 if (!(flags & DCMD_ADDRSPEC)) { 416 if (mdb_walk_dcmd("projects", "project", argc, argv) == -1) { 417 mdb_warn("can't walk projects"); 418 return (DCMD_ERR); 419 } 420 return (DCMD_OK); 421 } 422 if (DCMD_HDRSPEC(flags)) { 423 mdb_printf("%<u>%?s %6s %6s %6s%</u>\n", 424 "ADDR", "PROJID", "ZONEID", "REFCNT"); 425 } 426 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 427 mdb_warn("can't read kproject_t structure at %p", addr); 428 return (DCMD_ERR); 429 } 430 mdb_printf("%0?p %6d %6d %6u\n", addr, pj.kpj_id, pj.kpj_zoneid, 431 pj.kpj_count); 432 return (DCMD_OK); 433 } 434 435 /*ARGSUSED*/ 436 int 437 callout(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 438 { 439 callout_table_t *co_ktable[CALLOUT_TABLES]; 440 int co_kfanout; 441 callout_table_t co_table; 442 callout_t co_callout; 443 callout_t *co_ptr; 444 int co_id; 445 clock_t lbolt; 446 int i, j, k; 447 const char *lbolt_sym; 448 449 if ((flags & DCMD_ADDRSPEC) || argc != 0) 450 return (DCMD_USAGE); 451 452 if (mdb_prop_postmortem) 453 lbolt_sym = "panic_lbolt"; 454 else 455 lbolt_sym = "lbolt"; 456 457 if (mdb_readvar(&lbolt, lbolt_sym) == -1) { 458 mdb_warn("failed to read '%s'", lbolt_sym); 459 return (DCMD_ERR); 460 } 461 462 if (mdb_readvar(&co_kfanout, "callout_fanout") == -1) { 463 mdb_warn("failed to read callout_fanout"); 464 return (DCMD_ERR); 465 } 466 467 if (mdb_readvar(&co_ktable, "callout_table") == -1) { 468 mdb_warn("failed to read callout_table"); 469 return (DCMD_ERR); 470 } 471 472 mdb_printf("%<u>%-24s %-?s %-?s %-?s%</u>\n", 473 "FUNCTION", "ARGUMENT", "ID", "TIME"); 474 475 for (i = 0; i < CALLOUT_NTYPES; i++) { 476 for (j = 0; j < co_kfanout; j++) { 477 478 co_id = CALLOUT_TABLE(i, j); 479 480 if (mdb_vread(&co_table, sizeof (co_table), 481 (uintptr_t)co_ktable[co_id]) == -1) { 482 mdb_warn("failed to read table at %p", 483 (uintptr_t)co_ktable[co_id]); 484 continue; 485 } 486 487 for (k = 0; k < CALLOUT_BUCKETS; k++) { 488 co_ptr = co_table.ct_idhash[k]; 489 490 while (co_ptr != NULL) { 491 mdb_vread(&co_callout, 492 sizeof (co_callout), 493 (uintptr_t)co_ptr); 494 495 mdb_printf("%-24a %0?p %0?lx %?lx " 496 "(T%+ld)\n", co_callout.c_func, 497 co_callout.c_arg, co_callout.c_xid, 498 co_callout.c_runtime, 499 co_callout.c_runtime - lbolt); 500 501 co_ptr = co_callout.c_idnext; 502 } 503 } 504 } 505 } 506 507 return (DCMD_OK); 508 } 509 510 /*ARGSUSED*/ 511 int 512 class(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 513 { 514 long num_classes, i; 515 sclass_t *class_tbl; 516 GElf_Sym g_sclass; 517 char class_name[PC_CLNMSZ]; 518 size_t tbl_size; 519 520 if (mdb_lookup_by_name("sclass", &g_sclass) == -1) { 521 mdb_warn("failed to find symbol sclass\n"); 522 return (DCMD_ERR); 523 } 524 525 tbl_size = (size_t)g_sclass.st_size; 526 num_classes = tbl_size / (sizeof (sclass_t)); 527 class_tbl = mdb_alloc(tbl_size, UM_SLEEP | UM_GC); 528 529 if (mdb_readsym(class_tbl, tbl_size, "sclass") == -1) { 530 mdb_warn("failed to read sclass"); 531 return (DCMD_ERR); 532 } 533 534 mdb_printf("%<u>%4s %-10s %-24s %-24s%</u>\n", "SLOT", "NAME", 535 "INIT FCN", "CLASS FCN"); 536 537 for (i = 0; i < num_classes; i++) { 538 if (mdb_vread(class_name, sizeof (class_name), 539 (uintptr_t)class_tbl[i].cl_name) == -1) 540 (void) strcpy(class_name, "???"); 541 542 mdb_printf("%4ld %-10s %-24a %-24a\n", i, class_name, 543 class_tbl[i].cl_init, class_tbl[i].cl_funcs); 544 } 545 546 return (DCMD_OK); 547 } 548 549 #define FSNAMELEN 32 /* Max len of FS name we read from vnodeops */ 550 551 int 552 vnode2path(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 553 { 554 uintptr_t rootdir; 555 vnode_t vn; 556 char buf[MAXPATHLEN]; 557 558 uint_t opt_F = FALSE; 559 560 if (mdb_getopts(argc, argv, 561 'F', MDB_OPT_SETBITS, TRUE, &opt_F, NULL) != argc) 562 return (DCMD_USAGE); 563 564 if (!(flags & DCMD_ADDRSPEC)) { 565 mdb_warn("expected explicit vnode_t address before ::\n"); 566 return (DCMD_USAGE); 567 } 568 569 if (mdb_readvar(&rootdir, "rootdir") == -1) { 570 mdb_warn("failed to read rootdir"); 571 return (DCMD_ERR); 572 } 573 574 if (mdb_vnode2path(addr, buf, sizeof (buf)) == -1) 575 return (DCMD_ERR); 576 577 if (*buf == '\0') { 578 mdb_printf("??\n"); 579 return (DCMD_OK); 580 } 581 582 mdb_printf("%s", buf); 583 if (opt_F && buf[strlen(buf)-1] != '/' && 584 mdb_vread(&vn, sizeof (vn), addr) == sizeof (vn)) 585 mdb_printf("%c", mdb_vtype2chr(vn.v_type, 0)); 586 mdb_printf("\n"); 587 588 return (DCMD_OK); 589 } 590 591 int 592 ld_walk_init(mdb_walk_state_t *wsp) 593 { 594 wsp->walk_data = (void *)wsp->walk_addr; 595 return (WALK_NEXT); 596 } 597 598 int 599 ld_walk_step(mdb_walk_state_t *wsp) 600 { 601 int status; 602 lock_descriptor_t ld; 603 604 if (mdb_vread(&ld, sizeof (lock_descriptor_t), wsp->walk_addr) == -1) { 605 mdb_warn("couldn't read lock_descriptor_t at %p\n", 606 wsp->walk_addr); 607 return (WALK_ERR); 608 } 609 610 status = wsp->walk_callback(wsp->walk_addr, &ld, wsp->walk_cbdata); 611 if (status == WALK_ERR) 612 return (WALK_ERR); 613 614 wsp->walk_addr = (uintptr_t)ld.l_next; 615 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) 616 return (WALK_DONE); 617 618 return (status); 619 } 620 621 int 622 lg_walk_init(mdb_walk_state_t *wsp) 623 { 624 GElf_Sym sym; 625 626 if (mdb_lookup_by_name("lock_graph", &sym) == -1) { 627 mdb_warn("failed to find symbol 'lock_graph'\n"); 628 return (WALK_ERR); 629 } 630 631 wsp->walk_addr = (uintptr_t)sym.st_value; 632 wsp->walk_data = (void *)(sym.st_value + sym.st_size); 633 634 return (WALK_NEXT); 635 } 636 637 typedef struct lg_walk_data { 638 uintptr_t startaddr; 639 mdb_walk_cb_t callback; 640 void *data; 641 } lg_walk_data_t; 642 643 /* 644 * We can't use ::walk lock_descriptor directly, because the head of each graph 645 * is really a dummy lock. Rather than trying to dynamically determine if this 646 * is a dummy node or not, we just filter out the initial element of the 647 * list. 648 */ 649 static int 650 lg_walk_cb(uintptr_t addr, const void *data, void *priv) 651 { 652 lg_walk_data_t *lw = priv; 653 654 if (addr != lw->startaddr) 655 return (lw->callback(addr, data, lw->data)); 656 657 return (WALK_NEXT); 658 } 659 660 int 661 lg_walk_step(mdb_walk_state_t *wsp) 662 { 663 graph_t *graph; 664 lg_walk_data_t lw; 665 666 if (wsp->walk_addr >= (uintptr_t)wsp->walk_data) 667 return (WALK_DONE); 668 669 if (mdb_vread(&graph, sizeof (graph), wsp->walk_addr) == -1) { 670 mdb_warn("failed to read graph_t at %p", wsp->walk_addr); 671 return (WALK_ERR); 672 } 673 674 wsp->walk_addr += sizeof (graph); 675 676 if (graph == NULL) 677 return (WALK_NEXT); 678 679 lw.callback = wsp->walk_callback; 680 lw.data = wsp->walk_cbdata; 681 682 lw.startaddr = (uintptr_t)&(graph->active_locks); 683 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 684 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 685 return (WALK_ERR); 686 } 687 688 lw.startaddr = (uintptr_t)&(graph->sleeping_locks); 689 if (mdb_pwalk("lock_descriptor", lg_walk_cb, &lw, lw.startaddr)) { 690 mdb_warn("couldn't walk lock_descriptor at %p\n", lw.startaddr); 691 return (WALK_ERR); 692 } 693 694 return (WALK_NEXT); 695 } 696 697 /* 698 * The space available for the path corresponding to the locked vnode depends 699 * on whether we are printing 32- or 64-bit addresses. 700 */ 701 #ifdef _LP64 702 #define LM_VNPATHLEN 20 703 #else 704 #define LM_VNPATHLEN 30 705 #endif 706 707 /*ARGSUSED*/ 708 static int 709 lminfo_cb(uintptr_t addr, const void *data, void *priv) 710 { 711 const lock_descriptor_t *ld = data; 712 char buf[LM_VNPATHLEN]; 713 proc_t p; 714 715 mdb_printf("%-?p %2s %04x %6d %-16s %-?p ", 716 addr, ld->l_type == F_RDLCK ? "RD" : 717 ld->l_type == F_WRLCK ? "WR" : "??", 718 ld->l_state, ld->l_flock.l_pid, 719 ld->l_flock.l_pid == 0 ? "<kernel>" : 720 mdb_pid2proc(ld->l_flock.l_pid, &p) == NULL ? 721 "<defunct>" : p.p_user.u_comm, 722 ld->l_vnode); 723 724 mdb_vnode2path((uintptr_t)ld->l_vnode, buf, 725 sizeof (buf)); 726 mdb_printf("%s\n", buf); 727 728 return (WALK_NEXT); 729 } 730 731 /*ARGSUSED*/ 732 int 733 lminfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 734 { 735 if (DCMD_HDRSPEC(flags)) 736 mdb_printf("%<u>%-?s %2s %4s %6s %-16s %-?s %s%</u>\n", 737 "ADDR", "TP", "FLAG", "PID", "COMM", "VNODE", "PATH"); 738 739 return (mdb_pwalk("lock_graph", lminfo_cb, NULL, NULL)); 740 } 741 742 /*ARGSUSED*/ 743 int 744 seg(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 745 { 746 struct seg s; 747 748 if (argc != 0) 749 return (DCMD_USAGE); 750 751 if ((flags & DCMD_LOOPFIRST) || !(flags & DCMD_LOOP)) { 752 mdb_printf("%<u>%?s %?s %?s %?s %s%</u>\n", 753 "SEG", "BASE", "SIZE", "DATA", "OPS"); 754 } 755 756 if (mdb_vread(&s, sizeof (s), addr) == -1) { 757 mdb_warn("failed to read seg at %p", addr); 758 return (DCMD_ERR); 759 } 760 761 mdb_printf("%?p %?p %?lx %?p %a\n", 762 addr, s.s_base, s.s_size, s.s_data, s.s_ops); 763 764 return (DCMD_OK); 765 } 766 767 /*ARGSUSED*/ 768 static int 769 pmap_walk_anon(uintptr_t addr, const struct anon *anon, int *nres) 770 { 771 uintptr_t pp = 772 mdb_vnode2page((uintptr_t)anon->an_vp, (uintptr_t)anon->an_off); 773 774 if (pp != NULL) 775 (*nres)++; 776 777 return (WALK_NEXT); 778 } 779 780 static int 781 pmap_walk_seg(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 782 { 783 784 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 785 786 if (segvn == (uintptr_t)seg->s_ops) { 787 struct segvn_data svn; 788 int nres = 0; 789 790 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 791 792 if (svn.amp == NULL) { 793 mdb_printf(" %8s", ""); 794 goto drive_on; 795 } 796 797 /* 798 * We've got an amp for this segment; walk through 799 * the amp, and determine mappings. 800 */ 801 if (mdb_pwalk("anon", (mdb_walk_cb_t)pmap_walk_anon, 802 &nres, (uintptr_t)svn.amp) == -1) 803 mdb_warn("failed to walk anon (amp=%p)", svn.amp); 804 805 mdb_printf(" %7dk", (nres * PAGESIZE) / 1024); 806 drive_on: 807 808 if (svn.vp != NULL) { 809 char buf[29]; 810 811 mdb_vnode2path((uintptr_t)svn.vp, buf, sizeof (buf)); 812 mdb_printf(" %s", buf); 813 } else 814 mdb_printf(" [ anon ]"); 815 } 816 817 mdb_printf("\n"); 818 return (WALK_NEXT); 819 } 820 821 static int 822 pmap_walk_seg_quick(uintptr_t addr, const struct seg *seg, uintptr_t segvn) 823 { 824 mdb_printf("%0?p %0?p %7dk", addr, seg->s_base, seg->s_size / 1024); 825 826 if (segvn == (uintptr_t)seg->s_ops) { 827 struct segvn_data svn; 828 829 (void) mdb_vread(&svn, sizeof (svn), (uintptr_t)seg->s_data); 830 831 if (svn.vp != NULL) { 832 mdb_printf(" %0?p", svn.vp); 833 } else { 834 mdb_printf(" [ anon ]"); 835 } 836 } 837 838 mdb_printf("\n"); 839 return (WALK_NEXT); 840 } 841 842 /*ARGSUSED*/ 843 int 844 pmap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 845 { 846 uintptr_t segvn; 847 proc_t proc; 848 uint_t quick = FALSE; 849 mdb_walk_cb_t cb = (mdb_walk_cb_t)pmap_walk_seg; 850 851 GElf_Sym sym; 852 853 if (!(flags & DCMD_ADDRSPEC)) 854 return (DCMD_USAGE); 855 856 if (mdb_getopts(argc, argv, 857 'q', MDB_OPT_SETBITS, TRUE, &quick, NULL) != argc) 858 return (DCMD_USAGE); 859 860 if (mdb_vread(&proc, sizeof (proc), addr) == -1) { 861 mdb_warn("failed to read proc at %p", addr); 862 return (DCMD_ERR); 863 } 864 865 if (mdb_lookup_by_name("segvn_ops", &sym) == 0) 866 segvn = (uintptr_t)sym.st_value; 867 else 868 segvn = NULL; 869 870 mdb_printf("%?s %?s %8s ", "SEG", "BASE", "SIZE"); 871 872 if (quick) { 873 mdb_printf("VNODE\n"); 874 cb = (mdb_walk_cb_t)pmap_walk_seg_quick; 875 } else { 876 mdb_printf("%8s %s\n", "RES", "PATH"); 877 } 878 879 if (mdb_pwalk("seg", cb, (void *)segvn, (uintptr_t)proc.p_as) == -1) { 880 mdb_warn("failed to walk segments of as %p", proc.p_as); 881 return (DCMD_ERR); 882 } 883 884 return (DCMD_OK); 885 } 886 887 typedef struct anon_walk_data { 888 uintptr_t *aw_levone; 889 uintptr_t *aw_levtwo; 890 int aw_nlevone; 891 int aw_levone_ndx; 892 int aw_levtwo_ndx; 893 struct anon_map aw_amp; 894 struct anon_hdr aw_ahp; 895 } anon_walk_data_t; 896 897 int 898 anon_walk_init(mdb_walk_state_t *wsp) 899 { 900 anon_walk_data_t *aw; 901 902 if (wsp->walk_addr == NULL) { 903 mdb_warn("anon walk doesn't support global walks\n"); 904 return (WALK_ERR); 905 } 906 907 aw = mdb_alloc(sizeof (anon_walk_data_t), UM_SLEEP); 908 909 if (mdb_vread(&aw->aw_amp, sizeof (aw->aw_amp), wsp->walk_addr) == -1) { 910 mdb_warn("failed to read anon map at %p", wsp->walk_addr); 911 mdb_free(aw, sizeof (anon_walk_data_t)); 912 return (WALK_ERR); 913 } 914 915 if (mdb_vread(&aw->aw_ahp, sizeof (aw->aw_ahp), 916 (uintptr_t)(aw->aw_amp.ahp)) == -1) { 917 mdb_warn("failed to read anon hdr ptr at %p", aw->aw_amp.ahp); 918 mdb_free(aw, sizeof (anon_walk_data_t)); 919 return (WALK_ERR); 920 } 921 922 if (aw->aw_ahp.size <= ANON_CHUNK_SIZE || 923 (aw->aw_ahp.flags & ANON_ALLOC_FORCE)) { 924 aw->aw_nlevone = aw->aw_ahp.size; 925 aw->aw_levtwo = NULL; 926 } else { 927 aw->aw_nlevone = 928 (aw->aw_ahp.size + ANON_CHUNK_OFF) >> ANON_CHUNK_SHIFT; 929 aw->aw_levtwo = 930 mdb_zalloc(ANON_CHUNK_SIZE * sizeof (uintptr_t), UM_SLEEP); 931 } 932 933 aw->aw_levone = 934 mdb_alloc(aw->aw_nlevone * sizeof (uintptr_t), UM_SLEEP); 935 936 aw->aw_levone_ndx = 0; 937 aw->aw_levtwo_ndx = 0; 938 939 mdb_vread(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t), 940 (uintptr_t)aw->aw_ahp.array_chunk); 941 942 if (aw->aw_levtwo != NULL) { 943 while (aw->aw_levone[aw->aw_levone_ndx] == NULL) { 944 aw->aw_levone_ndx++; 945 if (aw->aw_levone_ndx == aw->aw_nlevone) { 946 mdb_warn("corrupt anon; couldn't" 947 "find ptr to lev two map"); 948 goto out; 949 } 950 } 951 952 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t), 953 aw->aw_levone[aw->aw_levone_ndx]); 954 } 955 956 out: 957 wsp->walk_data = aw; 958 return (0); 959 } 960 961 int 962 anon_walk_step(mdb_walk_state_t *wsp) 963 { 964 int status; 965 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 966 struct anon anon; 967 uintptr_t anonptr; 968 969 again: 970 /* 971 * Once we've walked through level one, we're done. 972 */ 973 if (aw->aw_levone_ndx == aw->aw_nlevone) 974 return (WALK_DONE); 975 976 if (aw->aw_levtwo == NULL) { 977 anonptr = aw->aw_levone[aw->aw_levone_ndx]; 978 aw->aw_levone_ndx++; 979 } else { 980 anonptr = aw->aw_levtwo[aw->aw_levtwo_ndx]; 981 aw->aw_levtwo_ndx++; 982 983 if (aw->aw_levtwo_ndx == ANON_CHUNK_SIZE) { 984 aw->aw_levtwo_ndx = 0; 985 986 do { 987 aw->aw_levone_ndx++; 988 989 if (aw->aw_levone_ndx == aw->aw_nlevone) 990 return (WALK_DONE); 991 } while (aw->aw_levone[aw->aw_levone_ndx] == NULL); 992 993 mdb_vread(aw->aw_levtwo, ANON_CHUNK_SIZE * 994 sizeof (uintptr_t), 995 aw->aw_levone[aw->aw_levone_ndx]); 996 } 997 } 998 999 if (anonptr != NULL) { 1000 mdb_vread(&anon, sizeof (anon), anonptr); 1001 status = wsp->walk_callback(anonptr, &anon, wsp->walk_cbdata); 1002 } else 1003 goto again; 1004 1005 return (status); 1006 } 1007 1008 void 1009 anon_walk_fini(mdb_walk_state_t *wsp) 1010 { 1011 anon_walk_data_t *aw = (anon_walk_data_t *)wsp->walk_data; 1012 1013 if (aw->aw_levtwo != NULL) 1014 mdb_free(aw->aw_levtwo, ANON_CHUNK_SIZE * sizeof (uintptr_t)); 1015 1016 mdb_free(aw->aw_levone, aw->aw_nlevone * sizeof (uintptr_t)); 1017 mdb_free(aw, sizeof (anon_walk_data_t)); 1018 } 1019 1020 /*ARGSUSED*/ 1021 int 1022 whereopen_fwalk(uintptr_t addr, struct file *f, uintptr_t *target) 1023 { 1024 if ((uintptr_t)f->f_vnode == *target) { 1025 mdb_printf("file %p\n", addr); 1026 *target = NULL; 1027 } 1028 1029 return (WALK_NEXT); 1030 } 1031 1032 /*ARGSUSED*/ 1033 int 1034 whereopen_pwalk(uintptr_t addr, void *ignored, uintptr_t *target) 1035 { 1036 uintptr_t t = *target; 1037 1038 if (mdb_pwalk("file", (mdb_walk_cb_t)whereopen_fwalk, &t, addr) == -1) { 1039 mdb_warn("couldn't file walk proc %p", addr); 1040 return (WALK_ERR); 1041 } 1042 1043 if (t == NULL) 1044 mdb_printf("%p\n", addr); 1045 1046 return (WALK_NEXT); 1047 } 1048 1049 /*ARGSUSED*/ 1050 int 1051 whereopen(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1052 { 1053 uintptr_t target = addr; 1054 1055 if (!(flags & DCMD_ADDRSPEC) || addr == NULL) 1056 return (DCMD_USAGE); 1057 1058 if (mdb_walk("proc", (mdb_walk_cb_t)whereopen_pwalk, &target) == -1) { 1059 mdb_warn("can't proc walk"); 1060 return (DCMD_ERR); 1061 } 1062 1063 return (DCMD_OK); 1064 } 1065 1066 typedef struct datafmt { 1067 char *hdr1; 1068 char *hdr2; 1069 char *dashes; 1070 char *fmt; 1071 } datafmt_t; 1072 1073 static datafmt_t kmemfmt[] = { 1074 { "cache ", "name ", 1075 "-------------------------", "%-25s " }, 1076 { " buf", " size", "------", "%6u " }, 1077 { " buf", "in use", "------", "%6u " }, 1078 { " buf", " total", "------", "%6u " }, 1079 { " memory", " in use", "---------", "%9u " }, 1080 { " alloc", " succeed", "---------", "%9u " }, 1081 { "alloc", " fail", "-----", "%5u " }, 1082 { NULL, NULL, NULL, NULL } 1083 }; 1084 1085 static datafmt_t vmemfmt[] = { 1086 { "vmem ", "name ", 1087 "-------------------------", "%-*s " }, 1088 { " memory", " in use", "---------", "%9llu " }, 1089 { " memory", " total", "----------", "%10llu " }, 1090 { " memory", " import", "---------", "%9llu " }, 1091 { " alloc", " succeed", "---------", "%9llu " }, 1092 { "alloc", " fail", "-----", "%5llu " }, 1093 { NULL, NULL, NULL, NULL } 1094 }; 1095 1096 /*ARGSUSED*/ 1097 static int 1098 kmastat_cpu_avail(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *avail) 1099 { 1100 if (ccp->cc_rounds > 0) 1101 *avail += ccp->cc_rounds; 1102 if (ccp->cc_prounds > 0) 1103 *avail += ccp->cc_prounds; 1104 1105 return (WALK_NEXT); 1106 } 1107 1108 /*ARGSUSED*/ 1109 static int 1110 kmastat_cpu_alloc(uintptr_t addr, const kmem_cpu_cache_t *ccp, int *alloc) 1111 { 1112 *alloc += ccp->cc_alloc; 1113 1114 return (WALK_NEXT); 1115 } 1116 1117 /*ARGSUSED*/ 1118 static int 1119 kmastat_slab_avail(uintptr_t addr, const kmem_slab_t *sp, int *avail) 1120 { 1121 *avail += sp->slab_chunks - sp->slab_refcnt; 1122 1123 return (WALK_NEXT); 1124 } 1125 1126 typedef struct kmastat_vmem { 1127 uintptr_t kv_addr; 1128 struct kmastat_vmem *kv_next; 1129 int kv_meminuse; 1130 int kv_alloc; 1131 int kv_fail; 1132 } kmastat_vmem_t; 1133 1134 static int 1135 kmastat_cache(uintptr_t addr, const kmem_cache_t *cp, kmastat_vmem_t **kvp) 1136 { 1137 kmastat_vmem_t *kv; 1138 datafmt_t *dfp = kmemfmt; 1139 int magsize; 1140 1141 int avail, alloc, total; 1142 size_t meminuse = (cp->cache_slab_create - cp->cache_slab_destroy) * 1143 cp->cache_slabsize; 1144 1145 mdb_walk_cb_t cpu_avail = (mdb_walk_cb_t)kmastat_cpu_avail; 1146 mdb_walk_cb_t cpu_alloc = (mdb_walk_cb_t)kmastat_cpu_alloc; 1147 mdb_walk_cb_t slab_avail = (mdb_walk_cb_t)kmastat_slab_avail; 1148 1149 magsize = kmem_get_magsize(cp); 1150 1151 alloc = cp->cache_slab_alloc + cp->cache_full.ml_alloc; 1152 avail = cp->cache_full.ml_total * magsize; 1153 total = cp->cache_buftotal; 1154 1155 (void) mdb_pwalk("kmem_cpu_cache", cpu_alloc, &alloc, addr); 1156 (void) mdb_pwalk("kmem_cpu_cache", cpu_avail, &avail, addr); 1157 (void) mdb_pwalk("kmem_slab_partial", slab_avail, &avail, addr); 1158 1159 for (kv = *kvp; kv != NULL; kv = kv->kv_next) { 1160 if (kv->kv_addr == (uintptr_t)cp->cache_arena) 1161 goto out; 1162 } 1163 1164 kv = mdb_zalloc(sizeof (kmastat_vmem_t), UM_SLEEP | UM_GC); 1165 kv->kv_next = *kvp; 1166 kv->kv_addr = (uintptr_t)cp->cache_arena; 1167 *kvp = kv; 1168 out: 1169 kv->kv_meminuse += meminuse; 1170 kv->kv_alloc += alloc; 1171 kv->kv_fail += cp->cache_alloc_fail; 1172 1173 mdb_printf((dfp++)->fmt, cp->cache_name); 1174 mdb_printf((dfp++)->fmt, cp->cache_bufsize); 1175 mdb_printf((dfp++)->fmt, total - avail); 1176 mdb_printf((dfp++)->fmt, total); 1177 mdb_printf((dfp++)->fmt, meminuse); 1178 mdb_printf((dfp++)->fmt, alloc); 1179 mdb_printf((dfp++)->fmt, cp->cache_alloc_fail); 1180 mdb_printf("\n"); 1181 1182 return (WALK_NEXT); 1183 } 1184 1185 static int 1186 kmastat_vmem_totals(uintptr_t addr, const vmem_t *v, kmastat_vmem_t *kv) 1187 { 1188 size_t len; 1189 1190 while (kv != NULL && kv->kv_addr != addr) 1191 kv = kv->kv_next; 1192 1193 if (kv == NULL || kv->kv_alloc == 0) 1194 return (WALK_NEXT); 1195 1196 len = MIN(17, strlen(v->vm_name)); 1197 1198 mdb_printf("Total [%s]%*s %6s %6s %6s %9u %9u %5u\n", v->vm_name, 1199 17 - len, "", "", "", "", 1200 kv->kv_meminuse, kv->kv_alloc, kv->kv_fail); 1201 1202 return (WALK_NEXT); 1203 } 1204 1205 /*ARGSUSED*/ 1206 static int 1207 kmastat_vmem(uintptr_t addr, const vmem_t *v, void *ignored) 1208 { 1209 datafmt_t *dfp = vmemfmt; 1210 const vmem_kstat_t *vkp = &v->vm_kstat; 1211 uintptr_t paddr; 1212 vmem_t parent; 1213 int ident = 0; 1214 1215 for (paddr = (uintptr_t)v->vm_source; paddr != NULL; ident += 4) { 1216 if (mdb_vread(&parent, sizeof (parent), paddr) == -1) { 1217 mdb_warn("couldn't trace %p's ancestry", addr); 1218 ident = 0; 1219 break; 1220 } 1221 paddr = (uintptr_t)parent.vm_source; 1222 } 1223 1224 mdb_printf("%*s", ident, ""); 1225 mdb_printf((dfp++)->fmt, 25 - ident, v->vm_name); 1226 mdb_printf((dfp++)->fmt, vkp->vk_mem_inuse.value.ui64); 1227 mdb_printf((dfp++)->fmt, vkp->vk_mem_total.value.ui64); 1228 mdb_printf((dfp++)->fmt, vkp->vk_mem_import.value.ui64); 1229 mdb_printf((dfp++)->fmt, vkp->vk_alloc.value.ui64); 1230 mdb_printf((dfp++)->fmt, vkp->vk_fail.value.ui64); 1231 1232 mdb_printf("\n"); 1233 1234 return (WALK_NEXT); 1235 } 1236 1237 /*ARGSUSED*/ 1238 int 1239 kmastat(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 1240 { 1241 kmastat_vmem_t *kv = NULL; 1242 datafmt_t *dfp; 1243 1244 if (argc != 0) 1245 return (DCMD_USAGE); 1246 1247 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1248 mdb_printf("%s ", dfp->hdr1); 1249 mdb_printf("\n"); 1250 1251 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1252 mdb_printf("%s ", dfp->hdr2); 1253 mdb_printf("\n"); 1254 1255 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1256 mdb_printf("%s ", dfp->dashes); 1257 mdb_printf("\n"); 1258 1259 if (mdb_walk("kmem_cache", (mdb_walk_cb_t)kmastat_cache, &kv) == -1) { 1260 mdb_warn("can't walk 'kmem_cache'"); 1261 return (DCMD_ERR); 1262 } 1263 1264 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1265 mdb_printf("%s ", dfp->dashes); 1266 mdb_printf("\n"); 1267 1268 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem_totals, kv) == -1) { 1269 mdb_warn("can't walk 'vmem'"); 1270 return (DCMD_ERR); 1271 } 1272 1273 for (dfp = kmemfmt; dfp->hdr1 != NULL; dfp++) 1274 mdb_printf("%s ", dfp->dashes); 1275 mdb_printf("\n"); 1276 1277 mdb_printf("\n"); 1278 1279 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1280 mdb_printf("%s ", dfp->hdr1); 1281 mdb_printf("\n"); 1282 1283 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1284 mdb_printf("%s ", dfp->hdr2); 1285 mdb_printf("\n"); 1286 1287 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1288 mdb_printf("%s ", dfp->dashes); 1289 mdb_printf("\n"); 1290 1291 if (mdb_walk("vmem", (mdb_walk_cb_t)kmastat_vmem, NULL) == -1) { 1292 mdb_warn("can't walk 'vmem'"); 1293 return (DCMD_ERR); 1294 } 1295 1296 for (dfp = vmemfmt; dfp->hdr1 != NULL; dfp++) 1297 mdb_printf("%s ", dfp->dashes); 1298 mdb_printf("\n"); 1299 return (DCMD_OK); 1300 } 1301 1302 /* 1303 * Our ::kgrep callback scans the entire kernel VA space (kas). kas is made 1304 * up of a set of 'struct seg's. We could just scan each seg en masse, but 1305 * unfortunately, a few of the segs are both large and sparse, so we could 1306 * spend quite a bit of time scanning VAs which have no backing pages. 1307 * 1308 * So for the few very sparse segs, we skip the segment itself, and scan 1309 * the allocated vmem_segs in the vmem arena which manages that part of kas. 1310 * Currently, we do this for: 1311 * 1312 * SEG VMEM ARENA 1313 * kvseg heap_arena 1314 * kvseg32 heap32_arena 1315 * kvseg_core heap_core_arena 1316 * 1317 * In addition, we skip the segkpm segment in its entirety, since it is very 1318 * sparse, and contains no new kernel data. 1319 */ 1320 typedef struct kgrep_walk_data { 1321 kgrep_cb_func *kg_cb; 1322 void *kg_cbdata; 1323 uintptr_t kg_kvseg; 1324 uintptr_t kg_kvseg32; 1325 uintptr_t kg_kvseg_core; 1326 uintptr_t kg_segkpm; 1327 } kgrep_walk_data_t; 1328 1329 static int 1330 kgrep_walk_seg(uintptr_t addr, const struct seg *seg, kgrep_walk_data_t *kg) 1331 { 1332 uintptr_t base = (uintptr_t)seg->s_base; 1333 1334 if (addr == kg->kg_kvseg || addr == kg->kg_kvseg32 || 1335 addr == kg->kg_kvseg_core) 1336 return (WALK_NEXT); 1337 1338 if ((uintptr_t)seg->s_ops == kg->kg_segkpm) 1339 return (WALK_NEXT); 1340 1341 return (kg->kg_cb(base, base + seg->s_size, kg->kg_cbdata)); 1342 } 1343 1344 /*ARGSUSED*/ 1345 static int 1346 kgrep_walk_vseg(uintptr_t addr, const vmem_seg_t *seg, kgrep_walk_data_t *kg) 1347 { 1348 return (kg->kg_cb(seg->vs_start, seg->vs_end, kg->kg_cbdata)); 1349 } 1350 1351 static int 1352 kgrep_walk_vmem(uintptr_t addr, const vmem_t *vmem, kgrep_walk_data_t *kg) 1353 { 1354 if (strcmp(vmem->vm_name, "heap") != 0 && 1355 strcmp(vmem->vm_name, "heap32") != 0 && 1356 strcmp(vmem->vm_name, "heap_core") != 0) 1357 return (WALK_NEXT); 1358 1359 if (mdb_pwalk("vmem_alloc", 1360 (mdb_walk_cb_t)kgrep_walk_vseg, kg, addr) == -1) { 1361 mdb_warn("couldn't walk vmem_alloc for vmem %p", addr); 1362 return (WALK_ERR); 1363 } 1364 1365 return (WALK_NEXT); 1366 } 1367 1368 int 1369 kgrep_subr(kgrep_cb_func *cb, void *cbdata) 1370 { 1371 GElf_Sym kas, kvseg, kvseg32, kvseg_core, segkpm; 1372 kgrep_walk_data_t kg; 1373 1374 if (mdb_get_state() == MDB_STATE_RUNNING) { 1375 mdb_warn("kgrep can only be run on a system " 1376 "dump or under kmdb; see dumpadm(1M)\n"); 1377 return (DCMD_ERR); 1378 } 1379 1380 if (mdb_lookup_by_name("kas", &kas) == -1) { 1381 mdb_warn("failed to locate 'kas' symbol\n"); 1382 return (DCMD_ERR); 1383 } 1384 1385 if (mdb_lookup_by_name("kvseg", &kvseg) == -1) { 1386 mdb_warn("failed to locate 'kvseg' symbol\n"); 1387 return (DCMD_ERR); 1388 } 1389 1390 if (mdb_lookup_by_name("kvseg32", &kvseg32) == -1) { 1391 mdb_warn("failed to locate 'kvseg32' symbol\n"); 1392 return (DCMD_ERR); 1393 } 1394 1395 if (mdb_lookup_by_name("kvseg_core", &kvseg_core) == -1) { 1396 mdb_warn("failed to locate 'kvseg_core' symbol\n"); 1397 return (DCMD_ERR); 1398 } 1399 1400 if (mdb_lookup_by_name("segkpm_ops", &segkpm) == -1) { 1401 mdb_warn("failed to locate 'segkpm_ops' symbol\n"); 1402 return (DCMD_ERR); 1403 } 1404 1405 kg.kg_cb = cb; 1406 kg.kg_cbdata = cbdata; 1407 kg.kg_kvseg = (uintptr_t)kvseg.st_value; 1408 kg.kg_kvseg32 = (uintptr_t)kvseg32.st_value; 1409 kg.kg_kvseg_core = (uintptr_t)kvseg_core.st_value; 1410 kg.kg_segkpm = (uintptr_t)segkpm.st_value; 1411 1412 if (mdb_pwalk("seg", (mdb_walk_cb_t)kgrep_walk_seg, 1413 &kg, kas.st_value) == -1) { 1414 mdb_warn("failed to walk kas segments"); 1415 return (DCMD_ERR); 1416 } 1417 1418 if (mdb_walk("vmem", (mdb_walk_cb_t)kgrep_walk_vmem, &kg) == -1) { 1419 mdb_warn("failed to walk heap/heap32 vmem arenas"); 1420 return (DCMD_ERR); 1421 } 1422 1423 return (DCMD_OK); 1424 } 1425 1426 size_t 1427 kgrep_subr_pagesize(void) 1428 { 1429 return (PAGESIZE); 1430 } 1431 1432 typedef struct file_walk_data { 1433 struct uf_entry *fw_flist; 1434 int fw_flistsz; 1435 int fw_ndx; 1436 int fw_nofiles; 1437 } file_walk_data_t; 1438 1439 int 1440 file_walk_init(mdb_walk_state_t *wsp) 1441 { 1442 file_walk_data_t *fw; 1443 proc_t p; 1444 1445 if (wsp->walk_addr == NULL) { 1446 mdb_warn("file walk doesn't support global walks\n"); 1447 return (WALK_ERR); 1448 } 1449 1450 fw = mdb_alloc(sizeof (file_walk_data_t), UM_SLEEP); 1451 1452 if (mdb_vread(&p, sizeof (p), wsp->walk_addr) == -1) { 1453 mdb_free(fw, sizeof (file_walk_data_t)); 1454 mdb_warn("failed to read proc structure at %p", wsp->walk_addr); 1455 return (WALK_ERR); 1456 } 1457 1458 if (p.p_user.u_finfo.fi_nfiles == 0) { 1459 mdb_free(fw, sizeof (file_walk_data_t)); 1460 return (WALK_DONE); 1461 } 1462 1463 fw->fw_nofiles = p.p_user.u_finfo.fi_nfiles; 1464 fw->fw_flistsz = sizeof (struct uf_entry) * fw->fw_nofiles; 1465 fw->fw_flist = mdb_alloc(fw->fw_flistsz, UM_SLEEP); 1466 1467 if (mdb_vread(fw->fw_flist, fw->fw_flistsz, 1468 (uintptr_t)p.p_user.u_finfo.fi_list) == -1) { 1469 mdb_warn("failed to read file array at %p", 1470 p.p_user.u_finfo.fi_list); 1471 mdb_free(fw->fw_flist, fw->fw_flistsz); 1472 mdb_free(fw, sizeof (file_walk_data_t)); 1473 return (WALK_ERR); 1474 } 1475 1476 fw->fw_ndx = 0; 1477 wsp->walk_data = fw; 1478 1479 return (WALK_NEXT); 1480 } 1481 1482 int 1483 file_walk_step(mdb_walk_state_t *wsp) 1484 { 1485 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1486 struct file file; 1487 uintptr_t fp; 1488 1489 again: 1490 if (fw->fw_ndx == fw->fw_nofiles) 1491 return (WALK_DONE); 1492 1493 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) == NULL) 1494 goto again; 1495 1496 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1497 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1498 } 1499 1500 int 1501 allfile_walk_step(mdb_walk_state_t *wsp) 1502 { 1503 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1504 struct file file; 1505 uintptr_t fp; 1506 1507 if (fw->fw_ndx == fw->fw_nofiles) 1508 return (WALK_DONE); 1509 1510 if ((fp = (uintptr_t)fw->fw_flist[fw->fw_ndx++].uf_file) != NULL) 1511 (void) mdb_vread(&file, sizeof (file), (uintptr_t)fp); 1512 else 1513 bzero(&file, sizeof (file)); 1514 1515 return (wsp->walk_callback(fp, &file, wsp->walk_cbdata)); 1516 } 1517 1518 void 1519 file_walk_fini(mdb_walk_state_t *wsp) 1520 { 1521 file_walk_data_t *fw = (file_walk_data_t *)wsp->walk_data; 1522 1523 mdb_free(fw->fw_flist, fw->fw_flistsz); 1524 mdb_free(fw, sizeof (file_walk_data_t)); 1525 } 1526 1527 int 1528 port_walk_init(mdb_walk_state_t *wsp) 1529 { 1530 if (wsp->walk_addr == NULL) { 1531 mdb_warn("port walk doesn't support global walks\n"); 1532 return (WALK_ERR); 1533 } 1534 1535 if (mdb_layered_walk("file", wsp) == -1) { 1536 mdb_warn("couldn't walk 'file'"); 1537 return (WALK_ERR); 1538 } 1539 return (WALK_NEXT); 1540 } 1541 1542 int 1543 port_walk_step(mdb_walk_state_t *wsp) 1544 { 1545 struct vnode vn; 1546 uintptr_t vp; 1547 uintptr_t pp; 1548 struct port port; 1549 1550 vp = (uintptr_t)((struct file *)wsp->walk_layer)->f_vnode; 1551 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1552 mdb_warn("failed to read vnode_t at %p", vp); 1553 return (WALK_ERR); 1554 } 1555 if (vn.v_type != VPORT) 1556 return (WALK_NEXT); 1557 1558 pp = (uintptr_t)vn.v_data; 1559 if (mdb_vread(&port, sizeof (port), pp) == -1) { 1560 mdb_warn("failed to read port_t at %p", pp); 1561 return (WALK_ERR); 1562 } 1563 return (wsp->walk_callback(pp, &port, wsp->walk_cbdata)); 1564 } 1565 1566 typedef struct portev_walk_data { 1567 list_node_t *pev_node; 1568 list_node_t *pev_last; 1569 size_t pev_offset; 1570 } portev_walk_data_t; 1571 1572 int 1573 portev_walk_init(mdb_walk_state_t *wsp) 1574 { 1575 portev_walk_data_t *pevd; 1576 struct port port; 1577 struct vnode vn; 1578 struct list *list; 1579 uintptr_t vp; 1580 1581 if (wsp->walk_addr == NULL) { 1582 mdb_warn("portev walk doesn't support global walks\n"); 1583 return (WALK_ERR); 1584 } 1585 1586 pevd = mdb_alloc(sizeof (portev_walk_data_t), UM_SLEEP); 1587 1588 if (mdb_vread(&port, sizeof (port), wsp->walk_addr) == -1) { 1589 mdb_free(pevd, sizeof (portev_walk_data_t)); 1590 mdb_warn("failed to read port structure at %p", wsp->walk_addr); 1591 return (WALK_ERR); 1592 } 1593 1594 vp = (uintptr_t)port.port_vnode; 1595 if (mdb_vread(&vn, sizeof (vn), vp) == -1) { 1596 mdb_free(pevd, sizeof (portev_walk_data_t)); 1597 mdb_warn("failed to read vnode_t at %p", vp); 1598 return (WALK_ERR); 1599 } 1600 1601 if (vn.v_type != VPORT) { 1602 mdb_free(pevd, sizeof (portev_walk_data_t)); 1603 mdb_warn("input address (%p) does not point to an event port", 1604 wsp->walk_addr); 1605 return (WALK_ERR); 1606 } 1607 1608 if (port.port_queue.portq_nent == 0) { 1609 mdb_free(pevd, sizeof (portev_walk_data_t)); 1610 return (WALK_DONE); 1611 } 1612 list = &port.port_queue.portq_list; 1613 pevd->pev_offset = list->list_offset; 1614 pevd->pev_last = list->list_head.list_prev; 1615 pevd->pev_node = list->list_head.list_next; 1616 wsp->walk_data = pevd; 1617 return (WALK_NEXT); 1618 } 1619 1620 int 1621 portev_walk_step(mdb_walk_state_t *wsp) 1622 { 1623 portev_walk_data_t *pevd; 1624 struct port_kevent ev; 1625 uintptr_t evp; 1626 1627 pevd = (portev_walk_data_t *)wsp->walk_data; 1628 1629 if (pevd->pev_last == NULL) 1630 return (WALK_DONE); 1631 if (pevd->pev_node == pevd->pev_last) 1632 pevd->pev_last = NULL; /* last round */ 1633 1634 evp = ((uintptr_t)(((char *)pevd->pev_node) - pevd->pev_offset)); 1635 if (mdb_vread(&ev, sizeof (ev), evp) == -1) { 1636 mdb_warn("failed to read port_kevent at %p", evp); 1637 return (WALK_DONE); 1638 } 1639 pevd->pev_node = ev.portkev_node.list_next; 1640 return (wsp->walk_callback(evp, &ev, wsp->walk_cbdata)); 1641 } 1642 1643 void 1644 portev_walk_fini(mdb_walk_state_t *wsp) 1645 { 1646 portev_walk_data_t *pevd = (portev_walk_data_t *)wsp->walk_data; 1647 1648 if (pevd != NULL) 1649 mdb_free(pevd, sizeof (portev_walk_data_t)); 1650 } 1651 1652 typedef struct proc_walk_data { 1653 uintptr_t *pw_stack; 1654 int pw_depth; 1655 int pw_max; 1656 } proc_walk_data_t; 1657 1658 int 1659 proc_walk_init(mdb_walk_state_t *wsp) 1660 { 1661 GElf_Sym sym; 1662 proc_walk_data_t *pw; 1663 1664 if (wsp->walk_addr == NULL) { 1665 if (mdb_lookup_by_name("p0", &sym) == -1) { 1666 mdb_warn("failed to read 'practive'"); 1667 return (WALK_ERR); 1668 } 1669 wsp->walk_addr = (uintptr_t)sym.st_value; 1670 } 1671 1672 pw = mdb_zalloc(sizeof (proc_walk_data_t), UM_SLEEP); 1673 1674 if (mdb_readvar(&pw->pw_max, "nproc") == -1) { 1675 mdb_warn("failed to read 'nproc'"); 1676 mdb_free(pw, sizeof (pw)); 1677 return (WALK_ERR); 1678 } 1679 1680 pw->pw_stack = mdb_alloc(pw->pw_max * sizeof (uintptr_t), UM_SLEEP); 1681 wsp->walk_data = pw; 1682 1683 return (WALK_NEXT); 1684 } 1685 1686 int 1687 proc_walk_step(mdb_walk_state_t *wsp) 1688 { 1689 proc_walk_data_t *pw = wsp->walk_data; 1690 uintptr_t addr = wsp->walk_addr; 1691 uintptr_t cld, sib; 1692 1693 int status; 1694 proc_t pr; 1695 1696 if (mdb_vread(&pr, sizeof (proc_t), addr) == -1) { 1697 mdb_warn("failed to read proc at %p", addr); 1698 return (WALK_DONE); 1699 } 1700 1701 cld = (uintptr_t)pr.p_child; 1702 sib = (uintptr_t)pr.p_sibling; 1703 1704 if (pw->pw_depth > 0 && addr == pw->pw_stack[pw->pw_depth - 1]) { 1705 pw->pw_depth--; 1706 goto sib; 1707 } 1708 1709 status = wsp->walk_callback(addr, &pr, wsp->walk_cbdata); 1710 1711 if (status != WALK_NEXT) 1712 return (status); 1713 1714 if ((wsp->walk_addr = cld) != NULL) { 1715 if (mdb_vread(&pr, sizeof (proc_t), cld) == -1) { 1716 mdb_warn("proc %p has invalid p_child %p; skipping\n", 1717 addr, cld); 1718 goto sib; 1719 } 1720 1721 pw->pw_stack[pw->pw_depth++] = addr; 1722 1723 if (pw->pw_depth == pw->pw_max) { 1724 mdb_warn("depth %d exceeds max depth; try again\n", 1725 pw->pw_depth); 1726 return (WALK_DONE); 1727 } 1728 return (WALK_NEXT); 1729 } 1730 1731 sib: 1732 /* 1733 * We know that p0 has no siblings, and if another starting proc 1734 * was given, we don't want to walk its siblings anyway. 1735 */ 1736 if (pw->pw_depth == 0) 1737 return (WALK_DONE); 1738 1739 if (sib != NULL && mdb_vread(&pr, sizeof (proc_t), sib) == -1) { 1740 mdb_warn("proc %p has invalid p_sibling %p; skipping\n", 1741 addr, sib); 1742 sib = NULL; 1743 } 1744 1745 if ((wsp->walk_addr = sib) == NULL) { 1746 if (pw->pw_depth > 0) { 1747 wsp->walk_addr = pw->pw_stack[pw->pw_depth - 1]; 1748 return (WALK_NEXT); 1749 } 1750 return (WALK_DONE); 1751 } 1752 1753 return (WALK_NEXT); 1754 } 1755 1756 void 1757 proc_walk_fini(mdb_walk_state_t *wsp) 1758 { 1759 proc_walk_data_t *pw = wsp->walk_data; 1760 1761 mdb_free(pw->pw_stack, pw->pw_max * sizeof (uintptr_t)); 1762 mdb_free(pw, sizeof (proc_walk_data_t)); 1763 } 1764 1765 int 1766 task_walk_init(mdb_walk_state_t *wsp) 1767 { 1768 task_t task; 1769 1770 if (mdb_vread(&task, sizeof (task_t), wsp->walk_addr) == -1) { 1771 mdb_warn("failed to read task at %p", wsp->walk_addr); 1772 return (WALK_ERR); 1773 } 1774 wsp->walk_addr = (uintptr_t)task.tk_memb_list; 1775 wsp->walk_data = task.tk_memb_list; 1776 return (WALK_NEXT); 1777 } 1778 1779 int 1780 task_walk_step(mdb_walk_state_t *wsp) 1781 { 1782 proc_t proc; 1783 int status; 1784 1785 if (mdb_vread(&proc, sizeof (proc_t), wsp->walk_addr) == -1) { 1786 mdb_warn("failed to read proc at %p", wsp->walk_addr); 1787 return (WALK_DONE); 1788 } 1789 1790 status = wsp->walk_callback(wsp->walk_addr, NULL, wsp->walk_cbdata); 1791 1792 if (proc.p_tasknext == wsp->walk_data) 1793 return (WALK_DONE); 1794 1795 wsp->walk_addr = (uintptr_t)proc.p_tasknext; 1796 return (status); 1797 } 1798 1799 int 1800 project_walk_init(mdb_walk_state_t *wsp) 1801 { 1802 if (wsp->walk_addr == NULL) { 1803 if (mdb_readvar(&wsp->walk_addr, "proj0p") == -1) { 1804 mdb_warn("failed to read 'proj0p'"); 1805 return (WALK_ERR); 1806 } 1807 } 1808 wsp->walk_data = (void *)wsp->walk_addr; 1809 return (WALK_NEXT); 1810 } 1811 1812 int 1813 project_walk_step(mdb_walk_state_t *wsp) 1814 { 1815 uintptr_t addr = wsp->walk_addr; 1816 kproject_t pj; 1817 int status; 1818 1819 if (mdb_vread(&pj, sizeof (kproject_t), addr) == -1) { 1820 mdb_warn("failed to read project at %p", addr); 1821 return (WALK_DONE); 1822 } 1823 status = wsp->walk_callback(addr, &pj, wsp->walk_cbdata); 1824 if (status != WALK_NEXT) 1825 return (status); 1826 wsp->walk_addr = (uintptr_t)pj.kpj_next; 1827 if ((void *)wsp->walk_addr == wsp->walk_data) 1828 return (WALK_DONE); 1829 return (WALK_NEXT); 1830 } 1831 1832 static int 1833 generic_walk_step(mdb_walk_state_t *wsp) 1834 { 1835 return (wsp->walk_callback(wsp->walk_addr, wsp->walk_layer, 1836 wsp->walk_cbdata)); 1837 } 1838 1839 struct aw_info { 1840 void *aw_buff; /* buffer to hold the tree's data structure */ 1841 avl_tree_t aw_tree; /* copy of avl_tree_t being walked */ 1842 }; 1843 1844 /* 1845 * common code used to find the addr of the the leftmost child below 1846 * an AVL node 1847 */ 1848 static uintptr_t 1849 avl_leftmostchild(uintptr_t addr, void * buff, size_t offset, size_t size) 1850 { 1851 avl_node_t *node = (avl_node_t *)((uintptr_t)buff + offset); 1852 1853 for (;;) { 1854 addr -= offset; 1855 if (mdb_vread(buff, size, addr) == -1) { 1856 mdb_warn("read of avl_node_t failed: %p", addr); 1857 return ((uintptr_t)-1L); 1858 } 1859 if (node->avl_child[0] == NULL) 1860 break; 1861 addr = (uintptr_t)node->avl_child[0]; 1862 } 1863 return (addr); 1864 } 1865 1866 /* 1867 * initialize a forward walk thru an avl tree. 1868 */ 1869 int 1870 avl_walk_init(mdb_walk_state_t *wsp) 1871 { 1872 struct aw_info *aw; 1873 avl_tree_t *tree; 1874 uintptr_t addr; 1875 1876 /* 1877 * allocate the AVL walk data 1878 */ 1879 wsp->walk_data = aw = mdb_zalloc(sizeof (struct aw_info), UM_SLEEP); 1880 1881 /* 1882 * get an mdb copy of the avl_tree_t being walked 1883 */ 1884 tree = &aw->aw_tree; 1885 if (mdb_vread(tree, sizeof (avl_tree_t), wsp->walk_addr) == -1) { 1886 mdb_warn("read of avl_tree_t failed: %p", wsp->walk_addr); 1887 goto error; 1888 } 1889 if (tree->avl_size < tree->avl_offset + sizeof (avl_node_t)) { 1890 mdb_warn("invalid avl_tree_t at %p, avl_size:%d, avl_offset:%d", 1891 wsp->walk_addr, tree->avl_size, tree->avl_offset); 1892 goto error; 1893 } 1894 1895 /* 1896 * allocate a buffer to hold the mdb copy of tree's structs 1897 * "node" always points at the avl_node_t field inside the struct 1898 */ 1899 aw->aw_buff = mdb_zalloc(tree->avl_size, UM_SLEEP); 1900 1901 /* 1902 * get the first avl_node_t address, use same algorithm 1903 * as avl_start() -- leftmost child in tree from root 1904 */ 1905 addr = (uintptr_t)tree->avl_root; 1906 if (addr == NULL) { 1907 wsp->walk_addr = NULL; 1908 return (WALK_NEXT); 1909 } 1910 addr = avl_leftmostchild(addr, aw->aw_buff, tree->avl_offset, 1911 tree->avl_size); 1912 if (addr == (uintptr_t)-1L) 1913 goto error; 1914 1915 wsp->walk_addr = addr; 1916 return (WALK_NEXT); 1917 1918 error: 1919 if (aw->aw_buff != NULL) 1920 mdb_free(aw->aw_buff, sizeof (tree->avl_size)); 1921 mdb_free(aw, sizeof (struct aw_info)); 1922 return (WALK_ERR); 1923 } 1924 1925 /* 1926 * At each step, visit (callback) the current node, then move to the next 1927 * in the AVL tree. Uses the same algorithm as avl_walk(). 1928 */ 1929 int 1930 avl_walk_step(mdb_walk_state_t *wsp) 1931 { 1932 struct aw_info *aw; 1933 size_t offset; 1934 size_t size; 1935 uintptr_t addr; 1936 avl_node_t *node; 1937 int status; 1938 int was_child; 1939 1940 /* 1941 * don't walk past the end of the tree! 1942 */ 1943 addr = wsp->walk_addr; 1944 if (addr == NULL) 1945 return (WALK_DONE); 1946 1947 aw = (struct aw_info *)wsp->walk_data; 1948 size = aw->aw_tree.avl_size; 1949 offset = aw->aw_tree.avl_offset; 1950 node = (avl_node_t *)((uintptr_t)aw->aw_buff + offset); 1951 1952 /* 1953 * must read the current node for the call back to use 1954 */ 1955 if (mdb_vread(aw->aw_buff, size, addr) == -1) { 1956 mdb_warn("read of avl_node_t failed: %p", addr); 1957 return (WALK_ERR); 1958 } 1959 1960 /* 1961 * do the call back 1962 */ 1963 status = wsp->walk_callback(addr, aw->aw_buff, wsp->walk_cbdata); 1964 if (status != WALK_NEXT) 1965 return (status); 1966 1967 /* 1968 * move to the next node.... 1969 * note we read in new nodes, so the pointer to the buffer is fixed 1970 */ 1971 1972 /* 1973 * if the node has a right child then go to it and then all the way 1974 * thru as many left children as possible 1975 */ 1976 addr = (uintptr_t)node->avl_child[1]; 1977 if (addr != NULL) { 1978 addr = avl_leftmostchild(addr, aw->aw_buff, offset, size); 1979 if (addr == (uintptr_t)-1L) 1980 return (WALK_ERR); 1981 1982 /* 1983 * othewise return to parent nodes, stopping if we ever return from 1984 * a left child 1985 */ 1986 } else { 1987 for (;;) { 1988 was_child = AVL_XCHILD(node); 1989 addr = (uintptr_t)AVL_XPARENT(node); 1990 if (addr == NULL) 1991 break; 1992 addr -= offset; 1993 if (was_child == 0) /* stop on return from left child */ 1994 break; 1995 if (mdb_vread(aw->aw_buff, size, addr) == -1) { 1996 mdb_warn("read of avl_node_t failed: %p", addr); 1997 return (WALK_ERR); 1998 } 1999 } 2000 } 2001 2002 wsp->walk_addr = addr; 2003 return (WALK_NEXT); 2004 } 2005 2006 /* 2007 * Release the memory allocated for the walk 2008 */ 2009 void 2010 avl_walk_fini(mdb_walk_state_t *wsp) 2011 { 2012 struct aw_info *aw; 2013 2014 aw = (struct aw_info *)wsp->walk_data; 2015 2016 if (aw == NULL) 2017 return; 2018 2019 if (aw->aw_buff != NULL) 2020 mdb_free(aw->aw_buff, aw->aw_tree.avl_size); 2021 2022 mdb_free(aw, sizeof (struct aw_info)); 2023 } 2024 2025 2026 int 2027 seg_walk_init(mdb_walk_state_t *wsp) 2028 { 2029 if (wsp->walk_addr == NULL) { 2030 mdb_warn("seg walk must begin at struct as *\n"); 2031 return (WALK_ERR); 2032 } 2033 2034 /* 2035 * this is really just a wrapper to AVL tree walk 2036 */ 2037 wsp->walk_addr = (uintptr_t)&((struct as *)wsp->walk_addr)->a_segtree; 2038 return (avl_walk_init(wsp)); 2039 } 2040 2041 static int 2042 cpu_walk_cmp(const void *l, const void *r) 2043 { 2044 uintptr_t lhs = *((uintptr_t *)l); 2045 uintptr_t rhs = *((uintptr_t *)r); 2046 cpu_t lcpu, rcpu; 2047 2048 (void) mdb_vread(&lcpu, sizeof (lcpu), lhs); 2049 (void) mdb_vread(&rcpu, sizeof (rcpu), rhs); 2050 2051 if (lcpu.cpu_id < rcpu.cpu_id) 2052 return (-1); 2053 2054 if (lcpu.cpu_id > rcpu.cpu_id) 2055 return (1); 2056 2057 return (0); 2058 } 2059 2060 typedef struct cpu_walk { 2061 uintptr_t *cw_array; 2062 int cw_ndx; 2063 } cpu_walk_t; 2064 2065 int 2066 cpu_walk_init(mdb_walk_state_t *wsp) 2067 { 2068 cpu_walk_t *cw; 2069 int max_ncpus, i = 0; 2070 uintptr_t current, first; 2071 cpu_t cpu, panic_cpu; 2072 uintptr_t panicstr, addr; 2073 GElf_Sym sym; 2074 2075 cw = mdb_zalloc(sizeof (cpu_walk_t), UM_SLEEP | UM_GC); 2076 2077 if (mdb_readvar(&max_ncpus, "max_ncpus") == -1) { 2078 mdb_warn("failed to read 'max_ncpus'"); 2079 return (WALK_ERR); 2080 } 2081 2082 if (mdb_readvar(&panicstr, "panicstr") == -1) { 2083 mdb_warn("failed to read 'panicstr'"); 2084 return (WALK_ERR); 2085 } 2086 2087 if (panicstr != NULL) { 2088 if (mdb_lookup_by_name("panic_cpu", &sym) == -1) { 2089 mdb_warn("failed to find 'panic_cpu'"); 2090 return (WALK_ERR); 2091 } 2092 2093 addr = (uintptr_t)sym.st_value; 2094 2095 if (mdb_vread(&panic_cpu, sizeof (cpu_t), addr) == -1) { 2096 mdb_warn("failed to read 'panic_cpu'"); 2097 return (WALK_ERR); 2098 } 2099 } 2100 2101 /* 2102 * Unfortunately, there is no platform-independent way to walk 2103 * CPUs in ID order. We therefore loop through in cpu_next order, 2104 * building an array of CPU pointers which will subsequently be 2105 * sorted. 2106 */ 2107 cw->cw_array = 2108 mdb_zalloc((max_ncpus + 1) * sizeof (uintptr_t), UM_SLEEP | UM_GC); 2109 2110 if (mdb_readvar(&first, "cpu_list") == -1) { 2111 mdb_warn("failed to read 'cpu_list'"); 2112 return (WALK_ERR); 2113 } 2114 2115 current = first; 2116 do { 2117 if (mdb_vread(&cpu, sizeof (cpu), current) == -1) { 2118 mdb_warn("failed to read cpu at %p", current); 2119 return (WALK_ERR); 2120 } 2121 2122 if (panicstr != NULL && panic_cpu.cpu_id == cpu.cpu_id) { 2123 cw->cw_array[i++] = addr; 2124 } else { 2125 cw->cw_array[i++] = current; 2126 } 2127 } while ((current = (uintptr_t)cpu.cpu_next) != first); 2128 2129 qsort(cw->cw_array, i, sizeof (uintptr_t), cpu_walk_cmp); 2130 wsp->walk_data = cw; 2131 2132 return (WALK_NEXT); 2133 } 2134 2135 int 2136 cpu_walk_step(mdb_walk_state_t *wsp) 2137 { 2138 cpu_walk_t *cw = wsp->walk_data; 2139 cpu_t cpu; 2140 uintptr_t addr = cw->cw_array[cw->cw_ndx++]; 2141 2142 if (addr == NULL) 2143 return (WALK_DONE); 2144 2145 if (mdb_vread(&cpu, sizeof (cpu), addr) == -1) { 2146 mdb_warn("failed to read cpu at %p", addr); 2147 return (WALK_DONE); 2148 } 2149 2150 return (wsp->walk_callback(addr, &cpu, wsp->walk_cbdata)); 2151 } 2152 2153 typedef struct cpuinfo_data { 2154 intptr_t cid_cpu; 2155 uintptr_t cid_lbolt; 2156 uintptr_t **cid_ithr; 2157 char cid_print_head; 2158 char cid_print_thr; 2159 char cid_print_ithr; 2160 char cid_print_flags; 2161 } cpuinfo_data_t; 2162 2163 int 2164 cpuinfo_walk_ithread(uintptr_t addr, const kthread_t *thr, cpuinfo_data_t *cid) 2165 { 2166 cpu_t c; 2167 int id; 2168 uint8_t pil; 2169 2170 if (!(thr->t_flag & T_INTR_THREAD) || thr->t_state == TS_FREE) 2171 return (WALK_NEXT); 2172 2173 if (thr->t_bound_cpu == NULL) { 2174 mdb_warn("thr %p is intr thread w/out a CPU\n", addr); 2175 return (WALK_NEXT); 2176 } 2177 2178 (void) mdb_vread(&c, sizeof (c), (uintptr_t)thr->t_bound_cpu); 2179 2180 if ((id = c.cpu_id) >= NCPU) { 2181 mdb_warn("CPU %p has id (%d) greater than NCPU (%d)\n", 2182 thr->t_bound_cpu, id, NCPU); 2183 return (WALK_NEXT); 2184 } 2185 2186 if ((pil = thr->t_pil) >= NINTR) { 2187 mdb_warn("thread %p has pil (%d) greater than %d\n", 2188 addr, pil, NINTR); 2189 return (WALK_NEXT); 2190 } 2191 2192 if (cid->cid_ithr[id][pil] != NULL) { 2193 mdb_warn("CPU %d has multiple threads at pil %d (at least " 2194 "%p and %p)\n", id, pil, addr, cid->cid_ithr[id][pil]); 2195 return (WALK_NEXT); 2196 } 2197 2198 cid->cid_ithr[id][pil] = addr; 2199 2200 return (WALK_NEXT); 2201 } 2202 2203 #define CPUINFO_IDWIDTH 3 2204 #define CPUINFO_FLAGWIDTH 9 2205 2206 #ifdef _LP64 2207 #define CPUINFO_CPUWIDTH 11 2208 #define CPUINFO_TWIDTH 11 2209 #else 2210 #define CPUINFO_CPUWIDTH 8 2211 #define CPUINFO_TWIDTH 8 2212 #endif 2213 2214 #define CPUINFO_THRDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 9) 2215 #define CPUINFO_FLAGDELT (CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH + 4) 2216 #define CPUINFO_ITHRDELT 4 2217 2218 #define CPUINFO_INDENT mdb_printf("%*s", CPUINFO_THRDELT, \ 2219 flagline < nflaglines ? flagbuf[flagline++] : "") 2220 2221 int 2222 cpuinfo_walk_cpu(uintptr_t addr, const cpu_t *cpu, cpuinfo_data_t *cid) 2223 { 2224 kthread_t t; 2225 disp_t disp; 2226 proc_t p; 2227 uintptr_t pinned; 2228 char **flagbuf; 2229 int nflaglines = 0, flagline = 0, bspl, rval = WALK_NEXT; 2230 2231 const char *flags[] = { 2232 "RUNNING", "READY", "QUIESCED", "EXISTS", 2233 "ENABLE", "OFFLINE", "POWEROFF", "FROZEN", 2234 "SPARE", "FAULTED", NULL 2235 }; 2236 2237 if (cid->cid_cpu != -1) { 2238 if (addr != cid->cid_cpu && cpu->cpu_id != cid->cid_cpu) 2239 return (WALK_NEXT); 2240 2241 /* 2242 * Set cid_cpu to -1 to indicate that we found a matching CPU. 2243 */ 2244 cid->cid_cpu = -1; 2245 rval = WALK_DONE; 2246 } 2247 2248 if (cid->cid_print_head) { 2249 mdb_printf("%3s %-*s %3s %4s %4s %3s %4s %5s %-6s %-*s %s\n", 2250 "ID", CPUINFO_CPUWIDTH, "ADDR", "FLG", "NRUN", "BSPL", 2251 "PRI", "RNRN", "KRNRN", "SWITCH", CPUINFO_TWIDTH, "THREAD", 2252 "PROC"); 2253 cid->cid_print_head = FALSE; 2254 } 2255 2256 bspl = cpu->cpu_base_spl; 2257 2258 if (mdb_vread(&disp, sizeof (disp_t), (uintptr_t)cpu->cpu_disp) == -1) { 2259 mdb_warn("failed to read disp_t at %p", cpu->cpu_disp); 2260 return (WALK_ERR); 2261 } 2262 2263 mdb_printf("%3d %0*p %3x %4d %4d ", 2264 cpu->cpu_id, CPUINFO_CPUWIDTH, addr, cpu->cpu_flags, 2265 disp.disp_nrunnable, bspl); 2266 2267 if (mdb_vread(&t, sizeof (t), (uintptr_t)cpu->cpu_thread) != -1) { 2268 mdb_printf("%3d ", t.t_pri); 2269 } else { 2270 mdb_printf("%3s ", "-"); 2271 } 2272 2273 mdb_printf("%4s %5s ", cpu->cpu_runrun ? "yes" : "no", 2274 cpu->cpu_kprunrun ? "yes" : "no"); 2275 2276 if (cpu->cpu_last_swtch) { 2277 clock_t lbolt; 2278 2279 if (mdb_vread(&lbolt, sizeof (lbolt), cid->cid_lbolt) == -1) { 2280 mdb_warn("failed to read lbolt at %p", cid->cid_lbolt); 2281 return (WALK_ERR); 2282 } 2283 mdb_printf("t-%-4d ", lbolt - cpu->cpu_last_swtch); 2284 } else { 2285 mdb_printf("%-6s ", "-"); 2286 } 2287 2288 mdb_printf("%0*p", CPUINFO_TWIDTH, cpu->cpu_thread); 2289 2290 if (cpu->cpu_thread == cpu->cpu_idle_thread) 2291 mdb_printf(" (idle)\n"); 2292 else if (cpu->cpu_thread == NULL) 2293 mdb_printf(" -\n"); 2294 else { 2295 if (mdb_vread(&p, sizeof (p), (uintptr_t)t.t_procp) != -1) { 2296 mdb_printf(" %s\n", p.p_user.u_comm); 2297 } else { 2298 mdb_printf(" ?\n"); 2299 } 2300 } 2301 2302 flagbuf = mdb_zalloc(sizeof (flags), UM_SLEEP | UM_GC); 2303 2304 if (cid->cid_print_flags) { 2305 int first = 1, i, j, k; 2306 char *s; 2307 2308 cid->cid_print_head = TRUE; 2309 2310 for (i = 1, j = 0; flags[j] != NULL; i <<= 1, j++) { 2311 if (!(cpu->cpu_flags & i)) 2312 continue; 2313 2314 if (first) { 2315 s = mdb_alloc(CPUINFO_THRDELT + 1, 2316 UM_GC | UM_SLEEP); 2317 2318 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, 2319 "%*s|%*s", CPUINFO_FLAGDELT, "", 2320 CPUINFO_THRDELT - 1 - CPUINFO_FLAGDELT, ""); 2321 flagbuf[nflaglines++] = s; 2322 } 2323 2324 s = mdb_alloc(CPUINFO_THRDELT + 1, UM_GC | UM_SLEEP); 2325 (void) mdb_snprintf(s, CPUINFO_THRDELT + 1, "%*s%*s %s", 2326 CPUINFO_IDWIDTH + CPUINFO_CPUWIDTH - 2327 CPUINFO_FLAGWIDTH, "", CPUINFO_FLAGWIDTH, flags[j], 2328 first ? "<--+" : ""); 2329 2330 for (k = strlen(s); k < CPUINFO_THRDELT; k++) 2331 s[k] = ' '; 2332 s[k] = '\0'; 2333 2334 flagbuf[nflaglines++] = s; 2335 first = 0; 2336 } 2337 } 2338 2339 if (cid->cid_print_ithr) { 2340 int i, found_one = FALSE; 2341 int print_thr = disp.disp_nrunnable && cid->cid_print_thr; 2342 2343 for (i = NINTR - 1; i >= 0; i--) { 2344 uintptr_t iaddr = cid->cid_ithr[cpu->cpu_id][i]; 2345 2346 if (iaddr == NULL) 2347 continue; 2348 2349 if (!found_one) { 2350 found_one = TRUE; 2351 2352 CPUINFO_INDENT; 2353 mdb_printf("%c%*s|\n", print_thr ? '|' : ' ', 2354 CPUINFO_ITHRDELT, ""); 2355 2356 CPUINFO_INDENT; 2357 mdb_printf("%c%*s+--> %3s %s\n", 2358 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, 2359 "", "PIL", "THREAD"); 2360 } 2361 2362 if (mdb_vread(&t, sizeof (t), iaddr) == -1) { 2363 mdb_warn("failed to read kthread_t at %p", 2364 iaddr); 2365 return (WALK_ERR); 2366 } 2367 2368 CPUINFO_INDENT; 2369 mdb_printf("%c%*s %3d %0*p\n", 2370 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", 2371 t.t_pil, CPUINFO_TWIDTH, iaddr); 2372 2373 pinned = (uintptr_t)t.t_intr; 2374 } 2375 2376 if (found_one && pinned != NULL) { 2377 cid->cid_print_head = TRUE; 2378 (void) strcpy(p.p_user.u_comm, "?"); 2379 2380 if (mdb_vread(&t, sizeof (t), 2381 (uintptr_t)pinned) == -1) { 2382 mdb_warn("failed to read kthread_t at %p", 2383 pinned); 2384 return (WALK_ERR); 2385 } 2386 if (mdb_vread(&p, sizeof (p), 2387 (uintptr_t)t.t_procp) == -1) { 2388 mdb_warn("failed to read proc_t at %p", 2389 t.t_procp); 2390 return (WALK_ERR); 2391 } 2392 2393 CPUINFO_INDENT; 2394 mdb_printf("%c%*s %3s %0*p %s\n", 2395 print_thr ? '|' : ' ', CPUINFO_ITHRDELT, "", "-", 2396 CPUINFO_TWIDTH, pinned, 2397 pinned == (uintptr_t)cpu->cpu_idle_thread ? 2398 "(idle)" : p.p_user.u_comm); 2399 } 2400 } 2401 2402 if (disp.disp_nrunnable && cid->cid_print_thr) { 2403 dispq_t *dq; 2404 2405 int i, npri = disp.disp_npri; 2406 2407 dq = mdb_alloc(sizeof (dispq_t) * npri, UM_SLEEP | UM_GC); 2408 2409 if (mdb_vread(dq, sizeof (dispq_t) * npri, 2410 (uintptr_t)disp.disp_q) == -1) { 2411 mdb_warn("failed to read dispq_t at %p", disp.disp_q); 2412 return (WALK_ERR); 2413 } 2414 2415 CPUINFO_INDENT; 2416 mdb_printf("|\n"); 2417 2418 CPUINFO_INDENT; 2419 mdb_printf("+--> %3s %-*s %s\n", "PRI", 2420 CPUINFO_TWIDTH, "THREAD", "PROC"); 2421 2422 for (i = npri - 1; i >= 0; i--) { 2423 uintptr_t taddr = (uintptr_t)dq[i].dq_first; 2424 2425 while (taddr != NULL) { 2426 if (mdb_vread(&t, sizeof (t), taddr) == -1) { 2427 mdb_warn("failed to read kthread_t " 2428 "at %p", taddr); 2429 return (WALK_ERR); 2430 } 2431 if (mdb_vread(&p, sizeof (p), 2432 (uintptr_t)t.t_procp) == -1) { 2433 mdb_warn("failed to read proc_t at %p", 2434 t.t_procp); 2435 return (WALK_ERR); 2436 } 2437 2438 CPUINFO_INDENT; 2439 mdb_printf(" %3d %0*p %s\n", t.t_pri, 2440 CPUINFO_TWIDTH, taddr, p.p_user.u_comm); 2441 2442 taddr = (uintptr_t)t.t_link; 2443 } 2444 } 2445 cid->cid_print_head = TRUE; 2446 } 2447 2448 while (flagline < nflaglines) 2449 mdb_printf("%s\n", flagbuf[flagline++]); 2450 2451 if (cid->cid_print_head) 2452 mdb_printf("\n"); 2453 2454 return (rval); 2455 } 2456 2457 int 2458 cpuinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2459 { 2460 uint_t verbose = FALSE; 2461 cpuinfo_data_t cid; 2462 GElf_Sym sym; 2463 clock_t lbolt; 2464 2465 cid.cid_print_ithr = FALSE; 2466 cid.cid_print_thr = FALSE; 2467 cid.cid_print_flags = FALSE; 2468 cid.cid_print_head = DCMD_HDRSPEC(flags) ? TRUE : FALSE; 2469 cid.cid_cpu = -1; 2470 2471 if (flags & DCMD_ADDRSPEC) 2472 cid.cid_cpu = addr; 2473 2474 if (mdb_getopts(argc, argv, 2475 'v', MDB_OPT_SETBITS, TRUE, &verbose, NULL) != argc) 2476 return (DCMD_USAGE); 2477 2478 if (verbose) { 2479 cid.cid_print_ithr = TRUE; 2480 cid.cid_print_thr = TRUE; 2481 cid.cid_print_flags = TRUE; 2482 cid.cid_print_head = TRUE; 2483 } 2484 2485 if (cid.cid_print_ithr) { 2486 int i; 2487 2488 cid.cid_ithr = mdb_alloc(sizeof (uintptr_t **) 2489 * NCPU, UM_SLEEP | UM_GC); 2490 2491 for (i = 0; i < NCPU; i++) 2492 cid.cid_ithr[i] = mdb_zalloc(sizeof (uintptr_t *) * 2493 NINTR, UM_SLEEP | UM_GC); 2494 2495 if (mdb_walk("thread", (mdb_walk_cb_t)cpuinfo_walk_ithread, 2496 &cid) == -1) { 2497 mdb_warn("couldn't walk thread"); 2498 return (DCMD_ERR); 2499 } 2500 } 2501 2502 if (mdb_lookup_by_name("panic_lbolt", &sym) == -1) { 2503 mdb_warn("failed to find panic_lbolt"); 2504 return (DCMD_ERR); 2505 } 2506 2507 cid.cid_lbolt = (uintptr_t)sym.st_value; 2508 2509 if (mdb_vread(&lbolt, sizeof (lbolt), cid.cid_lbolt) == -1) { 2510 mdb_warn("failed to read panic_lbolt"); 2511 return (DCMD_ERR); 2512 } 2513 2514 if (lbolt == 0) { 2515 if (mdb_lookup_by_name("lbolt", &sym) == -1) { 2516 mdb_warn("failed to find lbolt"); 2517 return (DCMD_ERR); 2518 } 2519 cid.cid_lbolt = (uintptr_t)sym.st_value; 2520 } 2521 2522 if (mdb_walk("cpu", (mdb_walk_cb_t)cpuinfo_walk_cpu, &cid) == -1) { 2523 mdb_warn("can't walk cpus"); 2524 return (DCMD_ERR); 2525 } 2526 2527 if (cid.cid_cpu != -1) { 2528 /* 2529 * We didn't find this CPU when we walked through the CPUs 2530 * (i.e. the address specified doesn't show up in the "cpu" 2531 * walk). However, the specified address may still correspond 2532 * to a valid cpu_t (for example, if the specified address is 2533 * the actual panicking cpu_t and not the cached panic_cpu). 2534 * Point is: even if we didn't find it, we still want to try 2535 * to print the specified address as a cpu_t. 2536 */ 2537 cpu_t cpu; 2538 2539 if (mdb_vread(&cpu, sizeof (cpu), cid.cid_cpu) == -1) { 2540 mdb_warn("%p is neither a valid CPU ID nor a " 2541 "valid cpu_t address\n", cid.cid_cpu); 2542 return (DCMD_ERR); 2543 } 2544 2545 (void) cpuinfo_walk_cpu(cid.cid_cpu, &cpu, &cid); 2546 } 2547 2548 return (DCMD_OK); 2549 } 2550 2551 /*ARGSUSED*/ 2552 int 2553 flipone(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2554 { 2555 int i; 2556 2557 if (!(flags & DCMD_ADDRSPEC)) 2558 return (DCMD_USAGE); 2559 2560 for (i = 0; i < sizeof (addr) * NBBY; i++) 2561 mdb_printf("%p\n", addr ^ (1UL << i)); 2562 2563 return (DCMD_OK); 2564 } 2565 2566 /* 2567 * Grumble, grumble. 2568 */ 2569 #define SMAP_HASHFUNC(vp, off) \ 2570 ((((uintptr_t)(vp) >> 6) + ((uintptr_t)(vp) >> 3) + \ 2571 ((off) >> MAXBSHIFT)) & smd_hashmsk) 2572 2573 int 2574 vnode2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2575 { 2576 long smd_hashmsk; 2577 int hash; 2578 uintptr_t offset = 0; 2579 struct smap smp; 2580 uintptr_t saddr, kaddr; 2581 uintptr_t smd_hash, smd_smap; 2582 struct seg seg; 2583 2584 if (!(flags & DCMD_ADDRSPEC)) 2585 return (DCMD_USAGE); 2586 2587 if (mdb_readvar(&smd_hashmsk, "smd_hashmsk") == -1) { 2588 mdb_warn("failed to read smd_hashmsk"); 2589 return (DCMD_ERR); 2590 } 2591 2592 if (mdb_readvar(&smd_hash, "smd_hash") == -1) { 2593 mdb_warn("failed to read smd_hash"); 2594 return (DCMD_ERR); 2595 } 2596 2597 if (mdb_readvar(&smd_smap, "smd_smap") == -1) { 2598 mdb_warn("failed to read smd_hash"); 2599 return (DCMD_ERR); 2600 } 2601 2602 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2603 mdb_warn("failed to read segkmap"); 2604 return (DCMD_ERR); 2605 } 2606 2607 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2608 mdb_warn("failed to read segkmap at %p", kaddr); 2609 return (DCMD_ERR); 2610 } 2611 2612 if (argc != 0) { 2613 const mdb_arg_t *arg = &argv[0]; 2614 2615 if (arg->a_type == MDB_TYPE_IMMEDIATE) 2616 offset = arg->a_un.a_val; 2617 else 2618 offset = (uintptr_t)mdb_strtoull(arg->a_un.a_str); 2619 } 2620 2621 hash = SMAP_HASHFUNC(addr, offset); 2622 2623 if (mdb_vread(&saddr, sizeof (saddr), 2624 smd_hash + hash * sizeof (uintptr_t)) == -1) { 2625 mdb_warn("couldn't read smap at %p", 2626 smd_hash + hash * sizeof (uintptr_t)); 2627 return (DCMD_ERR); 2628 } 2629 2630 do { 2631 if (mdb_vread(&smp, sizeof (smp), saddr) == -1) { 2632 mdb_warn("couldn't read smap at %p", saddr); 2633 return (DCMD_ERR); 2634 } 2635 2636 if ((uintptr_t)smp.sm_vp == addr && smp.sm_off == offset) { 2637 mdb_printf("vnode %p, offs %p is smap %p, vaddr %p\n", 2638 addr, offset, saddr, ((saddr - smd_smap) / 2639 sizeof (smp)) * MAXBSIZE + seg.s_base); 2640 return (DCMD_OK); 2641 } 2642 2643 saddr = (uintptr_t)smp.sm_hash; 2644 } while (saddr != NULL); 2645 2646 mdb_printf("no smap for vnode %p, offs %p\n", addr, offset); 2647 return (DCMD_OK); 2648 } 2649 2650 /*ARGSUSED*/ 2651 int 2652 addr2smap(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2653 { 2654 uintptr_t kaddr; 2655 struct seg seg; 2656 struct segmap_data sd; 2657 2658 if (!(flags & DCMD_ADDRSPEC)) 2659 return (DCMD_USAGE); 2660 2661 if (mdb_readvar(&kaddr, "segkmap") == -1) { 2662 mdb_warn("failed to read segkmap"); 2663 return (DCMD_ERR); 2664 } 2665 2666 if (mdb_vread(&seg, sizeof (seg), kaddr) == -1) { 2667 mdb_warn("failed to read segkmap at %p", kaddr); 2668 return (DCMD_ERR); 2669 } 2670 2671 if (mdb_vread(&sd, sizeof (sd), (uintptr_t)seg.s_data) == -1) { 2672 mdb_warn("failed to read segmap_data at %p", seg.s_data); 2673 return (DCMD_ERR); 2674 } 2675 2676 mdb_printf("%p is smap %p\n", addr, 2677 ((addr - (uintptr_t)seg.s_base) >> MAXBSHIFT) * 2678 sizeof (struct smap) + (uintptr_t)sd.smd_sm); 2679 2680 return (DCMD_OK); 2681 } 2682 2683 int 2684 as2proc_walk(uintptr_t addr, const proc_t *p, struct as **asp) 2685 { 2686 if (p->p_as == *asp) 2687 mdb_printf("%p\n", addr); 2688 return (WALK_NEXT); 2689 } 2690 2691 /*ARGSUSED*/ 2692 int 2693 as2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2694 { 2695 if (!(flags & DCMD_ADDRSPEC) || argc != 0) 2696 return (DCMD_USAGE); 2697 2698 if (mdb_walk("proc", (mdb_walk_cb_t)as2proc_walk, &addr) == -1) { 2699 mdb_warn("failed to walk proc"); 2700 return (DCMD_ERR); 2701 } 2702 2703 return (DCMD_OK); 2704 } 2705 2706 /*ARGSUSED*/ 2707 int 2708 ptree_walk(uintptr_t addr, const proc_t *p, void *ignored) 2709 { 2710 proc_t parent; 2711 int ident = 0; 2712 uintptr_t paddr; 2713 2714 for (paddr = (uintptr_t)p->p_parent; paddr != NULL; ident += 5) { 2715 mdb_vread(&parent, sizeof (parent), paddr); 2716 paddr = (uintptr_t)parent.p_parent; 2717 } 2718 2719 mdb_inc_indent(ident); 2720 mdb_printf("%0?p %s\n", addr, p->p_user.u_comm); 2721 mdb_dec_indent(ident); 2722 2723 return (WALK_NEXT); 2724 } 2725 2726 void 2727 ptree_ancestors(uintptr_t addr, uintptr_t start) 2728 { 2729 proc_t p; 2730 2731 if (mdb_vread(&p, sizeof (p), addr) == -1) { 2732 mdb_warn("couldn't read ancestor at %p", addr); 2733 return; 2734 } 2735 2736 if (p.p_parent != NULL) 2737 ptree_ancestors((uintptr_t)p.p_parent, start); 2738 2739 if (addr != start) 2740 (void) ptree_walk(addr, &p, NULL); 2741 } 2742 2743 /*ARGSUSED*/ 2744 int 2745 ptree(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2746 { 2747 if (!(flags & DCMD_ADDRSPEC)) 2748 addr = NULL; 2749 else 2750 ptree_ancestors(addr, addr); 2751 2752 if (mdb_pwalk("proc", (mdb_walk_cb_t)ptree_walk, NULL, addr) == -1) { 2753 mdb_warn("couldn't walk 'proc'"); 2754 return (DCMD_ERR); 2755 } 2756 2757 return (DCMD_OK); 2758 } 2759 2760 /*ARGSUSED*/ 2761 static int 2762 fd(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2763 { 2764 int fdnum; 2765 const mdb_arg_t *argp = &argv[0]; 2766 proc_t p; 2767 uf_entry_t uf; 2768 2769 if ((flags & DCMD_ADDRSPEC) == 0) { 2770 mdb_warn("fd doesn't give global information\n"); 2771 return (DCMD_ERR); 2772 } 2773 if (argc != 1) 2774 return (DCMD_USAGE); 2775 2776 if (argp->a_type == MDB_TYPE_IMMEDIATE) 2777 fdnum = argp->a_un.a_val; 2778 else 2779 fdnum = mdb_strtoull(argp->a_un.a_str); 2780 2781 if (mdb_vread(&p, sizeof (struct proc), addr) == -1) { 2782 mdb_warn("couldn't read proc_t at %p", addr); 2783 return (DCMD_ERR); 2784 } 2785 if (fdnum > p.p_user.u_finfo.fi_nfiles) { 2786 mdb_warn("process %p only has %d files open.\n", 2787 addr, p.p_user.u_finfo.fi_nfiles); 2788 return (DCMD_ERR); 2789 } 2790 if (mdb_vread(&uf, sizeof (uf_entry_t), 2791 (uintptr_t)&p.p_user.u_finfo.fi_list[fdnum]) == -1) { 2792 mdb_warn("couldn't read uf_entry_t at %p", 2793 &p.p_user.u_finfo.fi_list[fdnum]); 2794 return (DCMD_ERR); 2795 } 2796 2797 mdb_printf("%p\n", uf.uf_file); 2798 return (DCMD_OK); 2799 } 2800 2801 /*ARGSUSED*/ 2802 static int 2803 pid2proc(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2804 { 2805 pid_t pid = (pid_t)addr; 2806 2807 if (argc != 0) 2808 return (DCMD_USAGE); 2809 2810 if ((addr = mdb_pid2proc(pid, NULL)) == NULL) { 2811 mdb_warn("PID 0t%d not found\n", pid); 2812 return (DCMD_ERR); 2813 } 2814 2815 mdb_printf("%p\n", addr); 2816 return (DCMD_OK); 2817 } 2818 2819 static char *sysfile_cmd[] = { 2820 "exclude:", 2821 "include:", 2822 "forceload:", 2823 "rootdev:", 2824 "rootfs:", 2825 "swapdev:", 2826 "swapfs:", 2827 "moddir:", 2828 "set", 2829 "unknown", 2830 }; 2831 2832 static char *sysfile_ops[] = { "", "=", "&", "|" }; 2833 2834 /*ARGSUSED*/ 2835 static int 2836 sysfile_vmem_seg(uintptr_t addr, const vmem_seg_t *vsp, void **target) 2837 { 2838 if (vsp->vs_type == VMEM_ALLOC && (void *)vsp->vs_start == *target) { 2839 *target = NULL; 2840 return (WALK_DONE); 2841 } 2842 return (WALK_NEXT); 2843 } 2844 2845 /*ARGSUSED*/ 2846 static int 2847 sysfile(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2848 { 2849 struct sysparam *sysp, sys; 2850 char var[256]; 2851 char modname[256]; 2852 char val[256]; 2853 char strval[256]; 2854 vmem_t *mod_sysfile_arena; 2855 void *straddr; 2856 2857 if (mdb_readvar(&sysp, "sysparam_hd") == -1) { 2858 mdb_warn("failed to read sysparam_hd"); 2859 return (DCMD_ERR); 2860 } 2861 2862 if (mdb_readvar(&mod_sysfile_arena, "mod_sysfile_arena") == -1) { 2863 mdb_warn("failed to read mod_sysfile_arena"); 2864 return (DCMD_ERR); 2865 } 2866 2867 while (sysp != NULL) { 2868 var[0] = '\0'; 2869 val[0] = '\0'; 2870 modname[0] = '\0'; 2871 if (mdb_vread(&sys, sizeof (sys), (uintptr_t)sysp) == -1) { 2872 mdb_warn("couldn't read sysparam %p", sysp); 2873 return (DCMD_ERR); 2874 } 2875 if (sys.sys_modnam != NULL && 2876 mdb_readstr(modname, 256, 2877 (uintptr_t)sys.sys_modnam) == -1) { 2878 mdb_warn("couldn't read modname in %p", sysp); 2879 return (DCMD_ERR); 2880 } 2881 if (sys.sys_ptr != NULL && 2882 mdb_readstr(var, 256, (uintptr_t)sys.sys_ptr) == -1) { 2883 mdb_warn("couldn't read ptr in %p", sysp); 2884 return (DCMD_ERR); 2885 } 2886 if (sys.sys_op != SETOP_NONE) { 2887 /* 2888 * Is this an int or a string? We determine this 2889 * by checking whether straddr is contained in 2890 * mod_sysfile_arena. If so, the walker will set 2891 * straddr to NULL. 2892 */ 2893 straddr = (void *)(uintptr_t)sys.sys_info; 2894 if (sys.sys_op == SETOP_ASSIGN && 2895 sys.sys_info != 0 && 2896 mdb_pwalk("vmem_seg", 2897 (mdb_walk_cb_t)sysfile_vmem_seg, &straddr, 2898 (uintptr_t)mod_sysfile_arena) == 0 && 2899 straddr == NULL && 2900 mdb_readstr(strval, 256, 2901 (uintptr_t)sys.sys_info) != -1) { 2902 (void) mdb_snprintf(val, sizeof (val), "\"%s\"", 2903 strval); 2904 } else { 2905 (void) mdb_snprintf(val, sizeof (val), 2906 "0x%llx [0t%llu]", sys.sys_info, 2907 sys.sys_info); 2908 } 2909 } 2910 mdb_printf("%s %s%s%s%s%s\n", sysfile_cmd[sys.sys_type], 2911 modname, modname[0] == '\0' ? "" : ":", 2912 var, sysfile_ops[sys.sys_op], val); 2913 2914 sysp = sys.sys_next; 2915 } 2916 2917 return (DCMD_OK); 2918 } 2919 2920 /* 2921 * Dump a taskq_ent_t given its address. 2922 */ 2923 /*ARGSUSED*/ 2924 int 2925 taskq_ent(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 2926 { 2927 taskq_ent_t taskq_ent; 2928 GElf_Sym sym; 2929 char buf[MDB_SYM_NAMLEN+1]; 2930 2931 2932 if (!(flags & DCMD_ADDRSPEC)) { 2933 mdb_warn("expected explicit taskq_ent_t address before ::\n"); 2934 return (DCMD_USAGE); 2935 } 2936 2937 if (mdb_vread(&taskq_ent, sizeof (taskq_ent_t), addr) == -1) { 2938 mdb_warn("failed to read taskq_ent_t at %p", addr); 2939 return (DCMD_ERR); 2940 } 2941 2942 if (DCMD_HDRSPEC(flags)) { 2943 mdb_printf("%<u>%-?s %-?s %-s%</u>\n", 2944 "ENTRY", "ARG", "FUNCTION"); 2945 } 2946 2947 if (mdb_lookup_by_addr((uintptr_t)taskq_ent.tqent_func, MDB_SYM_EXACT, 2948 buf, sizeof (buf), &sym) == -1) { 2949 (void) strcpy(buf, "????"); 2950 } 2951 2952 mdb_printf("%-?p %-?p %s\n", addr, taskq_ent.tqent_arg, buf); 2953 2954 return (DCMD_OK); 2955 } 2956 2957 /* 2958 * Given the address of the (taskq_t) task queue head, walk the queue listing 2959 * the address of every taskq_ent_t. 2960 */ 2961 int 2962 taskq_walk_init(mdb_walk_state_t *wsp) 2963 { 2964 taskq_t tq_head; 2965 2966 2967 if (wsp->walk_addr == NULL) { 2968 mdb_warn("start address required\n"); 2969 return (WALK_ERR); 2970 } 2971 2972 2973 /* 2974 * Save the address of the list head entry. This terminates the list. 2975 */ 2976 wsp->walk_data = (void *) 2977 ((size_t)wsp->walk_addr + offsetof(taskq_t, tq_task)); 2978 2979 2980 /* 2981 * Read in taskq head, set walk_addr to point to first taskq_ent_t. 2982 */ 2983 if (mdb_vread((void *)&tq_head, sizeof (taskq_t), wsp->walk_addr) == 2984 -1) { 2985 mdb_warn("failed to read taskq list head at %p", 2986 wsp->walk_addr); 2987 } 2988 wsp->walk_addr = (uintptr_t)tq_head.tq_task.tqent_next; 2989 2990 2991 /* 2992 * Check for null list (next=head) 2993 */ 2994 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 2995 return (WALK_DONE); 2996 } 2997 2998 return (WALK_NEXT); 2999 } 3000 3001 3002 int 3003 taskq_walk_step(mdb_walk_state_t *wsp) 3004 { 3005 taskq_ent_t tq_ent; 3006 int status; 3007 3008 3009 if (mdb_vread((void *)&tq_ent, sizeof (taskq_ent_t), wsp->walk_addr) == 3010 -1) { 3011 mdb_warn("failed to read taskq_ent_t at %p", wsp->walk_addr); 3012 return (DCMD_ERR); 3013 } 3014 3015 status = wsp->walk_callback(wsp->walk_addr, (void *)&tq_ent, 3016 wsp->walk_cbdata); 3017 3018 wsp->walk_addr = (uintptr_t)tq_ent.tqent_next; 3019 3020 3021 /* Check if we're at the last element (next=head) */ 3022 if (wsp->walk_addr == (uintptr_t)wsp->walk_data) { 3023 return (WALK_DONE); 3024 } 3025 3026 return (status); 3027 } 3028 3029 int 3030 didmatch(uintptr_t addr, const kthread_t *thr, kt_did_t *didp) 3031 { 3032 3033 if (*didp == thr->t_did) { 3034 mdb_printf("%p\n", addr); 3035 return (WALK_DONE); 3036 } else 3037 return (WALK_NEXT); 3038 } 3039 3040 /*ARGSUSED*/ 3041 int 3042 did2thread(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3043 { 3044 const mdb_arg_t *argp = &argv[0]; 3045 kt_did_t did; 3046 3047 if (argc != 1) 3048 return (DCMD_USAGE); 3049 3050 did = (kt_did_t)mdb_strtoull(argp->a_un.a_str); 3051 3052 if (mdb_walk("thread", (mdb_walk_cb_t)didmatch, (void *)&did) == -1) { 3053 mdb_warn("failed to walk thread"); 3054 return (DCMD_ERR); 3055 3056 } 3057 return (DCMD_OK); 3058 3059 } 3060 3061 static int 3062 errorq_walk_init(mdb_walk_state_t *wsp) 3063 { 3064 if (wsp->walk_addr == NULL && 3065 mdb_readvar(&wsp->walk_addr, "errorq_list") == -1) { 3066 mdb_warn("failed to read errorq_list"); 3067 return (WALK_ERR); 3068 } 3069 3070 return (WALK_NEXT); 3071 } 3072 3073 static int 3074 errorq_walk_step(mdb_walk_state_t *wsp) 3075 { 3076 uintptr_t addr = wsp->walk_addr; 3077 errorq_t eq; 3078 3079 if (addr == NULL) 3080 return (WALK_DONE); 3081 3082 if (mdb_vread(&eq, sizeof (eq), addr) == -1) { 3083 mdb_warn("failed to read errorq at %p", addr); 3084 return (WALK_ERR); 3085 } 3086 3087 wsp->walk_addr = (uintptr_t)eq.eq_next; 3088 return (wsp->walk_callback(addr, &eq, wsp->walk_cbdata)); 3089 } 3090 3091 typedef struct eqd_walk_data { 3092 uintptr_t *eqd_stack; 3093 void *eqd_buf; 3094 ulong_t eqd_qpos; 3095 ulong_t eqd_qlen; 3096 size_t eqd_size; 3097 } eqd_walk_data_t; 3098 3099 /* 3100 * In order to walk the list of pending error queue elements, we push the 3101 * addresses of the corresponding data buffers in to the eqd_stack array. 3102 * The error lists are in reverse chronological order when iterating using 3103 * eqe_prev, so we then pop things off the top in eqd_walk_step so that the 3104 * walker client gets addresses in order from oldest error to newest error. 3105 */ 3106 static void 3107 eqd_push_list(eqd_walk_data_t *eqdp, uintptr_t addr) 3108 { 3109 errorq_elem_t eqe; 3110 3111 while (addr != NULL) { 3112 if (mdb_vread(&eqe, sizeof (eqe), addr) != sizeof (eqe)) { 3113 mdb_warn("failed to read errorq element at %p", addr); 3114 break; 3115 } 3116 3117 if (eqdp->eqd_qpos == eqdp->eqd_qlen) { 3118 mdb_warn("errorq is overfull -- more than %lu " 3119 "elems found\n", eqdp->eqd_qlen); 3120 break; 3121 } 3122 3123 eqdp->eqd_stack[eqdp->eqd_qpos++] = (uintptr_t)eqe.eqe_data; 3124 addr = (uintptr_t)eqe.eqe_prev; 3125 } 3126 } 3127 3128 static int 3129 eqd_walk_init(mdb_walk_state_t *wsp) 3130 { 3131 eqd_walk_data_t *eqdp; 3132 errorq_elem_t eqe, *addr; 3133 errorq_t eq; 3134 ulong_t i; 3135 3136 if (mdb_vread(&eq, sizeof (eq), wsp->walk_addr) == -1) { 3137 mdb_warn("failed to read errorq at %p", wsp->walk_addr); 3138 return (WALK_ERR); 3139 } 3140 3141 if (eq.eq_ptail != NULL && 3142 mdb_vread(&eqe, sizeof (eqe), (uintptr_t)eq.eq_ptail) == -1) { 3143 mdb_warn("failed to read errorq element at %p", eq.eq_ptail); 3144 return (WALK_ERR); 3145 } 3146 3147 eqdp = mdb_alloc(sizeof (eqd_walk_data_t), UM_SLEEP); 3148 wsp->walk_data = eqdp; 3149 3150 eqdp->eqd_stack = mdb_zalloc(sizeof (uintptr_t) * eq.eq_qlen, UM_SLEEP); 3151 eqdp->eqd_buf = mdb_alloc(eq.eq_size, UM_SLEEP); 3152 eqdp->eqd_qlen = eq.eq_qlen; 3153 eqdp->eqd_qpos = 0; 3154 eqdp->eqd_size = eq.eq_size; 3155 3156 /* 3157 * The newest elements in the queue are on the pending list, so we 3158 * push those on to our stack first. 3159 */ 3160 eqd_push_list(eqdp, (uintptr_t)eq.eq_pend); 3161 3162 /* 3163 * If eq_ptail is set, it may point to a subset of the errors on the 3164 * pending list in the event a casptr() failed; if ptail's data is 3165 * already in our stack, NULL out eq_ptail and ignore it. 3166 */ 3167 if (eq.eq_ptail != NULL) { 3168 for (i = 0; i < eqdp->eqd_qpos; i++) { 3169 if (eqdp->eqd_stack[i] == (uintptr_t)eqe.eqe_data) { 3170 eq.eq_ptail = NULL; 3171 break; 3172 } 3173 } 3174 } 3175 3176 /* 3177 * If eq_phead is set, it has the processing list in order from oldest 3178 * to newest. Use this to recompute eq_ptail as best we can and then 3179 * we nicely fall into eqd_push_list() of eq_ptail below. 3180 */ 3181 for (addr = eq.eq_phead; addr != NULL && mdb_vread(&eqe, sizeof (eqe), 3182 (uintptr_t)addr) == sizeof (eqe); addr = eqe.eqe_next) 3183 eq.eq_ptail = addr; 3184 3185 /* 3186 * The oldest elements in the queue are on the processing list, subject 3187 * to machinations in the if-clauses above. Push any such elements. 3188 */ 3189 eqd_push_list(eqdp, (uintptr_t)eq.eq_ptail); 3190 return (WALK_NEXT); 3191 } 3192 3193 static int 3194 eqd_walk_step(mdb_walk_state_t *wsp) 3195 { 3196 eqd_walk_data_t *eqdp = wsp->walk_data; 3197 uintptr_t addr; 3198 3199 if (eqdp->eqd_qpos == 0) 3200 return (WALK_DONE); 3201 3202 addr = eqdp->eqd_stack[--eqdp->eqd_qpos]; 3203 3204 if (mdb_vread(eqdp->eqd_buf, eqdp->eqd_size, addr) != eqdp->eqd_size) { 3205 mdb_warn("failed to read errorq data at %p", addr); 3206 return (WALK_ERR); 3207 } 3208 3209 return (wsp->walk_callback(addr, eqdp->eqd_buf, wsp->walk_cbdata)); 3210 } 3211 3212 static void 3213 eqd_walk_fini(mdb_walk_state_t *wsp) 3214 { 3215 eqd_walk_data_t *eqdp = wsp->walk_data; 3216 3217 mdb_free(eqdp->eqd_stack, sizeof (uintptr_t) * eqdp->eqd_qlen); 3218 mdb_free(eqdp->eqd_buf, eqdp->eqd_size); 3219 mdb_free(eqdp, sizeof (eqd_walk_data_t)); 3220 } 3221 3222 #define EQKSVAL(eqv, what) (eqv.eq_kstat.what.value.ui64) 3223 3224 static int 3225 errorq(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3226 { 3227 int i; 3228 errorq_t eq; 3229 uint_t opt_v = FALSE; 3230 3231 if (!(flags & DCMD_ADDRSPEC)) { 3232 if (mdb_walk_dcmd("errorq", "errorq", argc, argv) == -1) { 3233 mdb_warn("can't walk 'errorq'"); 3234 return (DCMD_ERR); 3235 } 3236 return (DCMD_OK); 3237 } 3238 3239 i = mdb_getopts(argc, argv, 'v', MDB_OPT_SETBITS, TRUE, &opt_v, NULL); 3240 argc -= i; 3241 argv += i; 3242 3243 if (argc != 0) 3244 return (DCMD_USAGE); 3245 3246 if (opt_v || DCMD_HDRSPEC(flags)) { 3247 mdb_printf("%<u>%-11s %-16s %1s %1s %1s ", 3248 "ADDR", "NAME", "S", "V", "N"); 3249 if (!opt_v) { 3250 mdb_printf("%7s %7s %7s%</u>\n", 3251 "ACCEPT", "DROP", "LOG"); 3252 } else { 3253 mdb_printf("%5s %6s %6s %3s %16s%</u>\n", 3254 "KSTAT", "QLEN", "SIZE", "IPL", "FUNC"); 3255 } 3256 } 3257 3258 if (mdb_vread(&eq, sizeof (eq), addr) != sizeof (eq)) { 3259 mdb_warn("failed to read errorq at %p", addr); 3260 return (DCMD_ERR); 3261 } 3262 3263 mdb_printf("%-11p %-16s %c %c %c ", addr, eq.eq_name, 3264 (eq.eq_flags & ERRORQ_ACTIVE) ? '+' : '-', 3265 (eq.eq_flags & ERRORQ_VITAL) ? '!' : ' ', 3266 (eq.eq_flags & ERRORQ_NVLIST) ? '*' : ' '); 3267 3268 if (!opt_v) { 3269 mdb_printf("%7llu %7llu %7llu\n", 3270 EQKSVAL(eq, eqk_dispatched) + EQKSVAL(eq, eqk_committed), 3271 EQKSVAL(eq, eqk_dropped) + EQKSVAL(eq, eqk_reserve_fail) + 3272 EQKSVAL(eq, eqk_commit_fail), EQKSVAL(eq, eqk_logged)); 3273 } else { 3274 mdb_printf("%5s %6lu %6lu %3u %a\n", 3275 " | ", eq.eq_qlen, eq.eq_size, eq.eq_ipl, eq.eq_func); 3276 mdb_printf("%38s\n%41s" 3277 "%12s %llu\n" 3278 "%53s %llu\n" 3279 "%53s %llu\n" 3280 "%53s %llu\n" 3281 "%53s %llu\n" 3282 "%53s %llu\n" 3283 "%53s %llu\n" 3284 "%53s %llu\n\n", 3285 "|", "+-> ", 3286 "DISPATCHED", EQKSVAL(eq, eqk_dispatched), 3287 "DROPPED", EQKSVAL(eq, eqk_dropped), 3288 "LOGGED", EQKSVAL(eq, eqk_logged), 3289 "RESERVED", EQKSVAL(eq, eqk_reserved), 3290 "RESERVE FAIL", EQKSVAL(eq, eqk_reserve_fail), 3291 "COMMITTED", EQKSVAL(eq, eqk_committed), 3292 "COMMIT FAIL", EQKSVAL(eq, eqk_commit_fail), 3293 "CANCELLED", EQKSVAL(eq, eqk_cancelled)); 3294 } 3295 3296 return (DCMD_OK); 3297 } 3298 3299 /*ARGSUSED*/ 3300 static int 3301 panicinfo(uintptr_t addr, uint_t flags, int argc, const mdb_arg_t *argv) 3302 { 3303 cpu_t panic_cpu; 3304 kthread_t *panic_thread; 3305 void *panicbuf; 3306 panic_data_t *pd; 3307 int i, n; 3308 3309 if (!mdb_prop_postmortem) { 3310 mdb_warn("panicinfo can only be run on a system " 3311 "dump; see dumpadm(1M)\n"); 3312 return (DCMD_ERR); 3313 } 3314 3315 if (flags & DCMD_ADDRSPEC || argc != 0) 3316 return (DCMD_USAGE); 3317 3318 if (mdb_readsym(&panic_cpu, sizeof (cpu_t), "panic_cpu") == -1) 3319 mdb_warn("failed to read 'panic_cpu'"); 3320 else 3321 mdb_printf("%16s %?d\n", "cpu", panic_cpu.cpu_id); 3322 3323 if (mdb_readvar(&panic_thread, "panic_thread") == -1) 3324 mdb_warn("failed to read 'panic_thread'"); 3325 else 3326 mdb_printf("%16s %?p\n", "thread", panic_thread); 3327 3328 panicbuf = mdb_alloc(PANICBUFSIZE, UM_SLEEP); 3329 pd = (panic_data_t *)panicbuf; 3330 3331 if (mdb_readsym(panicbuf, PANICBUFSIZE, "panicbuf") == -1 || 3332 pd->pd_version != PANICBUFVERS) { 3333 mdb_warn("failed to read 'panicbuf'"); 3334 mdb_free(panicbuf, PANICBUFSIZE); 3335 return (DCMD_ERR); 3336 } 3337 3338 mdb_printf("%16s %s\n", "message", (char *)panicbuf + pd->pd_msgoff); 3339 3340 n = (pd->pd_msgoff - (sizeof (panic_data_t) - 3341 sizeof (panic_nv_t))) / sizeof (panic_nv_t); 3342 3343 for (i = 0; i < n; i++) 3344 mdb_printf("%16s %?llx\n", 3345 pd->pd_nvdata[i].pnv_name, pd->pd_nvdata[i].pnv_value); 3346 3347 mdb_free(panicbuf, PANICBUFSIZE); 3348 return (DCMD_OK); 3349 } 3350 3351 static const mdb_dcmd_t dcmds[] = { 3352 3353 /* from genunix.c */ 3354 { "addr2smap", ":[offset]", "translate address to smap", addr2smap }, 3355 { "as2proc", ":", "convert as to proc_t address", as2proc }, 3356 { "binding_hash_entry", ":", "print driver names hash table entry", 3357 binding_hash_entry }, 3358 { "callout", NULL, "print callout table", callout }, 3359 { "class", NULL, "print process scheduler classes", class }, 3360 { "cpuinfo", "?[-v]", "print CPUs and runnable threads", cpuinfo }, 3361 { "did2thread", "? kt_did", "find kernel thread for this id", 3362 did2thread }, 3363 { "errorq", "?[-v]", "display kernel error queues", errorq }, 3364 { "fd", ":[fd num]", "get a file pointer from an fd", fd }, 3365 { "flipone", ":", "the vik_rev_level 2 special", flipone }, 3366 { "lminfo", NULL, "print lock manager information", lminfo }, 3367 { "ndi_event_hdl", "?", "print ndi_event_hdl", ndi_event_hdl }, 3368 { "panicinfo", NULL, "print panic information", panicinfo }, 3369 { "pid2proc", "?", "convert PID to proc_t address", pid2proc }, 3370 { "pmap", ":[-q]", "print process memory map", pmap }, 3371 { "project", NULL, "display kernel project(s)", project }, 3372 { "ps", "[-fltzTP]", "list processes (and associated thr,lwp)", ps }, 3373 { "pgrep", "[-n | -o] pattern", "pattern match against all processes", 3374 pgrep }, 3375 { "ptree", NULL, "print process tree", ptree }, 3376 { "seg", ":", "print address space segment", seg }, 3377 { "sysevent", "?[-sv]", "print sysevent pending or sent queue", 3378 sysevent}, 3379 { "sysevent_channel", "?", "print sysevent channel database", 3380 sysevent_channel}, 3381 { "sysevent_class_list", ":", "print sysevent class list", 3382 sysevent_class_list}, 3383 { "sysevent_subclass_list", ":", 3384 "print sysevent subclass list", sysevent_subclass_list}, 3385 { "system", NULL, "print contents of /etc/system file", sysfile }, 3386 { "task", NULL, "display kernel task(s)", task }, 3387 { "taskq_entry", ":", "display a taskq_ent_t", taskq_ent }, 3388 { "vnode2path", ":[-F]", "vnode address to pathname", vnode2path }, 3389 { "vnode2smap", ":[offset]", "translate vnode to smap", vnode2smap }, 3390 { "whereopen", ":", "given a vnode, dumps procs which have it open", 3391 whereopen }, 3392 3393 /* from zone.c */ 3394 { "zone", "?", "display kernel zone(s)", zoneprt }, 3395 { "zsd", ":[zsd key]", "lookup zsd value from a key", zsd }, 3396 3397 /* from bio.c */ 3398 { "bufpagefind", ":addr", "find page_t on buf_t list", bufpagefind }, 3399 3400 /* from contract.c */ 3401 { "contract", "?", "display a contract", cmd_contract }, 3402 { "ctevent", ":", "display a contract event", cmd_ctevent }, 3403 { "ctid", ":", "convert id to a contract pointer", cmd_ctid }, 3404 3405 /* from cpupart.c */ 3406 { "cpupart", "?", "print cpu partition info", cpupart }, 3407 3408 /* from cyclic.c */ 3409 { "cyccover", NULL, "dump cyclic coverage information", cyccover }, 3410 { "cycid", "?", "dump a cyclic id", cycid }, 3411 { "cycinfo", "?", "dump cyc_cpu info", cycinfo }, 3412 { "cyclic", ":", "developer information", cyclic }, 3413 { "cyctrace", "?", "dump cyclic trace buffer", cyctrace }, 3414 3415 /* from devinfo.c */ 3416 { "devbindings", "?[-qs] [device-name | major-num]", 3417 "print devinfo nodes bound to device-name or major-num", 3418 devbindings, devinfo_help }, 3419 { "devinfo", ":[-qs]", "detailed devinfo of one node", devinfo, 3420 devinfo_help }, 3421 { "devinfo_audit", ":[-v]", "devinfo configuration audit record", 3422 devinfo_audit }, 3423 { "devinfo_audit_log", "?[-v]", "system wide devinfo configuration log", 3424 devinfo_audit_log }, 3425 { "devinfo_audit_node", ":[-v]", "devinfo node configuration history", 3426 devinfo_audit_node }, 3427 { "devinfo2driver", ":", "find driver name for this devinfo node", 3428 devinfo2driver }, 3429 { "devnames", "?[-vm] [num]", "print devnames array", devnames }, 3430 { "dev2major", "?<dev_t>", "convert dev_t to a major number", 3431 dev2major }, 3432 { "dev2minor", "?<dev_t>", "convert dev_t to a minor number", 3433 dev2minor }, 3434 { "devt", "?<dev_t>", "display a dev_t's major and minor numbers", 3435 devt }, 3436 { "major2name", "?<major-num>", "convert major number to dev name", 3437 major2name }, 3438 { "minornodes", ":", "given a devinfo node, print its minor nodes", 3439 minornodes }, 3440 { "modctl2devinfo", ":", "given a modctl, list its devinfos", 3441 modctl2devinfo }, 3442 { "name2major", "<dev-name>", "convert dev name to major number", 3443 name2major }, 3444 { "prtconf", "?[-vpc]", "print devinfo tree", prtconf, prtconf_help }, 3445 { "softstate", ":<instance>", "retrieve soft-state pointer", 3446 softstate }, 3447 { "devinfo_fm", ":", "devinfo fault managment configuration", 3448 devinfo_fm }, 3449 { "devinfo_fmce", ":", "devinfo fault managment cache entry", 3450 devinfo_fmce}, 3451 3452 /* from findstack.c */ 3453 { "findstack", ":[-v]", "find kernel thread stack", findstack }, 3454 { "findstack_debug", NULL, "toggle findstack debugging", 3455 findstack_debug }, 3456 3457 /* from kgrep.c + genunix.c */ 3458 { "kgrep", KGREP_USAGE, "search kernel as for a pointer", kgrep }, 3459 3460 /* from kmem.c */ 3461 { "allocdby", ":", "given a thread, print its allocated buffers", 3462 allocdby }, 3463 { "bufctl", ":[-vh] [-a addr] [-c caller] [-e earliest] [-l latest] " 3464 "[-t thd]", "print or filter a bufctl", bufctl, bufctl_help }, 3465 { "freedby", ":", "given a thread, print its freed buffers", freedby }, 3466 { "kmalog", "?[ fail | slab ]", 3467 "display kmem transaction log and stack traces", kmalog }, 3468 { "kmastat", NULL, "kernel memory allocator stats", kmastat }, 3469 { "kmausers", "?[-ef] [cache ...]", "current medium and large users " 3470 "of the kmem allocator", kmausers, kmausers_help }, 3471 { "kmem_cache", "?", "print kernel memory caches", kmem_cache }, 3472 { "kmem_debug", NULL, "toggle kmem dcmd/walk debugging", kmem_debug }, 3473 { "kmem_log", "?[-b]", "dump kmem transaction log", kmem_log }, 3474 { "kmem_verify", "?", "check integrity of kmem-managed memory", 3475 kmem_verify }, 3476 { "vmem", "?", "print a vmem_t", vmem }, 3477 { "vmem_seg", ":[-sv] [-c caller] [-e earliest] [-l latest] " 3478 "[-m minsize] [-M maxsize] [-t thread] [-T type]", 3479 "print or filter a vmem_seg", vmem_seg, vmem_seg_help }, 3480 { "whatis", ":[-abiv]", "given an address, return information", whatis, 3481 whatis_help }, 3482 { "whatthread", ":[-v]", "print threads whose stack contains the " 3483 "given address", whatthread }, 3484 3485 /* from ldi.c */ 3486 { "ldi_handle", "?[-i]", "display a layered driver handle", 3487 ldi_handle, ldi_handle_help }, 3488 { "ldi_ident", NULL, "display a layered driver identifier", 3489 ldi_ident, ldi_ident_help }, 3490 3491 /* from leaky.c + leaky_subr.c */ 3492 { "findleaks", FINDLEAKS_USAGE, 3493 "search for potential kernel memory leaks", findleaks, 3494 findleaks_help }, 3495 3496 /* from lgrp.c */ 3497 { "lgrp", "?[-q] [-p | -Pih]", "display an lgrp", lgrp}, 3498 3499 /* from log.c */ 3500 { "msgbuf", "?[-v]", "print most recent console messages", msgbuf }, 3501 3502 /* from memory.c */ 3503 { "page", "?", "display a summarized page_t", page }, 3504 { "memstat", NULL, "display memory usage summary", memstat }, 3505 { "memlist", "?[-iav]", "display a struct memlist", memlist }, 3506 { "swapinfo", "?", "display a struct swapinfo", swapinfof }, 3507 3508 /* from mmd.c */ 3509 { "multidata", ":[-sv]", "display a summarized multidata_t", 3510 multidata }, 3511 { "pattbl", ":", "display a summarized multidata attribute table", 3512 pattbl }, 3513 { "pattr2multidata", ":", "print multidata pointer from pattr_t", 3514 pattr2multidata }, 3515 { "pdesc2slab", ":", "print pdesc slab pointer from pdesc_t", 3516 pdesc2slab }, 3517 { "pdesc_verify", ":", "verify integrity of a pdesc_t", pdesc_verify }, 3518 { "slab2multidata", ":", "print multidata pointer from pdesc_slab_t", 3519 slab2multidata }, 3520 3521 /* from modhash.c */ 3522 { "modhash", "?[-ceht] [-k key] [-v val] [-i index]", 3523 "display information about one or all mod_hash structures", 3524 modhash, modhash_help }, 3525 { "modent", ":[-k | -v | -t type]", 3526 "display information about a mod_hash_entry", modent, 3527 modent_help }, 3528 3529 /* from net.c */ 3530 { "mi", ":[-p] [-d | -m]", "filter and display MI object or payload", 3531 mi }, 3532 { "netstat", "[-av] [-f inet | inet6 | unix] [-P tcp | udp]", 3533 "show network statistics", netstat }, 3534 { "sonode", "?[-f inet | inet6 | unix | #] " 3535 "[-t stream | dgram | raw | #] [-p #]", 3536 "filter and display sonode", sonode }, 3537 3538 /* from nvpair.c */ 3539 { NVPAIR_DCMD_NAME, NVPAIR_DCMD_USAGE, NVPAIR_DCMD_DESCR, 3540 nvpair_print }, 3541 3542 /* from rctl.c */ 3543 { "rctl_dict", "?", "print systemwide default rctl definitions", 3544 rctl_dict }, 3545 { "rctl_list", ":[handle]", "print rctls for the given proc", 3546 rctl_list }, 3547 { "rctl", ":[handle]", "print a rctl_t, only if it matches the handle", 3548 rctl }, 3549 { "rctl_validate", ":[-v] [-n #]", "test resource control value " 3550 "sequence", rctl_validate }, 3551 3552 /* from sobj.c */ 3553 { "rwlock", ":", "dump out a readers/writer lock", rwlock }, 3554 { "mutex", ":[-f]", "dump out an adaptive or spin mutex", mutex, 3555 mutex_help }, 3556 { "sobj2ts", ":", "perform turnstile lookup on synch object", sobj2ts }, 3557 { "wchaninfo", "?[-v]", "dump condition variable", wchaninfo }, 3558 { "turnstile", "?", "display a turnstile", turnstile }, 3559 3560 /* from stream.c */ 3561 { "mblk", ":[-q|v] [-f|F flag] [-t|T type] [-l|L|B len] [-d dbaddr]", 3562 "print an mblk", mblk_prt, mblk_help }, 3563 { "mblk_verify", "?", "verify integrity of an mblk", mblk_verify }, 3564 { "mblk2dblk", ":", "convert mblk_t address to dblk_t address", 3565 mblk2dblk }, 3566 { "q2otherq", ":", "print peer queue for a given queue", q2otherq }, 3567 { "q2rdq", ":", "print read queue for a given queue", q2rdq }, 3568 { "q2syncq", ":", "print syncq for a given queue", q2syncq }, 3569 { "q2stream", ":", "print stream pointer for a given queue", q2stream }, 3570 { "q2wrq", ":", "print write queue for a given queue", q2wrq }, 3571 { "queue", ":[-q|v] [-m mod] [-f flag] [-F flag] [-s syncq_addr]", 3572 "filter and display STREAM queue", queue, queue_help }, 3573 { "stdata", ":[-q|v] [-f flag] [-F flag]", 3574 "filter and display STREAM head", stdata, stdata_help }, 3575 { "str2mate", ":", "print mate of this stream", str2mate }, 3576 { "str2wrq", ":", "print write queue of this stream", str2wrq }, 3577 { "stream", ":", "display STREAM", stream }, 3578 { "strftevent", ":", "print STREAMS flow trace event", strftevent }, 3579 { "syncq", ":[-q|v] [-f flag] [-F flag] [-t type] [-T type]", 3580 "filter and display STREAM sync queue", syncq, syncq_help }, 3581 { "syncq2q", ":", "print queue for a given syncq", syncq2q }, 3582 3583 /* from thread.c */ 3584 { "thread", "?[-bdfimps]", "display a summarized kthread_t", thread, 3585 thread_help }, 3586 { "threadlist", "?[-v [count]]", 3587 "display threads and associated C stack traces", threadlist, 3588 threadlist_help }, 3589 3590 /* from tsd.c */ 3591 { "tsd", ":-k key", "print tsd[key-1] for this thread", ttotsd }, 3592 { "tsdtot", ":", "find thread with this tsd", tsdtot }, 3593 3594 /* 3595 * typegraph does not work under kmdb, as it requires too much memory 3596 * for its internal data structures. 3597 */ 3598 #ifndef _KMDB 3599 /* from typegraph.c */ 3600 { "findlocks", ":", "find locks held by specified thread", findlocks }, 3601 { "findfalse", "?[-v]", "find potentially falsely shared structures", 3602 findfalse }, 3603 { "typegraph", NULL, "build type graph", typegraph }, 3604 { "istype", ":type", "manually set object type", istype }, 3605 { "notype", ":", "manually clear object type", notype }, 3606 { "whattype", ":", "determine object type", whattype }, 3607 #endif 3608 3609 /* from vfs.c */ 3610 { "fsinfo", "?[-v]", "print mounted filesystems", fsinfo }, 3611 { "pfiles", ":[-fp]", "print process file information", pfiles, 3612 pfiles_help }, 3613 3614 { NULL } 3615 }; 3616 3617 static const mdb_walker_t walkers[] = { 3618 3619 /* from genunix.c */ 3620 { "avl", "given any avl_tree_t *, forward walk all entries in tree", 3621 avl_walk_init, avl_walk_step, avl_walk_fini }, 3622 { "anon", "given an amp, list of anon structures", 3623 anon_walk_init, anon_walk_step, anon_walk_fini }, 3624 { "cpu", "walk cpu structures", cpu_walk_init, cpu_walk_step }, 3625 { "errorq", "walk list of system error queues", 3626 errorq_walk_init, errorq_walk_step, NULL }, 3627 { "errorq_data", "walk pending error queue data buffers", 3628 eqd_walk_init, eqd_walk_step, eqd_walk_fini }, 3629 { "allfile", "given a proc pointer, list all file pointers", 3630 file_walk_init, allfile_walk_step, file_walk_fini }, 3631 { "file", "given a proc pointer, list of open file pointers", 3632 file_walk_init, file_walk_step, file_walk_fini }, 3633 { "lock_descriptor", "walk lock_descriptor_t structures", 3634 ld_walk_init, ld_walk_step, NULL }, 3635 { "lock_graph", "walk lock graph", 3636 lg_walk_init, lg_walk_step, NULL }, 3637 { "port", "given a proc pointer, list of created event ports", 3638 port_walk_init, port_walk_step, NULL }, 3639 { "portev", "given a port pointer, list of events in the queue", 3640 portev_walk_init, portev_walk_step, portev_walk_fini }, 3641 { "proc", "list of active proc_t structures", 3642 proc_walk_init, proc_walk_step, proc_walk_fini }, 3643 { "projects", "walk a list of kernel projects", 3644 project_walk_init, project_walk_step, NULL }, 3645 { "seg", "given an as, list of segments", 3646 seg_walk_init, avl_walk_step, avl_walk_fini }, 3647 { "sysevent_pend", "walk sysevent pending queue", 3648 sysevent_pend_walk_init, sysevent_walk_step, 3649 sysevent_walk_fini}, 3650 { "sysevent_sent", "walk sysevent sent queue", sysevent_sent_walk_init, 3651 sysevent_walk_step, sysevent_walk_fini}, 3652 { "sysevent_channel", "walk sysevent channel subscriptions", 3653 sysevent_channel_walk_init, sysevent_channel_walk_step, 3654 sysevent_channel_walk_fini}, 3655 { "sysevent_class_list", "walk sysevent subscription's class list", 3656 sysevent_class_list_walk_init, sysevent_class_list_walk_step, 3657 sysevent_class_list_walk_fini}, 3658 { "sysevent_subclass_list", 3659 "walk sysevent subscription's subclass list", 3660 sysevent_subclass_list_walk_init, 3661 sysevent_subclass_list_walk_step, 3662 sysevent_subclass_list_walk_fini}, 3663 { "task", "given a task pointer, walk its processes", 3664 task_walk_init, task_walk_step, NULL }, 3665 { "taskq_entry", "given a taskq_t*, list all taskq_ent_t in the list", 3666 taskq_walk_init, taskq_walk_step, NULL, NULL }, 3667 3668 /* from zone.c */ 3669 { "zone", "walk a list of kernel zones", 3670 zone_walk_init, zone_walk_step, NULL }, 3671 { "zsd", "walk list of zsd entries for a zone", 3672 zsd_walk_init, zsd_walk_step, NULL }, 3673 3674 /* from bio.c */ 3675 { "buf", "walk the bio buf hash", 3676 buf_walk_init, buf_walk_step, buf_walk_fini }, 3677 3678 /* from contract.c */ 3679 { "contract", "walk all contracts, or those of the specified type", 3680 ct_walk_init, generic_walk_step, NULL }, 3681 { "ct_event", "walk events on a contract event queue", 3682 ct_event_walk_init, generic_walk_step, NULL }, 3683 { "ct_listener", "walk contract event queue listeners", 3684 ct_listener_walk_init, generic_walk_step, NULL }, 3685 3686 /* from cpupart.c */ 3687 { "cpupart_cpulist", "given an cpupart_t, walk cpus in partition", 3688 cpupart_cpulist_walk_init, cpupart_cpulist_walk_step, 3689 NULL }, 3690 { "cpupart_walk", "walk the set of cpu partitions", 3691 cpupart_walk_init, cpupart_walk_step, NULL }, 3692 3693 /* from ctxop.c */ 3694 { "ctxop", "walk list of context ops on a thread", 3695 ctxop_walk_init, ctxop_walk_step, ctxop_walk_fini }, 3696 3697 /* from cyclic.c */ 3698 { "cyccpu", "walk per-CPU cyc_cpu structures", 3699 cyccpu_walk_init, cyccpu_walk_step, NULL }, 3700 { "cycomni", "for an omnipresent cyclic, walk cyc_omni_cpu list", 3701 cycomni_walk_init, cycomni_walk_step, NULL }, 3702 { "cyctrace", "walk cyclic trace buffer", 3703 cyctrace_walk_init, cyctrace_walk_step, cyctrace_walk_fini }, 3704 3705 /* from devinfo.c */ 3706 { "binding_hash", "walk all entries in binding hash table", 3707 binding_hash_walk_init, binding_hash_walk_step, NULL }, 3708 { "devinfo", "walk devinfo tree or subtree", 3709 devinfo_walk_init, devinfo_walk_step, devinfo_walk_fini }, 3710 { "devinfo_audit_log", "walk devinfo audit system-wide log", 3711 devinfo_audit_log_walk_init, devinfo_audit_log_walk_step, 3712 devinfo_audit_log_walk_fini}, 3713 { "devinfo_audit_node", "walk per-devinfo audit history", 3714 devinfo_audit_node_walk_init, devinfo_audit_node_walk_step, 3715 devinfo_audit_node_walk_fini}, 3716 { "devinfo_children", "walk children of devinfo node", 3717 devinfo_children_walk_init, devinfo_children_walk_step, 3718 devinfo_children_walk_fini }, 3719 { "devinfo_parents", "walk ancestors of devinfo node", 3720 devinfo_parents_walk_init, devinfo_parents_walk_step, 3721 devinfo_parents_walk_fini }, 3722 { "devinfo_siblings", "walk siblings of devinfo node", 3723 devinfo_siblings_walk_init, devinfo_siblings_walk_step, NULL }, 3724 { "devi_next", "walk devinfo list", 3725 NULL, devi_next_walk_step, NULL }, 3726 { "devnames", "walk devnames array", 3727 devnames_walk_init, devnames_walk_step, devnames_walk_fini }, 3728 { "minornode", "given a devinfo node, walk minor nodes", 3729 minornode_walk_init, minornode_walk_step, NULL }, 3730 { "softstate", 3731 "given an i_ddi_soft_state*, list all in-use driver stateps", 3732 soft_state_walk_init, soft_state_walk_step, 3733 NULL, NULL }, 3734 { "softstate_all", 3735 "given an i_ddi_soft_state*, list all driver stateps", 3736 soft_state_walk_init, soft_state_all_walk_step, 3737 NULL, NULL }, 3738 { "devinfo_fmc", 3739 "walk a fault management handle cache active list", 3740 devinfo_fmc_walk_init, devinfo_fmc_walk_step, NULL }, 3741 3742 /* from kmem.c */ 3743 { "allocdby", "given a thread, walk its allocated bufctls", 3744 allocdby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3745 { "bufctl", "walk a kmem cache's bufctls", 3746 bufctl_walk_init, kmem_walk_step, kmem_walk_fini }, 3747 { "bufctl_history", "walk the available history of a bufctl", 3748 bufctl_history_walk_init, bufctl_history_walk_step, 3749 bufctl_history_walk_fini }, 3750 { "freedby", "given a thread, walk its freed bufctls", 3751 freedby_walk_init, allocdby_walk_step, allocdby_walk_fini }, 3752 { "freectl", "walk a kmem cache's free bufctls", 3753 freectl_walk_init, kmem_walk_step, kmem_walk_fini }, 3754 { "freectl_constructed", "walk a kmem cache's constructed free bufctls", 3755 freectl_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3756 { "freemem", "walk a kmem cache's free memory", 3757 freemem_walk_init, kmem_walk_step, kmem_walk_fini }, 3758 { "freemem_constructed", "walk a kmem cache's constructed free memory", 3759 freemem_constructed_walk_init, kmem_walk_step, kmem_walk_fini }, 3760 { "kmem", "walk a kmem cache", 3761 kmem_walk_init, kmem_walk_step, kmem_walk_fini }, 3762 { "kmem_cpu_cache", "given a kmem cache, walk its per-CPU caches", 3763 kmem_cpu_cache_walk_init, kmem_cpu_cache_walk_step, NULL }, 3764 { "kmem_hash", "given a kmem cache, walk its allocated hash table", 3765 kmem_hash_walk_init, kmem_hash_walk_step, kmem_hash_walk_fini }, 3766 { "kmem_log", "walk the kmem transaction log", 3767 kmem_log_walk_init, kmem_log_walk_step, kmem_log_walk_fini }, 3768 { "kmem_slab", "given a kmem cache, walk its slabs", 3769 kmem_slab_walk_init, kmem_slab_walk_step, NULL }, 3770 { "kmem_slab_partial", 3771 "given a kmem cache, walk its partially allocated slabs (min 1)", 3772 kmem_slab_walk_partial_init, kmem_slab_walk_step, NULL }, 3773 { "vmem", "walk vmem structures in pre-fix, depth-first order", 3774 vmem_walk_init, vmem_walk_step, vmem_walk_fini }, 3775 { "vmem_alloc", "given a vmem_t, walk its allocated vmem_segs", 3776 vmem_alloc_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3777 { "vmem_free", "given a vmem_t, walk its free vmem_segs", 3778 vmem_free_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3779 { "vmem_postfix", "walk vmem structures in post-fix, depth-first order", 3780 vmem_walk_init, vmem_postfix_walk_step, vmem_walk_fini }, 3781 { "vmem_seg", "given a vmem_t, walk all of its vmem_segs", 3782 vmem_seg_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3783 { "vmem_span", "given a vmem_t, walk its spanning vmem_segs", 3784 vmem_span_walk_init, vmem_seg_walk_step, vmem_seg_walk_fini }, 3785 3786 /* from ldi.c */ 3787 { "ldi_handle", "walk the layered driver handle hash", 3788 ldi_handle_walk_init, ldi_handle_walk_step, NULL }, 3789 { "ldi_ident", "walk the layered driver identifier hash", 3790 ldi_ident_walk_init, ldi_ident_walk_step, NULL }, 3791 3792 /* from leaky.c + leaky_subr.c */ 3793 { "leak", "given a leaked bufctl or vmem_seg, find leaks w/ same " 3794 "stack trace", 3795 leaky_walk_init, leaky_walk_step, leaky_walk_fini }, 3796 { "leakbuf", "given a leaked bufctl or vmem_seg, walk buffers for " 3797 "leaks w/ same stack trace", 3798 leaky_walk_init, leaky_buf_walk_step, leaky_walk_fini }, 3799 3800 /* from lgrp.c */ 3801 { "lgrp_cpulist", "given an lgrp, walk cpus", 3802 lgrp_cpulist_walk_init, lgrp_cpulist_walk_step, 3803 NULL }, 3804 { "lgrptbl", "walk the lgrp table", 3805 lgrp_walk_init, lgrp_walk_step, NULL }, 3806 3807 /* from list.c */ 3808 { "list", "walk a linked list", 3809 list_walk_init, list_walk_step, list_walk_fini }, 3810 3811 /* from memory.c */ 3812 { "page", "walk all pages, or those from the specified vnode", 3813 page_walk_init, page_walk_step, page_walk_fini }, 3814 { "memlist", "walk specified memlist", 3815 NULL, memlist_walk_step, NULL }, 3816 { "swapinfo", "walk swapinfo structures", 3817 swap_walk_init, swap_walk_step, NULL }, 3818 3819 /* from mmd.c */ 3820 { "pattr", "walk pattr_t structures", pattr_walk_init, 3821 mmdq_walk_step, mmdq_walk_fini }, 3822 { "pdesc", "walk pdesc_t structures", 3823 pdesc_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3824 { "pdesc_slab", "walk pdesc_slab_t structures", 3825 pdesc_slab_walk_init, mmdq_walk_step, mmdq_walk_fini }, 3826 3827 /* from modhash.c */ 3828 { "modhash", "walk list of mod_hash structures", modhash_walk_init, 3829 modhash_walk_step, NULL }, 3830 { "modent", "walk list of entries in a given mod_hash", 3831 modent_walk_init, modent_walk_step, modent_walk_fini }, 3832 { "modchain", "walk list of entries in a given mod_hash_entry", 3833 NULL, modchain_walk_step, NULL }, 3834 3835 /* from net.c */ 3836 { "ar", "walk ar_t structures using MI", 3837 mi_payload_walk_init, mi_payload_walk_step, 3838 mi_payload_walk_fini, &mi_ar_arg }, 3839 { "icmp", "walk ICMP control structures using MI", 3840 mi_payload_walk_init, mi_payload_walk_step, 3841 mi_payload_walk_fini, &mi_icmp_arg }, 3842 { "ill", "walk ill_t structures using MI", 3843 mi_payload_walk_init, mi_payload_walk_step, 3844 mi_payload_walk_fini, &mi_ill_arg }, 3845 { "mi", "given a MI_O, walk the MI", 3846 mi_walk_init, mi_walk_step, mi_walk_fini, NULL }, 3847 { "sonode", "given a sonode, walk its children", 3848 sonode_walk_init, sonode_walk_step, sonode_walk_fini, NULL }, 3849 { "udp", "walk UDP connections using MI", 3850 mi_payload_walk_init, mi_payload_walk_step, 3851 mi_payload_walk_fini, &mi_udp_arg }, 3852 3853 /* from nvpair.c */ 3854 { NVPAIR_WALKER_NAME, NVPAIR_WALKER_DESCR, 3855 nvpair_walk_init, nvpair_walk_step, NULL }, 3856 3857 /* from rctl.c */ 3858 { "rctl_dict_list", "walk all rctl_dict_entry_t's from rctl_lists", 3859 rctl_dict_walk_init, rctl_dict_walk_step, NULL }, 3860 { "rctl_set", "given a rctl_set, walk all rctls", rctl_set_walk_init, 3861 rctl_set_walk_step, NULL }, 3862 { "rctl_val", "given a rctl_t, walk all rctl_val entries associated", 3863 rctl_val_walk_init, rctl_val_walk_step }, 3864 3865 /* from sobj.c */ 3866 { "blocked", "walk threads blocked on a given sobj", 3867 blocked_walk_init, blocked_walk_step, NULL }, 3868 { "wchan", "given a wchan, list of blocked threads", 3869 wchan_walk_init, wchan_walk_step, wchan_walk_fini }, 3870 3871 /* from stream.c */ 3872 { "b_cont", "walk mblk_t list using b_cont", 3873 mblk_walk_init, b_cont_step, mblk_walk_fini }, 3874 { "b_next", "walk mblk_t list using b_next", 3875 mblk_walk_init, b_next_step, mblk_walk_fini }, 3876 { "qlink", "walk queue_t list using q_link", 3877 queue_walk_init, queue_link_step, queue_walk_fini }, 3878 { "qnext", "walk queue_t list using q_next", 3879 queue_walk_init, queue_next_step, queue_walk_fini }, 3880 { "strftblk", "given a dblk_t, walk STREAMS flow trace event list", 3881 strftblk_walk_init, strftblk_step, strftblk_walk_fini }, 3882 { "readq", "walk read queue side of stdata", 3883 str_walk_init, strr_walk_step, str_walk_fini }, 3884 { "writeq", "walk write queue side of stdata", 3885 str_walk_init, strw_walk_step, str_walk_fini }, 3886 3887 /* from thread.c */ 3888 { "deathrow", "walk threads on both lwp_ and thread_deathrow", 3889 deathrow_walk_init, deathrow_walk_step, NULL }, 3890 { "cpu_dispq", "given a cpu_t, walk threads in dispatcher queues", 3891 cpu_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3892 { "cpupart_dispq", 3893 "given a cpupart_t, walk threads in dispatcher queues", 3894 cpupart_dispq_walk_init, dispq_walk_step, dispq_walk_fini }, 3895 { "lwp_deathrow", "walk lwp_deathrow", 3896 lwp_deathrow_walk_init, deathrow_walk_step, NULL }, 3897 { "thread", "global or per-process kthread_t structures", 3898 thread_walk_init, thread_walk_step, thread_walk_fini }, 3899 { "thread_deathrow", "walk threads on thread_deathrow", 3900 thread_deathrow_walk_init, deathrow_walk_step, NULL }, 3901 3902 /* from tsd.c */ 3903 { "tsd", "walk list of thread-specific data", 3904 tsd_walk_init, tsd_walk_step, tsd_walk_fini }, 3905 3906 /* 3907 * typegraph does not work under kmdb, as it requires too much memory 3908 * for its internal data structures. 3909 */ 3910 #ifndef _KMDB 3911 /* from typegraph.c */ 3912 { "typeconflict", "walk buffers with conflicting type inferences", 3913 typegraph_walk_init, typeconflict_walk_step }, 3914 { "typeunknown", "walk buffers with unknown types", 3915 typegraph_walk_init, typeunknown_walk_step }, 3916 #endif 3917 3918 /* from vfs.c */ 3919 { "vfs", "walk file system list", 3920 vfs_walk_init, vfs_walk_step }, 3921 { NULL } 3922 }; 3923 3924 static const mdb_modinfo_t modinfo = { MDB_API_VERSION, dcmds, walkers }; 3925 3926 const mdb_modinfo_t * 3927 _mdb_init(void) 3928 { 3929 if (mdb_readvar(&devinfo_root, "top_devinfo") == -1) { 3930 mdb_warn("failed to read 'top_devinfo'"); 3931 return (NULL); 3932 } 3933 3934 if (findstack_init() != DCMD_OK) 3935 return (NULL); 3936 3937 kmem_init(); 3938 3939 return (&modinfo); 3940 } 3941 3942 void 3943 _mdb_fini(void) 3944 { 3945 /* 3946 * Force ::findleaks to let go any cached memory 3947 */ 3948 leaky_cleanup(1); 3949 } 3950