1*2633Sahl /* 2*2633Sahl * CDDL HEADER START 3*2633Sahl * 4*2633Sahl * The contents of this file are subject to the terms of the 5*2633Sahl * Common Development and Distribution License (the "License"). 6*2633Sahl * You may not use this file except in compliance with the License. 7*2633Sahl * 8*2633Sahl * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9*2633Sahl * or http://www.opensolaris.org/os/licensing. 10*2633Sahl * See the License for the specific language governing permissions 11*2633Sahl * and limitations under the License. 12*2633Sahl * 13*2633Sahl * When distributing Covered Code, include this CDDL HEADER in each 14*2633Sahl * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15*2633Sahl * If applicable, add the following below this CDDL HEADER, with the 16*2633Sahl * fields enclosed by brackets "[]" replaced with your own identifying 17*2633Sahl * information: Portions Copyright [yyyy] [name of copyright owner] 18*2633Sahl * 19*2633Sahl * CDDL HEADER END 20*2633Sahl */ 21*2633Sahl 22*2633Sahl /* 23*2633Sahl * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24*2633Sahl * Use is subject to license terms. 25*2633Sahl */ 26*2633Sahl 27*2633Sahl #pragma ident "%Z%%M% %I% %E% SMI" 28*2633Sahl 29*2633Sahl #pragma D option quiet 30*2633Sahl 31*2633Sahl BEGIN 32*2633Sahl { 33*2633Sahl @["j-church"] = lquantize(1, 0, 10, 1, 100); 34*2633Sahl @["j-church"] = lquantize(1, 0, 10, 1, -99); 35*2633Sahl @["j-church"] = lquantize(1, 0, 10, 1, -1); 36*2633Sahl val = 123; 37*2633Sahl } 38*2633Sahl 39*2633Sahl BEGIN 40*2633Sahl { 41*2633Sahl @["k-ingleside"] = lquantize(1, 0, 10, 1, -val); 42*2633Sahl } 43*2633Sahl 44*2633Sahl BEGIN 45*2633Sahl { 46*2633Sahl @["l-taraval"] = lquantize(0, 0, 10, 1, -val); 47*2633Sahl @["l-taraval"] = lquantize(-1, 0, 10, 1, -val); 48*2633Sahl @["l-taraval"] = lquantize(1, 0, 10, 1, val); 49*2633Sahl @["l-taraval"] = lquantize(1, 0, 10, 1, val); 50*2633Sahl } 51*2633Sahl 52*2633Sahl BEGIN 53*2633Sahl { 54*2633Sahl @["m-oceanview"] = lquantize(1, 0, 10, 1, (1 << 63) - 1); 55*2633Sahl @["m-oceanview"] = lquantize(1, 0, 10, 1); 56*2633Sahl @["m-oceanview"] = lquantize(2, 0, 10, 1, (1 << 63) - 1); 57*2633Sahl @["m-oceanview"] = lquantize(8, 0, 10, 1, 400000); 58*2633Sahl } 59*2633Sahl 60*2633Sahl BEGIN 61*2633Sahl { 62*2633Sahl @["n-judah"] = lquantize(1, 0, 10, 1, val); 63*2633Sahl @["n-judah"] = lquantize(2, 0, 10, 1, val); 64*2633Sahl @["n-judah"] = lquantize(2, 0, 10, 1, val); 65*2633Sahl @["n-judah"] = lquantize(2, 0, 10, 1); 66*2633Sahl } 67*2633Sahl 68*2633Sahl BEGIN 69*2633Sahl { 70*2633Sahl this->i = 1; 71*2633Sahl this->val = (1 << 63) - 1; 72*2633Sahl 73*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 74*2633Sahl this->i++; 75*2633Sahl this->val = ((1 << 63) - 1) / this->i; 76*2633Sahl 77*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 78*2633Sahl this->i++; 79*2633Sahl this->val = ((1 << 63) - 1) / this->i; 80*2633Sahl 81*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 82*2633Sahl this->i++; 83*2633Sahl this->val = ((1 << 63) - 1) / this->i; 84*2633Sahl 85*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 86*2633Sahl this->i++; 87*2633Sahl this->val = ((1 << 63) - 1) / this->i; 88*2633Sahl 89*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 90*2633Sahl this->i++; 91*2633Sahl this->val = ((1 << 63) - 1) / this->i; 92*2633Sahl 93*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 94*2633Sahl this->i++; 95*2633Sahl this->val = ((1 << 63) - 1) / this->i; 96*2633Sahl 97*2633Sahl @["f-market"] = lquantize(this->i, 0, 10, 1, this->val); 98*2633Sahl this->i++; 99*2633Sahl this->val = ((1 << 63) - 1) / this->i; 100*2633Sahl } 101*2633Sahl 102*2633Sahl BEGIN 103*2633Sahl { 104*2633Sahl this->i = 1; 105*2633Sahl 106*2633Sahl /* 107*2633Sahl * We want to test the ability to sort very large quantizations 108*2633Sahl * that differ by a small amount. Ideally, they would differ only 109*2633Sahl * by 1 -- but that is smaller than the precision of long doubles of 110*2633Sahl * this magnitude on x86. To assure that the same test works on x86 111*2633Sahl * just as it does on SPARC, we pick a value that is just larger than 112*2633Sahl * the precision at this magnitude. It should go without saying that 113*2633Sahl * this robustness on new ISAs very much depends on the precision 114*2633Sahl * of the long double representation. 115*2633Sahl */ 116*2633Sahl this->val = (1 << 63) - 7; 117*2633Sahl 118*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 119*2633Sahl this->i++; 120*2633Sahl this->val = ((1 << 63) - 1) / this->i; 121*2633Sahl 122*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 123*2633Sahl this->i++; 124*2633Sahl this->val = ((1 << 63) - 1) / this->i; 125*2633Sahl 126*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 127*2633Sahl this->i++; 128*2633Sahl this->val = ((1 << 63) - 1) / this->i; 129*2633Sahl 130*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 131*2633Sahl this->i++; 132*2633Sahl this->val = ((1 << 63) - 1) / this->i; 133*2633Sahl 134*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 135*2633Sahl this->i++; 136*2633Sahl this->val = ((1 << 63) - 1) / this->i; 137*2633Sahl 138*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 139*2633Sahl this->i++; 140*2633Sahl this->val = ((1 << 63) - 1) / this->i; 141*2633Sahl 142*2633Sahl @["s-castro"] = lquantize(this->i, 0, 10, 1, this->val); 143*2633Sahl this->i++; 144*2633Sahl this->val = ((1 << 63) - 1) / this->i; 145*2633Sahl } 146*2633Sahl 147*2633Sahl BEGIN 148*2633Sahl { 149*2633Sahl exit(0); 150*2633Sahl } 151