xref: /netbsd-src/usr.sbin/npf/npfctl/npf_bpf_comp.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: npf_bpf_comp.c,v 1.7 2014/06/29 00:05:24 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * BPF byte-code generation for NPF rules.
34  */
35 
36 #include <sys/cdefs.h>
37 __RCSID("$NetBSD: npf_bpf_comp.c,v 1.7 2014/06/29 00:05:24 rmind Exp $");
38 
39 #include <stdlib.h>
40 #include <stdbool.h>
41 #include <stddef.h>
42 #include <string.h>
43 #include <inttypes.h>
44 #include <err.h>
45 #include <assert.h>
46 
47 #include <netinet/in.h>
48 #include <netinet/in_systm.h>
49 #include <netinet/ip.h>
50 #include <netinet/ip6.h>
51 #include <netinet/udp.h>
52 #include <netinet/tcp.h>
53 #include <netinet/ip_icmp.h>
54 #include <netinet/icmp6.h>
55 
56 #include <net/bpf.h>
57 
58 #include "npfctl.h"
59 
60 /*
61  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
62  * something other than L4 header offset.  Generally, when BPF_LDX is used.
63  */
64 #define	FETCHED_L3		0x01
65 #define	CHECKED_L4		0x02
66 #define	X_EQ_L4OFF		0x04
67 
68 struct npf_bpf {
69 	/*
70 	 * BPF program code, the allocated length (in bytes), the number
71 	 * of logical blocks and the flags.
72 	 */
73 	struct bpf_program	prog;
74 	size_t			alen;
75 	u_int			nblocks;
76 	sa_family_t		af;
77 	uint32_t		flags;
78 
79 	/* The current group offset and block number. */
80 	bool			ingroup;
81 	u_int			goff;
82 	u_int			gblock;
83 
84 	/* BPF marks, allocated length and the real length. */
85 	uint32_t *		marks;
86 	size_t			malen;
87 	size_t			mlen;
88 };
89 
90 /*
91  * NPF success and failure values to be returned from BPF.
92  */
93 #define	NPF_BPF_SUCCESS		((u_int)-1)
94 #define	NPF_BPF_FAILURE		0
95 
96 /*
97  * Magic value to indicate the failure path, which is fixed up on completion.
98  * Note: this is the longest jump offset in BPF, since the offset is one byte.
99  */
100 #define	JUMP_MAGIC		0xff
101 
102 /* Reduce re-allocations by expanding in 64 byte blocks. */
103 #define	ALLOC_MASK		(64 - 1)
104 #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
105 
106 npf_bpf_t *
107 npfctl_bpf_create(void)
108 {
109 	return ecalloc(1, sizeof(npf_bpf_t));
110 }
111 
112 static void
113 fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
114 {
115 	struct bpf_program *bp = &ctx->prog;
116 
117 	for (u_int i = start; i < end; i++) {
118 		struct bpf_insn *insn = &bp->bf_insns[i];
119 		const u_int fail_off = end - i;
120 
121 		if (fail_off >= JUMP_MAGIC) {
122 			errx(EXIT_FAILURE, "BPF generation error: "
123 			    "the number of instructions is over the limit");
124 		}
125 		if (BPF_CLASS(insn->code) != BPF_JMP) {
126 			continue;
127 		}
128 		if (swap) {
129 			uint8_t jt = insn->jt;
130 			insn->jt = insn->jf;
131 			insn->jf = jt;
132 		}
133 		if (insn->jt == JUMP_MAGIC)
134 			insn->jt = fail_off;
135 		if (insn->jf == JUMP_MAGIC)
136 			insn->jf = fail_off;
137 	}
138 }
139 
140 static void
141 add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
142 {
143 	struct bpf_program *bp = &ctx->prog;
144 	size_t offset, len, reqlen;
145 
146 	/* Note: bf_len is the count of instructions. */
147 	offset = bp->bf_len * sizeof(struct bpf_insn);
148 	len = count * sizeof(struct bpf_insn);
149 
150 	/* Ensure the memory buffer for the program. */
151 	reqlen = ALLOC_ROUND(offset + len);
152 	if (reqlen > ctx->alen) {
153 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
154 		ctx->alen = reqlen;
155 	}
156 
157 	/* Add the code block. */
158 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
159 	bp->bf_len += count;
160 }
161 
162 static void
163 done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
164 {
165 	size_t reqlen, nargs = m[1];
166 
167 	if ((len / sizeof(uint32_t) - 2) != nargs) {
168 		errx(EXIT_FAILURE, "invalid BPF block description");
169 	}
170 	reqlen = ALLOC_ROUND(ctx->mlen + len);
171 	if (reqlen > ctx->malen) {
172 		ctx->marks = erealloc(ctx->marks, reqlen);
173 		ctx->malen = reqlen;
174 	}
175 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
176 	ctx->mlen += len;
177 }
178 
179 static void
180 done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
181 {
182 	done_raw_block(ctx, m, len);
183 	ctx->nblocks++;
184 }
185 
186 struct bpf_program *
187 npfctl_bpf_complete(npf_bpf_t *ctx)
188 {
189 	struct bpf_program *bp = &ctx->prog;
190 	const u_int retoff = bp->bf_len;
191 
192 	/* Add the return fragment (success and failure paths). */
193 	struct bpf_insn insns_ret[] = {
194 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
195 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
196 	};
197 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
198 
199 	/* Fixup all jumps to the main failure path. */
200 	fixup_jumps(ctx, 0, retoff, false);
201 
202 	return &ctx->prog;
203 }
204 
205 const void *
206 npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
207 {
208 	*len = ctx->mlen;
209 	return ctx->marks;
210 }
211 
212 void
213 npfctl_bpf_destroy(npf_bpf_t *ctx)
214 {
215 	free(ctx->prog.bf_insns);
216 	free(ctx->marks);
217 	free(ctx);
218 }
219 
220 /*
221  * npfctl_bpf_group: begin a logical group.  It merely uses logical
222  * disjunction (OR) for compares within the group.
223  */
224 void
225 npfctl_bpf_group(npf_bpf_t *ctx)
226 {
227 	struct bpf_program *bp = &ctx->prog;
228 
229 	assert(ctx->goff == 0);
230 	assert(ctx->gblock == 0);
231 
232 	ctx->goff = bp->bf_len;
233 	ctx->gblock = ctx->nblocks;
234 	ctx->ingroup = true;
235 }
236 
237 void
238 npfctl_bpf_endgroup(npf_bpf_t *ctx)
239 {
240 	struct bpf_program *bp = &ctx->prog;
241 	const size_t curoff = bp->bf_len;
242 
243 	/* If there are no blocks or only one - nothing to do. */
244 	if ((ctx->nblocks - ctx->gblock) <= 1) {
245 		ctx->goff = ctx->gblock = 0;
246 		return;
247 	}
248 
249 	/*
250 	 * Append a failure return as a fall-through i.e. if there is
251 	 * no match within the group.
252 	 */
253 	struct bpf_insn insns_ret[] = {
254 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
255 	};
256 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
257 
258 	/*
259 	 * Adjust jump offsets: on match - jump outside the group i.e.
260 	 * to the current offset.  Otherwise, jump to the next instruction
261 	 * which would lead to the fall-through code above if none matches.
262 	 */
263 	fixup_jumps(ctx, ctx->goff, curoff, true);
264 	ctx->goff = ctx->gblock = 0;
265 }
266 
267 static void
268 fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
269 {
270 	u_int ver;
271 
272 	switch (af) {
273 	case AF_INET:
274 		ver = IPVERSION;
275 		break;
276 	case AF_INET6:
277 		ver = IPV6_VERSION >> 4;
278 		break;
279 	case AF_UNSPEC:
280 		ver = 0;
281 		break;
282 	default:
283 		abort();
284 	}
285 
286 	/*
287 	 * The memory store is populated with:
288 	 * - BPF_MW_IPVER: IP version (4 or 6).
289 	 * - BPF_MW_L4OFF: L4 header offset.
290 	 * - BPF_MW_L4PROTO: L4 protocol.
291 	 */
292 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
293 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
294 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
295 		bool ingroup = ctx->ingroup;
296 
297 		/*
298 		 * L3 block cannot be inserted in the middle of a group.
299 		 * In fact, it never is.  Check and start the group after.
300 		 */
301 		if (ingroup) {
302 			assert(ctx->nblocks == ctx->gblock);
303 			npfctl_bpf_endgroup(ctx);
304 		}
305 
306 		/*
307 		 * A <- IP version; A == expected-version?
308 		 * If no particular version specified, check for non-zero.
309 		 */
310 		struct bpf_insn insns_af[] = {
311 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
312 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
313 		};
314 		add_insns(ctx, insns_af, __arraycount(insns_af));
315 		ctx->flags |= FETCHED_L3;
316 		ctx->af = af;
317 
318 		if (af) {
319 			uint32_t mwords[] = { BM_IPVER, 1, af };
320 			done_raw_block(ctx, mwords, sizeof(mwords));
321 		}
322 		if (ingroup) {
323 			npfctl_bpf_group(ctx);
324 		}
325 
326 	} else if (af && af != ctx->af) {
327 		errx(EXIT_FAILURE, "address family mismatch");
328 	}
329 
330 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
331 		/* X <- IP header length */
332 		struct bpf_insn insns_hlen[] = {
333 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
334 		};
335 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
336 		ctx->flags |= X_EQ_L4OFF;
337 	}
338 }
339 
340 /*
341  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
342  */
343 void
344 npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
345 {
346 	assert(af != AF_UNSPEC || proto != -1);
347 
348 	/* Note: fails if IP version does not match. */
349 	fetch_l3(ctx, af, 0);
350 	if (proto == -1) {
351 		return;
352 	}
353 
354 	struct bpf_insn insns_proto[] = {
355 		/* A <- L4 protocol; A == expected-protocol? */
356 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
357 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
358 	};
359 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
360 
361 	uint32_t mwords[] = { BM_PROTO, 1, proto };
362 	done_block(ctx, mwords, sizeof(mwords));
363 	ctx->flags |= CHECKED_L4;
364 }
365 
366 /*
367  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
368  *
369  * => IP address shall be in the network byte order.
370  */
371 void
372 npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
373     const npf_addr_t *addr, const npf_netmask_t mask)
374 {
375 	const uint32_t *awords = (const uint32_t *)addr;
376 	u_int nwords, length, maxmask, off;
377 
378 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
379 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
380 
381 	switch (af) {
382 	case AF_INET:
383 		maxmask = 32;
384 		off = (opts & MATCH_SRC) ?
385 		    offsetof(struct ip, ip_src) :
386 		    offsetof(struct ip, ip_dst);
387 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
388 		break;
389 	case AF_INET6:
390 		maxmask = 128;
391 		off = (opts & MATCH_SRC) ?
392 		    offsetof(struct ip6_hdr, ip6_src) :
393 		    offsetof(struct ip6_hdr, ip6_dst);
394 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
395 		break;
396 	default:
397 		abort();
398 	}
399 
400 	/* Ensure address family. */
401 	fetch_l3(ctx, af, 0);
402 
403 	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
404 
405 	/* CAUTION: BPF operates in host byte-order. */
406 	for (u_int i = 0; i < nwords; i++) {
407 		const u_int woff = i * sizeof(uint32_t);
408 		uint32_t word = ntohl(awords[i]);
409 		uint32_t wordmask;
410 
411 		if (length >= 32) {
412 			/* The mask is a full word - do not apply it. */
413 			wordmask = 0;
414 			length -= 32;
415 		} else if (length) {
416 			wordmask = 0xffffffff << (32 - length);
417 			length = 0;
418 		} else {
419 			/* The mask became zero - skip the rest. */
420 			break;
421 		}
422 
423 		/* A <- IP address (or one word of it) */
424 		struct bpf_insn insns_ip[] = {
425 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
426 		};
427 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
428 
429 		/* A <- (A & MASK) */
430 		if (wordmask) {
431 			struct bpf_insn insns_mask[] = {
432 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
433 			};
434 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
435 		}
436 
437 		/* A == expected-IP-word ? */
438 		struct bpf_insn insns_cmp[] = {
439 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
440 		};
441 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
442 	}
443 
444 	uint32_t mwords[] = {
445 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
446 		af, mask, awords[0], awords[1], awords[2], awords[3],
447 	};
448 	done_block(ctx, mwords, sizeof(mwords));
449 }
450 
451 /*
452  * npfctl_bpf_ports: code block to match TCP/UDP port range.
453  *
454  * => Port numbers shall be in the network byte order.
455  */
456 void
457 npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
458 {
459 	const u_int sport_off = offsetof(struct udphdr, uh_sport);
460 	const u_int dport_off = offsetof(struct udphdr, uh_dport);
461 	u_int off;
462 
463 	/* TCP and UDP port offsets are the same. */
464 	assert(sport_off == offsetof(struct tcphdr, th_sport));
465 	assert(dport_off == offsetof(struct tcphdr, th_dport));
466 	assert(ctx->flags & CHECKED_L4);
467 
468 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
469 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
470 
471 	/* X <- IP header length */
472 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
473 
474 	struct bpf_insn insns_fetch[] = {
475 		/* A <- port */
476 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
477 	};
478 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
479 
480 	/* CAUTION: BPF operates in host byte-order. */
481 	from = ntohs(from);
482 	to = ntohs(to);
483 
484 	if (from == to) {
485 		/* Single port case. */
486 		struct bpf_insn insns_port[] = {
487 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
488 		};
489 		add_insns(ctx, insns_port, __arraycount(insns_port));
490 	} else {
491 		/* Port range case. */
492 		struct bpf_insn insns_range[] = {
493 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
494 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
495 		};
496 		add_insns(ctx, insns_range, __arraycount(insns_range));
497 	}
498 
499 	uint32_t mwords[] = {
500 		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
501 	};
502 	done_block(ctx, mwords, sizeof(mwords));
503 }
504 
505 /*
506  * npfctl_bpf_tcpfl: code block to match TCP flags.
507  */
508 void
509 npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
510 {
511 	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
512 	const bool usingmask = tf_mask != tf;
513 
514 	/* X <- IP header length */
515 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
516 	if (checktcp) {
517 		const u_int jf = usingmask ? 3 : 2;
518 		assert(ctx->ingroup == false);
519 
520 		/* A <- L4 protocol; A == TCP?  If not, jump out. */
521 		struct bpf_insn insns_tcp[] = {
522 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
523 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
524 		};
525 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
526 	} else {
527 		assert(ctx->flags & CHECKED_L4);
528 	}
529 
530 	struct bpf_insn insns_tf[] = {
531 		/* A <- TCP flags */
532 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
533 	};
534 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
535 
536 	if (usingmask) {
537 		/* A <- (A & mask) */
538 		struct bpf_insn insns_mask[] = {
539 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
540 		};
541 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
542 	}
543 
544 	struct bpf_insn insns_cmp[] = {
545 		/* A == expected-TCP-flags? */
546 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
547 	};
548 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
549 
550 	if (!checktcp) {
551 		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
552 		done_block(ctx, mwords, sizeof(mwords));
553 	}
554 }
555 
556 /*
557  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
558  * Note: suitable both for the ICMPv4 and ICMPv6.
559  */
560 void
561 npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
562 {
563 	const u_int type_off = offsetof(struct icmp, icmp_type);
564 	const u_int code_off = offsetof(struct icmp, icmp_code);
565 
566 	assert(ctx->flags & CHECKED_L4);
567 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
568 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
569 	assert(type != -1 || code != -1);
570 
571 	/* X <- IP header length */
572 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
573 
574 	if (type != -1) {
575 		struct bpf_insn insns_type[] = {
576 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
577 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
578 		};
579 		add_insns(ctx, insns_type, __arraycount(insns_type));
580 
581 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
582 		done_block(ctx, mwords, sizeof(mwords));
583 	}
584 
585 	if (code != -1) {
586 		struct bpf_insn insns_code[] = {
587 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
588 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
589 		};
590 		add_insns(ctx, insns_code, __arraycount(insns_code));
591 
592 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
593 		done_block(ctx, mwords, sizeof(mwords));
594 	}
595 }
596 
597 #define	SRC_FLAG_BIT	(1U << 31)
598 
599 /*
600  * npfctl_bpf_table: code block to match source/destination IP address
601  * against NPF table specified by ID.
602  */
603 void
604 npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
605 {
606 	const bool src = (opts & MATCH_SRC) != 0;
607 
608 	struct bpf_insn insns_table[] = {
609 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
610 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
611 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
612 	};
613 	add_insns(ctx, insns_table, __arraycount(insns_table));
614 
615 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
616 	done_block(ctx, mwords, sizeof(mwords));
617 }
618