xref: /netbsd-src/usr.sbin/npf/npfctl/npf_bpf_comp.c (revision 2c6fc41c810f5088457889d00eba558e8bc74d9e)
1 /*	$NetBSD: npf_bpf_comp.c,v 1.6 2014/05/31 22:41:37 rmind Exp $	*/
2 
3 /*-
4  * Copyright (c) 2010-2014 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This material is based upon work partially supported by The
8  * NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * BPF byte-code generation for NPF rules.
34  */
35 
36 #include <sys/cdefs.h>
37 __RCSID("$NetBSD: npf_bpf_comp.c,v 1.6 2014/05/31 22:41:37 rmind Exp $");
38 
39 #include <stdlib.h>
40 #include <stdbool.h>
41 #include <stddef.h>
42 #include <string.h>
43 #include <inttypes.h>
44 #include <err.h>
45 #include <assert.h>
46 
47 #include <netinet/in.h>
48 #include <netinet/in_systm.h>
49 #include <netinet/ip.h>
50 #include <netinet/ip6.h>
51 #include <netinet/udp.h>
52 #include <netinet/tcp.h>
53 #include <netinet/ip_icmp.h>
54 #include <netinet/icmp6.h>
55 
56 #include <net/bpf.h>
57 
58 #include "npfctl.h"
59 
60 /*
61  * Note: clear X_EQ_L4OFF when register X is invalidated i.e. it stores
62  * something other than L4 header offset.  Generally, when BPF_LDX is used.
63  */
64 #define	FETCHED_L3		0x01
65 #define	CHECKED_L4		0x02
66 #define	X_EQ_L4OFF		0x04
67 
68 struct npf_bpf {
69 	/*
70 	 * BPF program code, the allocated length (in bytes), the number
71 	 * of logical blocks and the flags.
72 	 */
73 	struct bpf_program	prog;
74 	size_t			alen;
75 	u_int			nblocks;
76 	sa_family_t		af;
77 	uint32_t		flags;
78 
79 	/* The current group offset and block number. */
80 	bool			ingroup;
81 	u_int			goff;
82 	u_int			gblock;
83 
84 	/* BPF marks, allocated length and the real length. */
85 	uint32_t *		marks;
86 	size_t			malen;
87 	size_t			mlen;
88 };
89 
90 /*
91  * NPF success and failure values to be returned from BPF.
92  */
93 #define	NPF_BPF_SUCCESS		((u_int)-1)
94 #define	NPF_BPF_FAILURE		0
95 
96 /*
97  * Magic value to indicate the failure path, which is fixed up on completion.
98  * Note: this is the longest jump offset in BPF, since the offset is one byte.
99  */
100 #define	JUMP_MAGIC		0xff
101 
102 /* Reduce re-allocations by expanding in 64 byte blocks. */
103 #define	ALLOC_MASK		(64 - 1)
104 #define	ALLOC_ROUND(x)		(((x) + ALLOC_MASK) & ~ALLOC_MASK)
105 
106 npf_bpf_t *
107 npfctl_bpf_create(void)
108 {
109 	return ecalloc(1, sizeof(npf_bpf_t));
110 }
111 
112 static void
113 fixup_jumps(npf_bpf_t *ctx, u_int start, u_int end, bool swap)
114 {
115 	struct bpf_program *bp = &ctx->prog;
116 
117 	for (u_int i = start; i < end; i++) {
118 		struct bpf_insn *insn = &bp->bf_insns[i];
119 		const u_int fail_off = end - i;
120 
121 		if (fail_off >= JUMP_MAGIC) {
122 			errx(EXIT_FAILURE, "BPF generation error: "
123 			    "the number of instructions is over the limit");
124 		}
125 		if (BPF_CLASS(insn->code) != BPF_JMP) {
126 			continue;
127 		}
128 		if (swap) {
129 			uint8_t jt = insn->jt;
130 			insn->jt = insn->jf;
131 			insn->jf = jt;
132 		}
133 		if (insn->jt == JUMP_MAGIC)
134 			insn->jt = fail_off;
135 		if (insn->jf == JUMP_MAGIC)
136 			insn->jf = fail_off;
137 	}
138 }
139 
140 static void
141 add_insns(npf_bpf_t *ctx, struct bpf_insn *insns, size_t count)
142 {
143 	struct bpf_program *bp = &ctx->prog;
144 	size_t offset, len, reqlen;
145 
146 	/* Note: bf_len is the count of instructions. */
147 	offset = bp->bf_len * sizeof(struct bpf_insn);
148 	len = count * sizeof(struct bpf_insn);
149 
150 	/* Ensure the memory buffer for the program. */
151 	reqlen = ALLOC_ROUND(offset + len);
152 	if (reqlen > ctx->alen) {
153 		bp->bf_insns = erealloc(bp->bf_insns, reqlen);
154 		ctx->alen = reqlen;
155 	}
156 
157 	/* Add the code block. */
158 	memcpy((uint8_t *)bp->bf_insns + offset, insns, len);
159 	bp->bf_len += count;
160 }
161 
162 static void
163 done_raw_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
164 {
165 	size_t reqlen, nargs = m[1];
166 
167 	if ((len / sizeof(uint32_t) - 2) != nargs) {
168 		errx(EXIT_FAILURE, "invalid BPF block description");
169 	}
170 	reqlen = ALLOC_ROUND(ctx->mlen + len);
171 	if (reqlen > ctx->malen) {
172 		ctx->marks = erealloc(ctx->marks, reqlen);
173 		ctx->malen = reqlen;
174 	}
175 	memcpy((uint8_t *)ctx->marks + ctx->mlen, m, len);
176 	ctx->mlen += len;
177 }
178 
179 static void
180 done_block(npf_bpf_t *ctx, const uint32_t *m, size_t len)
181 {
182 	done_raw_block(ctx, m, len);
183 	ctx->nblocks++;
184 }
185 
186 struct bpf_program *
187 npfctl_bpf_complete(npf_bpf_t *ctx)
188 {
189 	struct bpf_program *bp = &ctx->prog;
190 	const u_int retoff = bp->bf_len;
191 
192 	/* Add the return fragment (success and failure paths). */
193 	struct bpf_insn insns_ret[] = {
194 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_SUCCESS),
195 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
196 	};
197 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
198 
199 	/* Fixup all jumps to the main failure path. */
200 	fixup_jumps(ctx, 0, retoff, false);
201 
202 	return &ctx->prog;
203 }
204 
205 const void *
206 npfctl_bpf_bmarks(npf_bpf_t *ctx, size_t *len)
207 {
208 	*len = ctx->mlen;
209 	return ctx->marks;
210 }
211 
212 void
213 npfctl_bpf_destroy(npf_bpf_t *ctx)
214 {
215 	free(ctx->prog.bf_insns);
216 	free(ctx->marks);
217 	free(ctx);
218 }
219 
220 /*
221  * npfctl_bpf_group: begin a logical group.  It merely uses logical
222  * disjunction (OR) for compares within the group.
223  */
224 void
225 npfctl_bpf_group(npf_bpf_t *ctx)
226 {
227 	struct bpf_program *bp = &ctx->prog;
228 
229 	assert(ctx->goff == 0);
230 	assert(ctx->gblock == 0);
231 
232 	ctx->goff = bp->bf_len;
233 	ctx->gblock = ctx->nblocks;
234 	ctx->ingroup = true;
235 }
236 
237 void
238 npfctl_bpf_endgroup(npf_bpf_t *ctx)
239 {
240 	struct bpf_program *bp = &ctx->prog;
241 	const size_t curoff = bp->bf_len;
242 
243 	/* If there are no blocks or only one - nothing to do. */
244 	if ((ctx->nblocks - ctx->gblock) <= 1) {
245 		ctx->goff = ctx->gblock = 0;
246 		return;
247 	}
248 
249 	/*
250 	 * Append a failure return as a fall-through i.e. if there is
251 	 * no match within the group.
252 	 */
253 	struct bpf_insn insns_ret[] = {
254 		BPF_STMT(BPF_RET+BPF_K, NPF_BPF_FAILURE),
255 	};
256 	add_insns(ctx, insns_ret, __arraycount(insns_ret));
257 
258 	/*
259 	 * Adjust jump offsets: on match - jump outside the group i.e.
260 	 * to the current offset.  Otherwise, jump to the next instruction
261 	 * which would lead to the fall-through code above if none matches.
262 	 */
263 	fixup_jumps(ctx, ctx->goff, curoff, true);
264 	ctx->goff = ctx->gblock = 0;
265 }
266 
267 static void
268 fetch_l3(npf_bpf_t *ctx, sa_family_t af, u_int flags)
269 {
270 	u_int ver;
271 
272 	switch (af) {
273 	case AF_INET:
274 		ver = IPVERSION;
275 		break;
276 	case AF_INET6:
277 		ver = IPV6_VERSION >> 4;
278 		break;
279 	case AF_UNSPEC:
280 		ver = 0;
281 		break;
282 	default:
283 		abort();
284 	}
285 
286 	/*
287 	 * Call NPF_COP_L3 to fetch L3 information.  The coprocessor
288 	 * populates the following words in the scratch memory store:
289 	 * - BPF_MW_IPVER: IP version (4 or 6).
290 	 * - BPF_MW_L4OFF: L4 header offset.
291 	 * - BPF_MW_L4PROTO: L4 protocol.
292 	 */
293 	if ((ctx->flags & FETCHED_L3) == 0 || (af && ctx->af == 0)) {
294 		const uint8_t jt = ver ? 0 : JUMP_MAGIC;
295 		const uint8_t jf = ver ? JUMP_MAGIC : 0;
296 		bool ingroup = ctx->ingroup;
297 
298 		/*
299 		 * L3 block cannot be inserted in the middle of a group.
300 		 * In fact, it never is.  Check and start the group after.
301 		 */
302 		if (ingroup) {
303 			assert(ctx->nblocks == ctx->gblock);
304 			npfctl_bpf_endgroup(ctx);
305 		}
306 
307 		/*
308 		 * A <- IP version; A == expected-version?
309 		 * If no particular version specified, check for non-zero.
310 		 */
311 		if ((ctx->flags & FETCHED_L3) == 0) {
312 			struct bpf_insn insns_l3[] = {
313 				BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_L3),
314 				BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
315 			};
316 			add_insns(ctx, insns_l3, __arraycount(insns_l3));
317 			ctx->flags |= FETCHED_L3;
318 		} else {
319 			/* IP version is already fetched in BPF_MW_IPVER. */
320 			struct bpf_insn insns_af[] = {
321 				BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_IPVER),
322 				BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ver, jt, jf),
323 			};
324 			add_insns(ctx, insns_af, __arraycount(insns_af));
325 		}
326 		ctx->af = af;
327 
328 		if (af) {
329 			uint32_t mwords[] = { BM_IPVER, 1, af };
330 			done_raw_block(ctx, mwords, sizeof(mwords));
331 		}
332 		if (ingroup) {
333 			npfctl_bpf_group(ctx);
334 		}
335 
336 	} else if (af && af != ctx->af) {
337 		errx(EXIT_FAILURE, "address family mismatch");
338 	}
339 
340 	if ((flags & X_EQ_L4OFF) != 0 && (ctx->flags & X_EQ_L4OFF) == 0) {
341 		/* X <- IP header length */
342 		struct bpf_insn insns_hlen[] = {
343 			BPF_STMT(BPF_LDX+BPF_MEM, BPF_MW_L4OFF),
344 		};
345 		add_insns(ctx, insns_hlen, __arraycount(insns_hlen));
346 		ctx->flags |= X_EQ_L4OFF;
347 	}
348 }
349 
350 /*
351  * npfctl_bpf_proto: code block to match IP version and L4 protocol.
352  */
353 void
354 npfctl_bpf_proto(npf_bpf_t *ctx, sa_family_t af, int proto)
355 {
356 	assert(af != AF_UNSPEC || proto != -1);
357 
358 	/* Note: fails if IP version does not match. */
359 	fetch_l3(ctx, af, 0);
360 	if (proto == -1) {
361 		return;
362 	}
363 
364 	struct bpf_insn insns_proto[] = {
365 		/* A <- L4 protocol; A == expected-protocol? */
366 		BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
367 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, proto, 0, JUMP_MAGIC),
368 	};
369 	add_insns(ctx, insns_proto, __arraycount(insns_proto));
370 
371 	uint32_t mwords[] = { BM_PROTO, 1, proto };
372 	done_block(ctx, mwords, sizeof(mwords));
373 	ctx->flags |= CHECKED_L4;
374 }
375 
376 /*
377  * npfctl_bpf_cidr: code block to match IPv4 or IPv6 CIDR.
378  *
379  * => IP address shall be in the network byte order.
380  */
381 void
382 npfctl_bpf_cidr(npf_bpf_t *ctx, u_int opts, sa_family_t af,
383     const npf_addr_t *addr, const npf_netmask_t mask)
384 {
385 	const uint32_t *awords = (const uint32_t *)addr;
386 	u_int nwords, length, maxmask, off;
387 
388 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
389 	assert((mask && mask <= NPF_MAX_NETMASK) || mask == NPF_NO_NETMASK);
390 
391 	switch (af) {
392 	case AF_INET:
393 		maxmask = 32;
394 		off = (opts & MATCH_SRC) ?
395 		    offsetof(struct ip, ip_src) :
396 		    offsetof(struct ip, ip_dst);
397 		nwords = sizeof(struct in_addr) / sizeof(uint32_t);
398 		break;
399 	case AF_INET6:
400 		maxmask = 128;
401 		off = (opts & MATCH_SRC) ?
402 		    offsetof(struct ip6_hdr, ip6_src) :
403 		    offsetof(struct ip6_hdr, ip6_dst);
404 		nwords = sizeof(struct in6_addr) / sizeof(uint32_t);
405 		break;
406 	default:
407 		abort();
408 	}
409 
410 	/* Ensure address family. */
411 	fetch_l3(ctx, af, 0);
412 
413 	length = (mask == NPF_NO_NETMASK) ? maxmask : mask;
414 
415 	/* CAUTION: BPF operates in host byte-order. */
416 	for (u_int i = 0; i < nwords; i++) {
417 		const u_int woff = i * sizeof(uint32_t);
418 		uint32_t word = ntohl(awords[i]);
419 		uint32_t wordmask;
420 
421 		if (length >= 32) {
422 			/* The mask is a full word - do not apply it. */
423 			wordmask = 0;
424 			length -= 32;
425 		} else if (length) {
426 			wordmask = 0xffffffff << (32 - length);
427 			length = 0;
428 		} else {
429 			/* The mask became zero - skip the rest. */
430 			break;
431 		}
432 
433 		/* A <- IP address (or one word of it) */
434 		struct bpf_insn insns_ip[] = {
435 			BPF_STMT(BPF_LD+BPF_W+BPF_ABS, off + woff),
436 		};
437 		add_insns(ctx, insns_ip, __arraycount(insns_ip));
438 
439 		/* A <- (A & MASK) */
440 		if (wordmask) {
441 			struct bpf_insn insns_mask[] = {
442 				BPF_STMT(BPF_ALU+BPF_AND+BPF_K, wordmask),
443 			};
444 			add_insns(ctx, insns_mask, __arraycount(insns_mask));
445 		}
446 
447 		/* A == expected-IP-word ? */
448 		struct bpf_insn insns_cmp[] = {
449 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, word, 0, JUMP_MAGIC),
450 		};
451 		add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
452 	}
453 
454 	uint32_t mwords[] = {
455 		(opts & MATCH_SRC) ? BM_SRC_CIDR: BM_DST_CIDR, 6,
456 		af, mask, awords[0], awords[1], awords[2], awords[3],
457 	};
458 	done_block(ctx, mwords, sizeof(mwords));
459 }
460 
461 /*
462  * npfctl_bpf_ports: code block to match TCP/UDP port range.
463  *
464  * => Port numbers shall be in the network byte order.
465  */
466 void
467 npfctl_bpf_ports(npf_bpf_t *ctx, u_int opts, in_port_t from, in_port_t to)
468 {
469 	const u_int sport_off = offsetof(struct udphdr, uh_sport);
470 	const u_int dport_off = offsetof(struct udphdr, uh_dport);
471 	u_int off;
472 
473 	/* TCP and UDP port offsets are the same. */
474 	assert(sport_off == offsetof(struct tcphdr, th_sport));
475 	assert(dport_off == offsetof(struct tcphdr, th_dport));
476 	assert(ctx->flags & CHECKED_L4);
477 
478 	assert(((opts & MATCH_SRC) != 0) ^ ((opts & MATCH_DST) != 0));
479 	off = (opts & MATCH_SRC) ? sport_off : dport_off;
480 
481 	/* X <- IP header length */
482 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
483 
484 	struct bpf_insn insns_fetch[] = {
485 		/* A <- port */
486 		BPF_STMT(BPF_LD+BPF_H+BPF_IND, off),
487 	};
488 	add_insns(ctx, insns_fetch, __arraycount(insns_fetch));
489 
490 	/* CAUTION: BPF operates in host byte-order. */
491 	from = ntohs(from);
492 	to = ntohs(to);
493 
494 	if (from == to) {
495 		/* Single port case. */
496 		struct bpf_insn insns_port[] = {
497 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, from, 0, JUMP_MAGIC),
498 		};
499 		add_insns(ctx, insns_port, __arraycount(insns_port));
500 	} else {
501 		/* Port range case. */
502 		struct bpf_insn insns_range[] = {
503 			BPF_JUMP(BPF_JMP+BPF_JGE+BPF_K, from, 0, JUMP_MAGIC),
504 			BPF_JUMP(BPF_JMP+BPF_JGT+BPF_K, to, JUMP_MAGIC, 0),
505 		};
506 		add_insns(ctx, insns_range, __arraycount(insns_range));
507 	}
508 
509 	uint32_t mwords[] = {
510 		opts & MATCH_SRC ? BM_SRC_PORTS : BM_DST_PORTS, 2, from, to
511 	};
512 	done_block(ctx, mwords, sizeof(mwords));
513 }
514 
515 /*
516  * npfctl_bpf_tcpfl: code block to match TCP flags.
517  */
518 void
519 npfctl_bpf_tcpfl(npf_bpf_t *ctx, uint8_t tf, uint8_t tf_mask, bool checktcp)
520 {
521 	const u_int tcpfl_off = offsetof(struct tcphdr, th_flags);
522 	const bool usingmask = tf_mask != tf;
523 
524 	/* X <- IP header length */
525 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
526 	if (checktcp) {
527 		const u_int jf = usingmask ? 3 : 2;
528 		assert(ctx->ingroup == false);
529 
530 		/* A <- L4 protocol; A == TCP?  If not, jump out. */
531 		struct bpf_insn insns_tcp[] = {
532 			BPF_STMT(BPF_LD+BPF_W+BPF_MEM, BPF_MW_L4PROTO),
533 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, jf),
534 		};
535 		add_insns(ctx, insns_tcp, __arraycount(insns_tcp));
536 	} else {
537 		assert(ctx->flags & CHECKED_L4);
538 	}
539 
540 	struct bpf_insn insns_tf[] = {
541 		/* A <- TCP flags */
542 		BPF_STMT(BPF_LD+BPF_B+BPF_IND, tcpfl_off),
543 	};
544 	add_insns(ctx, insns_tf, __arraycount(insns_tf));
545 
546 	if (usingmask) {
547 		/* A <- (A & mask) */
548 		struct bpf_insn insns_mask[] = {
549 			BPF_STMT(BPF_ALU+BPF_AND+BPF_K, tf_mask),
550 		};
551 		add_insns(ctx, insns_mask, __arraycount(insns_mask));
552 	}
553 
554 	struct bpf_insn insns_cmp[] = {
555 		/* A == expected-TCP-flags? */
556 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, tf, 0, JUMP_MAGIC),
557 	};
558 	add_insns(ctx, insns_cmp, __arraycount(insns_cmp));
559 
560 	if (!checktcp) {
561 		uint32_t mwords[] = { BM_TCPFL, 2, tf, tf_mask};
562 		done_block(ctx, mwords, sizeof(mwords));
563 	}
564 }
565 
566 /*
567  * npfctl_bpf_icmp: code block to match ICMP type and/or code.
568  * Note: suitable both for the ICMPv4 and ICMPv6.
569  */
570 void
571 npfctl_bpf_icmp(npf_bpf_t *ctx, int type, int code)
572 {
573 	const u_int type_off = offsetof(struct icmp, icmp_type);
574 	const u_int code_off = offsetof(struct icmp, icmp_code);
575 
576 	assert(ctx->flags & CHECKED_L4);
577 	assert(offsetof(struct icmp6_hdr, icmp6_type) == type_off);
578 	assert(offsetof(struct icmp6_hdr, icmp6_code) == code_off);
579 	assert(type != -1 || code != -1);
580 
581 	/* X <- IP header length */
582 	fetch_l3(ctx, AF_UNSPEC, X_EQ_L4OFF);
583 
584 	if (type != -1) {
585 		struct bpf_insn insns_type[] = {
586 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, type_off),
587 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, type, 0, JUMP_MAGIC),
588 		};
589 		add_insns(ctx, insns_type, __arraycount(insns_type));
590 
591 		uint32_t mwords[] = { BM_ICMP_TYPE, 1, type };
592 		done_block(ctx, mwords, sizeof(mwords));
593 	}
594 
595 	if (code != -1) {
596 		struct bpf_insn insns_code[] = {
597 			BPF_STMT(BPF_LD+BPF_B+BPF_IND, code_off),
598 			BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, code, 0, JUMP_MAGIC),
599 		};
600 		add_insns(ctx, insns_code, __arraycount(insns_code));
601 
602 		uint32_t mwords[] = { BM_ICMP_CODE, 1, code };
603 		done_block(ctx, mwords, sizeof(mwords));
604 	}
605 }
606 
607 #define	SRC_FLAG_BIT	(1U << 31)
608 
609 /*
610  * npfctl_bpf_table: code block to match source/destination IP address
611  * against NPF table specified by ID.
612  */
613 void
614 npfctl_bpf_table(npf_bpf_t *ctx, u_int opts, u_int tid)
615 {
616 	const bool src = (opts & MATCH_SRC) != 0;
617 
618 	struct bpf_insn insns_table[] = {
619 		BPF_STMT(BPF_LD+BPF_IMM, (src ? SRC_FLAG_BIT : 0) | tid),
620 		BPF_STMT(BPF_MISC+BPF_COP, NPF_COP_TABLE),
621 		BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0, JUMP_MAGIC, 0),
622 	};
623 	add_insns(ctx, insns_table, __arraycount(insns_table));
624 
625 	uint32_t mwords[] = { src ? BM_SRC_TABLE: BM_DST_TABLE, 1, tid };
626 	done_block(ctx, mwords, sizeof(mwords));
627 }
628