1 /* $NetBSD: mkfs.c,v 1.9 2002/01/31 22:44:04 tv Exp $ */ 2 /* From NetBSD: mkfs.c,v 1.59 2001/12/31 07:07:58 lukem Exp $ */ 3 4 /* 5 * Copyright (c) 1980, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 #include <sys/cdefs.h> 38 #if defined(__RCSID) && !defined(lint) 39 #if 0 40 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 41 #else 42 __RCSID("$NetBSD: mkfs.c,v 1.9 2002/01/31 22:44:04 tv Exp $"); 43 #endif 44 #endif /* not lint */ 45 46 #include <sys/param.h> 47 #include <sys/time.h> 48 #include <sys/resource.h> 49 50 #include <stdio.h> 51 #include <stdlib.h> 52 #include <string.h> 53 #include <unistd.h> 54 55 #include "makefs.h" 56 57 #include <ufs/ufs/dinode.h> 58 #include <ufs/ufs/dir.h> 59 #include <ufs/ufs/ufs_bswap.h> 60 #include <ufs/ffs/fs.h> 61 62 #include "ffs/ufs_inode.h" 63 #include "ffs/ffs_extern.h" 64 #include "ffs/newfs_extern.h" 65 66 static void initcg(int, time_t, const fsinfo_t *); 67 static int32_t calcipg(int32_t, int32_t, off_t *); 68 static void swap_cg(struct cg *, struct cg *); 69 70 static int count_digits(int); 71 72 /* 73 * make file system for cylinder-group style file systems 74 */ 75 76 /* 77 * We limit the size of the inode map to be no more than a 78 * third of the cylinder group space, since we must leave at 79 * least an equal amount of space for the block map. 80 * 81 * N.B.: MAXIPG must be a multiple of INOPB(fs). 82 */ 83 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 84 85 #define UMASK 0755 86 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 87 88 union { 89 struct fs fs; 90 char pad[SBSIZE]; 91 } fsun; 92 #define sblock fsun.fs 93 94 union { 95 struct cg cg; 96 char pad[MAXBSIZE]; 97 } cgun; 98 #define acg cgun.cg 99 100 struct dinode zino[MAXBSIZE / DINODE_SIZE]; 101 102 char writebuf[MAXBSIZE]; 103 104 static int Oflag; /* format as an 4.3BSD file system */ 105 static int fssize; /* file system size */ 106 static int ntracks; /* # tracks/cylinder */ 107 static int nsectors; /* # sectors/track */ 108 static int nphyssectors; /* # sectors/track including spares */ 109 static int secpercyl; /* sectors per cylinder */ 110 static int sectorsize; /* bytes/sector */ 111 static int rpm; /* revolutions/minute of drive */ 112 static int interleave; /* hardware sector interleave */ 113 static int trackskew; /* sector 0 skew, per track */ 114 static int fsize; /* fragment size */ 115 static int bsize; /* block size */ 116 static int cpg; /* cylinders/cylinder group */ 117 static int cpgflg; /* cylinders/cylinder group flag was given */ 118 static int minfree; /* free space threshold */ 119 static int opt; /* optimization preference (space or time) */ 120 static int density; /* number of bytes per inode */ 121 static int maxcontig; /* max contiguous blocks to allocate */ 122 static int rotdelay; /* rotational delay between blocks */ 123 static int maxbpg; /* maximum blocks per file in a cyl group */ 124 static int nrpos; /* # of distinguished rotational positions */ 125 static int bbsize; /* boot block size */ 126 static int sbsize; /* superblock size */ 127 static int avgfilesize; /* expected average file size */ 128 static int avgfpdir; /* expected number of files per directory */ 129 130 131 struct fs * 132 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts) 133 { 134 int32_t i, mincpc, mincpg, inospercg; 135 int32_t cylno, rpos, blk, j, warned = 0; 136 int32_t used, mincpgcnt, bpcg; 137 off_t usedb; 138 int32_t mapcramped, inodecramped; 139 int32_t postblsize, rotblsize, totalsbsize; 140 long long sizepb; 141 void *space; 142 int size, blks; 143 int nprintcols, printcolwidth; 144 145 Oflag = 0; 146 fssize = fsopts->size / fsopts->sectorsize; 147 ntracks = fsopts->ntracks; 148 nsectors = fsopts->nsectors; 149 nphyssectors = fsopts->nsectors; /* XXX: no trackspares */ 150 secpercyl = nsectors * ntracks; 151 sectorsize = fsopts->sectorsize; 152 rpm = fsopts->rpm; 153 interleave = 1; 154 trackskew = 0; 155 fsize = fsopts->fsize; 156 bsize = fsopts->bsize; 157 cpg = fsopts->cpg; 158 cpgflg = fsopts->cpgflg; 159 minfree = fsopts->minfree; 160 opt = fsopts->optimization; 161 density = fsopts->density; 162 maxcontig = fsopts->maxcontig; 163 rotdelay = fsopts->rotdelay; 164 maxbpg = fsopts->maxbpg; 165 nrpos = fsopts->nrpos; 166 bbsize = BBSIZE; 167 sbsize = SBSIZE; 168 avgfilesize = fsopts->avgfilesize; 169 avgfpdir = fsopts->avgfpdir; 170 171 if (Oflag) { 172 sblock.fs_inodefmt = FS_42INODEFMT; 173 sblock.fs_maxsymlinklen = 0; 174 } else { 175 sblock.fs_inodefmt = FS_44INODEFMT; 176 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 177 } 178 /* 179 * Validate the given file system size. 180 * Verify that its last block can actually be accessed. 181 */ 182 if (fssize <= 0) 183 printf("preposterous size %d\n", fssize), exit(13); 184 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 185 186 /* 187 * collect and verify the sector and track info 188 */ 189 sblock.fs_nsect = nsectors; 190 sblock.fs_ntrak = ntracks; 191 if (sblock.fs_ntrak <= 0) 192 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 193 if (sblock.fs_nsect <= 0) 194 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 195 /* 196 * collect and verify the filesystem density info 197 */ 198 sblock.fs_avgfilesize = avgfilesize; 199 sblock.fs_avgfpdir = avgfpdir; 200 if (sblock.fs_avgfilesize <= 0) 201 printf("illegal expected average file size %d\n", 202 sblock.fs_avgfilesize), exit(14); 203 if (sblock.fs_avgfpdir <= 0) 204 printf("illegal expected number of files per directory %d\n", 205 sblock.fs_avgfpdir), exit(15); 206 /* 207 * collect and verify the block and fragment sizes 208 */ 209 sblock.fs_bsize = bsize; 210 sblock.fs_fsize = fsize; 211 if (!POWEROF2(sblock.fs_bsize)) { 212 printf("block size must be a power of 2, not %d\n", 213 sblock.fs_bsize); 214 exit(16); 215 } 216 if (!POWEROF2(sblock.fs_fsize)) { 217 printf("fragment size must be a power of 2, not %d\n", 218 sblock.fs_fsize); 219 exit(17); 220 } 221 if (sblock.fs_fsize < sectorsize) { 222 printf("fragment size %d is too small, minimum is %d\n", 223 sblock.fs_fsize, sectorsize); 224 exit(18); 225 } 226 if (sblock.fs_bsize > MAXBSIZE) { 227 printf("block size %d is too large, maximum is %d\n", 228 sblock.fs_bsize, MAXBSIZE); 229 exit(19); 230 } 231 if (sblock.fs_bsize < MINBSIZE) { 232 printf("block size %d is too small, minimum is %d\n", 233 sblock.fs_bsize, MINBSIZE); 234 exit(19); 235 } 236 if (sblock.fs_bsize < sblock.fs_fsize) { 237 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 238 sblock.fs_bsize, sblock.fs_fsize); 239 exit(20); 240 } 241 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 242 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 243 sblock.fs_qbmask = ~sblock.fs_bmask; 244 sblock.fs_qfmask = ~sblock.fs_fmask; 245 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 246 sblock.fs_bshift++; 247 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 248 sblock.fs_fshift++; 249 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 250 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 251 sblock.fs_fragshift++; 252 if (sblock.fs_frag > MAXFRAG) { 253 printf("fragment size %d is too small, " 254 "minimum with block size %d is %d\n", 255 sblock.fs_fsize, sblock.fs_bsize, 256 sblock.fs_bsize / MAXFRAG); 257 exit(21); 258 } 259 sblock.fs_nrpos = nrpos; 260 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 261 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE; 262 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 263 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 264 sblock.fs_fsbtodb++; 265 sblock.fs_sblkno = 266 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 267 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 268 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 269 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 270 sblock.fs_cgoffset = roundup( 271 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 272 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 273 sblock.fs_cgmask <<= 1; 274 if (!POWEROF2(sblock.fs_ntrak)) 275 sblock.fs_cgmask <<= 1; 276 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 277 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 278 sizepb *= NINDIR(&sblock); 279 sblock.fs_maxfilesize += sizepb; 280 } 281 /* 282 * Validate specified/determined secpercyl 283 * and calculate minimum cylinders per group. 284 */ 285 sblock.fs_spc = secpercyl; 286 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 287 sblock.fs_cpc > 1 && (i & 1) == 0; 288 sblock.fs_cpc >>= 1, i >>= 1) 289 /* void */; 290 mincpc = sblock.fs_cpc; 291 bpcg = sblock.fs_spc * sectorsize; 292 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock)); 293 if (inospercg > MAXIPG(&sblock)) 294 inospercg = MAXIPG(&sblock); 295 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 296 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 297 sblock.fs_spc); 298 mincpg = roundup(mincpgcnt, mincpc); 299 /* 300 * Ensure that cylinder group with mincpg has enough space 301 * for block maps. 302 */ 303 sblock.fs_cpg = mincpg; 304 sblock.fs_ipg = inospercg; 305 if (maxcontig > 1) 306 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 307 mapcramped = 0; 308 while (CGSIZE(&sblock) > sblock.fs_bsize) { 309 mapcramped = 1; 310 if (sblock.fs_bsize < MAXBSIZE) { 311 sblock.fs_bsize <<= 1; 312 if ((i & 1) == 0) { 313 i >>= 1; 314 } else { 315 sblock.fs_cpc <<= 1; 316 mincpc <<= 1; 317 mincpg = roundup(mincpgcnt, mincpc); 318 sblock.fs_cpg = mincpg; 319 } 320 sblock.fs_frag <<= 1; 321 sblock.fs_fragshift += 1; 322 if (sblock.fs_frag <= MAXFRAG) 323 continue; 324 } 325 if (sblock.fs_fsize == sblock.fs_bsize) { 326 printf("There is no block size that"); 327 printf(" can support this disk\n"); 328 exit(22); 329 } 330 sblock.fs_frag >>= 1; 331 sblock.fs_fragshift -= 1; 332 sblock.fs_fsize <<= 1; 333 sblock.fs_nspf <<= 1; 334 } 335 /* 336 * Ensure that cylinder group with mincpg has enough space for inodes. 337 */ 338 inodecramped = 0; 339 inospercg = calcipg(mincpg, bpcg, &usedb); 340 sblock.fs_ipg = inospercg; 341 while (inospercg > MAXIPG(&sblock)) { 342 inodecramped = 1; 343 if (mincpc == 1 || sblock.fs_frag == 1 || 344 sblock.fs_bsize == MINBSIZE) 345 break; 346 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 347 "minimum bytes per inode is", 348 (int)((mincpg * (off_t)bpcg - usedb) 349 / MAXIPG(&sblock) + 1)); 350 sblock.fs_bsize >>= 1; 351 sblock.fs_frag >>= 1; 352 sblock.fs_fragshift -= 1; 353 mincpc >>= 1; 354 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 355 if (CGSIZE(&sblock) > sblock.fs_bsize) { 356 sblock.fs_bsize <<= 1; 357 break; 358 } 359 mincpg = sblock.fs_cpg; 360 inospercg = calcipg(mincpg, bpcg, &usedb); 361 sblock.fs_ipg = inospercg; 362 } 363 if (inodecramped) { 364 if (inospercg > MAXIPG(&sblock)) { 365 printf("Minimum bytes per inode is %d\n", 366 (int)((mincpg * (off_t)bpcg - usedb) 367 / MAXIPG(&sblock) + 1)); 368 } else if (!mapcramped) { 369 printf("With %d bytes per inode, ", density); 370 printf("minimum cylinders per group is %d\n", mincpg); 371 } 372 } 373 if (mapcramped) { 374 printf("With %d sectors per cylinder, ", sblock.fs_spc); 375 printf("minimum cylinders per group is %d\n", mincpg); 376 } 377 if (inodecramped || mapcramped) { 378 if (sblock.fs_bsize != bsize) 379 printf("%s to be changed from %d to %d\n", 380 "This requires the block size", 381 bsize, sblock.fs_bsize); 382 if (sblock.fs_fsize != fsize) 383 printf("\t%s to be changed from %d to %d\n", 384 "and the fragment size", 385 fsize, sblock.fs_fsize); 386 exit(23); 387 } 388 /* 389 * Calculate the number of cylinders per group 390 */ 391 sblock.fs_cpg = cpg; 392 if (sblock.fs_cpg % mincpc != 0) { 393 printf("%s groups must have a multiple of %d cylinders\n", 394 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 395 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 396 if (!cpgflg) 397 cpg = sblock.fs_cpg; 398 } 399 /* 400 * Must ensure there is enough space for inodes. 401 */ 402 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 403 while (sblock.fs_ipg > MAXIPG(&sblock)) { 404 inodecramped = 1; 405 sblock.fs_cpg -= mincpc; 406 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 407 } 408 /* 409 * Must ensure there is enough space to hold block map. 410 */ 411 while (CGSIZE(&sblock) > sblock.fs_bsize) { 412 mapcramped = 1; 413 sblock.fs_cpg -= mincpc; 414 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 415 } 416 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 417 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 418 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 419 exit(24); 420 } 421 if (sblock.fs_cpg < mincpg) { 422 printf("cylinder groups must have at least %d cylinders\n", 423 mincpg); 424 exit(25); 425 } else if (sblock.fs_cpg != cpg && cpgflg) { 426 if (!mapcramped && !inodecramped) 427 exit(26); 428 if (mapcramped && inodecramped) 429 printf("Block size and bytes per inode restrict"); 430 else if (mapcramped) 431 printf("Block size restricts"); 432 else 433 printf("Bytes per inode restrict"); 434 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 435 exit(27); 436 } 437 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 438 /* 439 * Now have size for file system and nsect and ntrak. 440 * Determine number of cylinders and blocks in the file system. 441 */ 442 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 443 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 444 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 445 sblock.fs_ncyl++; 446 warned = 1; 447 } 448 if (sblock.fs_ncyl < 1) { 449 printf("file systems must have at least one cylinder\n"); 450 exit(28); 451 } 452 /* 453 * Determine feasability/values of rotational layout tables. 454 * 455 * The size of the rotational layout tables is limited by the 456 * size of the superblock, SBSIZE. The amount of space available 457 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 458 * The size of these tables is inversely proportional to the block 459 * size of the file system. The size increases if sectors per track 460 * are not powers of two, because more cylinders must be described 461 * by the tables before the rotational pattern repeats (fs_cpc). 462 */ 463 sblock.fs_interleave = interleave; 464 sblock.fs_trackskew = trackskew; 465 sblock.fs_npsect = nphyssectors; 466 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 467 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 468 if (sblock.fs_ntrak == 1) { 469 sblock.fs_cpc = 0; 470 goto next; 471 } 472 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 473 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 474 totalsbsize = sizeof(struct fs) + rotblsize; 475 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 476 /* use old static table space */ 477 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 478 (char *)(&sblock.fs_firstfield); 479 sblock.fs_rotbloff = &sblock.fs_space[0] - 480 (u_char *)(&sblock.fs_firstfield); 481 } else { 482 /* use dynamic table space */ 483 sblock.fs_postbloff = &sblock.fs_space[0] - 484 (u_char *)(&sblock.fs_firstfield); 485 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 486 totalsbsize += postblsize; 487 } 488 if (totalsbsize > SBSIZE || 489 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 490 printf("%s %s %d %s %d.%s", 491 "Warning: insufficient space in super block for\n", 492 "rotational layout tables with nsect", sblock.fs_nsect, 493 "and ntrak", sblock.fs_ntrak, 494 "\nFile system performance may be impaired.\n"); 495 sblock.fs_cpc = 0; 496 goto next; 497 } 498 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 499 /* 500 * calculate the available blocks for each rotational position 501 */ 502 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 503 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 504 fs_postbl(&sblock, cylno)[rpos] = -1; 505 for (i = (rotblsize - 1) * sblock.fs_frag; 506 i >= 0; i -= sblock.fs_frag) { 507 cylno = cbtocylno(&sblock, i); 508 rpos = cbtorpos(&sblock, i); 509 blk = fragstoblks(&sblock, i); 510 if (fs_postbl(&sblock, cylno)[rpos] == -1) 511 fs_rotbl(&sblock)[blk] = 0; 512 else 513 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk; 514 fs_postbl(&sblock, cylno)[rpos] = blk; 515 } 516 next: 517 /* 518 * Compute/validate number of cylinder groups. 519 */ 520 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 521 if (sblock.fs_ncyl % sblock.fs_cpg) 522 sblock.fs_ncg++; 523 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 524 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 525 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 526 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", 527 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 528 sblock.fs_fpg / sblock.fs_frag); 529 printf("number of cylinders per cylinder group (%d) %s.\n", 530 sblock.fs_cpg, "must be increased"); 531 exit(29); 532 } 533 j = sblock.fs_ncg - 1; 534 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 535 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 536 if (j == 0) { 537 printf("File system must have at least %d sectors\n", 538 NSPF(&sblock) * 539 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 540 exit(30); 541 } 542 printf("Warning: inode blocks/cyl group (%d) >= " 543 "data blocks (%d) in last\n", 544 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 545 i / sblock.fs_frag); 546 printf(" cylinder group. This implies %d sector(s) " 547 "cannot be allocated.\n", 548 i * NSPF(&sblock)); 549 sblock.fs_ncg--; 550 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 551 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 552 NSPF(&sblock); 553 warned = 0; 554 } 555 if (warned) { 556 printf("Warning: %d sector(s) in last cylinder unallocated\n", 557 sblock.fs_spc - 558 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 559 * sblock.fs_spc)); 560 } 561 /* 562 * fill in remaining fields of the super block 563 */ 564 sblock.fs_csaddr = cgdmin(&sblock, 0); 565 sblock.fs_cssize = 566 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 567 /* 568 * The superblock fields 'fs_csmask' and 'fs_csshift' are no 569 * longer used. However, we still initialise them so that the 570 * filesystem remains compatible with old kernels. 571 */ 572 i = sblock.fs_bsize / sizeof(struct csum); 573 sblock.fs_csmask = ~(i - 1); 574 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 575 sblock.fs_csshift++; 576 577 /* 578 * Setup memory for temporary in-core cylgroup summaries. 579 * Cribbed from ffs_mountfs(). 580 */ 581 size = sblock.fs_cssize; 582 blks = howmany(size, sblock.fs_fsize); 583 if (sblock.fs_contigsumsize > 0) 584 size += sblock.fs_ncg * sizeof(int32_t); 585 if ((space = (char *)calloc(1, size)) == NULL) 586 err(1, "memory allocation error for cg summaries"); 587 sblock.fs_csp = space; 588 space = (char *)space + sblock.fs_cssize; 589 if (sblock.fs_contigsumsize > 0) { 590 int32_t *lp; 591 592 sblock.fs_maxcluster = lp = space; 593 for (i = 0; i < sblock.fs_ncg; i++) 594 *lp++ = sblock.fs_contigsumsize; 595 } 596 597 sblock.fs_magic = FS_MAGIC; 598 sblock.fs_rotdelay = rotdelay; 599 sblock.fs_minfree = minfree; 600 sblock.fs_maxcontig = maxcontig; 601 sblock.fs_maxbpg = maxbpg; 602 sblock.fs_rps = rpm / 60; 603 sblock.fs_optim = opt; 604 sblock.fs_cgrotor = 0; 605 sblock.fs_cstotal.cs_ndir = 0; 606 sblock.fs_cstotal.cs_nbfree = 0; 607 sblock.fs_cstotal.cs_nifree = 0; 608 sblock.fs_cstotal.cs_nffree = 0; 609 sblock.fs_fmod = 0; 610 sblock.fs_clean = FS_ISCLEAN; 611 sblock.fs_ronly = 0; 612 613 /* 614 * Dump out summary information about file system. 615 */ 616 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 617 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 618 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 619 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 620 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 621 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 622 sblock.fs_ncg, sblock.fs_cpg, 623 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 624 sblock.fs_ipg); 625 #undef B2MBFACTOR 626 /* 627 * Now determine how wide each column will be, and calculate how 628 * many columns will fit in a 76 char line. 76 is the width of the 629 * subwindows in sysinst. 630 */ 631 printcolwidth = count_digits( 632 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 633 nprintcols = 76 / (printcolwidth + 2); 634 /* 635 * Now build the cylinders group blocks and 636 * then print out indices of cylinder groups. 637 */ 638 printf("super-block backups (for fsck -b #) at:"); 639 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 640 initcg(cylno, start_time.tv_sec, fsopts); 641 if (cylno % nprintcols == 0) 642 printf("\n"); 643 printf(" %*d,", printcolwidth, 644 fsbtodb(&sblock, cgsblock(&sblock, cylno))); 645 fflush(stdout); 646 } 647 printf("\n"); 648 649 /* 650 * Now construct the initial file system, 651 * then write out the super-block. 652 */ 653 sblock.fs_time = start_time.tv_sec; 654 if (fsopts->needswap) 655 sblock.fs_flags |= FS_SWAPPED; 656 ffs_write_superblock(&sblock, fsopts); 657 return (&sblock); 658 } 659 660 /* 661 * Write out the superblock and its duplicates, 662 * and the cylinder group summaries 663 */ 664 void 665 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 666 { 667 int cylno, size, blks, i, saveflag; 668 void *space; 669 char *wrbuf; 670 671 saveflag = fs->fs_flags & FS_INTERNAL; 672 fs->fs_flags &= ~FS_INTERNAL; 673 674 /* Write out the master super block */ 675 memcpy(writebuf, fs, sbsize); 676 if (fsopts->needswap) 677 ffs_sb_swap(fs, (struct fs*)writebuf); 678 ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts); 679 680 /* Write out the duplicate super blocks */ 681 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 682 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), 683 sbsize, writebuf, fsopts); 684 685 /* Write out the cylinder group summaries */ 686 size = fs->fs_cssize; 687 blks = howmany(size, fs->fs_fsize); 688 space = (void *)fs->fs_csp; 689 if ((wrbuf = malloc(size)) == NULL) 690 err(1, "ffs_write_superblock: malloc %d", size); 691 for (i = 0; i < blks; i+= fs->fs_frag) { 692 size = fs->fs_bsize; 693 if (i + fs->fs_frag > blks) 694 size = (blks - i) * fs->fs_fsize; 695 if (fsopts->needswap) 696 ffs_csum_swap((struct csum *)space, 697 (struct csum *)wrbuf, size); 698 else 699 memcpy(wrbuf, space, (u_int)size); 700 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 701 space = (char *)space + size; 702 } 703 free(wrbuf); 704 fs->fs_flags |= saveflag; 705 } 706 707 708 /* 709 * Initialize a cylinder group. 710 */ 711 static void 712 initcg(int cylno, time_t utime, const fsinfo_t *fsopts) 713 { 714 daddr_t cbase, d, dlower, dupper, dmax, blkno; 715 int32_t i; 716 717 /* 718 * Determine block bounds for cylinder group. 719 * Allow space for super block summary information in first 720 * cylinder group. 721 */ 722 cbase = cgbase(&sblock, cylno); 723 dmax = cbase + sblock.fs_fpg; 724 if (dmax > sblock.fs_size) 725 dmax = sblock.fs_size; 726 dlower = cgsblock(&sblock, cylno) - cbase; 727 dupper = cgdmin(&sblock, cylno) - cbase; 728 if (cylno == 0) 729 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 730 memset(&acg, 0, sblock.fs_cgsize); 731 acg.cg_time = utime; 732 acg.cg_magic = CG_MAGIC; 733 acg.cg_cgx = cylno; 734 if (cylno == sblock.fs_ncg - 1) 735 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 736 else 737 acg.cg_ncyl = sblock.fs_cpg; 738 acg.cg_niblk = sblock.fs_ipg; 739 acg.cg_ndblk = dmax - cbase; 740 if (sblock.fs_contigsumsize > 0) 741 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 742 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 743 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 744 acg.cg_iusedoff = acg.cg_boff + 745 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t); 746 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 747 if (sblock.fs_contigsumsize <= 0) { 748 acg.cg_nextfreeoff = acg.cg_freeoff + 749 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 750 } else { 751 acg.cg_clustersumoff = acg.cg_freeoff + howmany 752 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 753 sizeof(int32_t); 754 acg.cg_clustersumoff = 755 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 756 acg.cg_clusteroff = acg.cg_clustersumoff + 757 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 758 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 759 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 760 } 761 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 762 printf("Panic: cylinder group too big\n"); 763 exit(37); 764 } 765 acg.cg_cs.cs_nifree += sblock.fs_ipg; 766 if (cylno == 0) 767 for (i = 0; i < ROOTINO; i++) { 768 setbit(cg_inosused(&acg, 0), i); 769 acg.cg_cs.cs_nifree--; 770 } 771 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) 772 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 773 sblock.fs_bsize, (char *)zino, fsopts); 774 if (cylno > 0) { 775 /* 776 * In cylno 0, beginning space is reserved 777 * for boot and super blocks. 778 */ 779 for (d = 0; d < dlower; d += sblock.fs_frag) { 780 blkno = d / sblock.fs_frag; 781 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); 782 if (sblock.fs_contigsumsize > 0) 783 setbit(cg_clustersfree(&acg, 0), blkno); 784 acg.cg_cs.cs_nbfree++; 785 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++; 786 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0) 787 [cbtorpos(&sblock, d)]++; 788 } 789 sblock.fs_dsize += dlower; 790 } 791 sblock.fs_dsize += acg.cg_ndblk - dupper; 792 if ((i = (dupper % sblock.fs_frag)) != 0) { 793 acg.cg_frsum[sblock.fs_frag - i]++; 794 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 795 setbit(cg_blksfree(&acg, 0), dupper); 796 acg.cg_cs.cs_nffree++; 797 } 798 } 799 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 800 blkno = d / sblock.fs_frag; 801 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); 802 if (sblock.fs_contigsumsize > 0) 803 setbit(cg_clustersfree(&acg, 0), blkno); 804 acg.cg_cs.cs_nbfree++; 805 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++; 806 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0) 807 [cbtorpos(&sblock, d)]++; 808 d += sblock.fs_frag; 809 } 810 if (d < dmax - cbase) { 811 acg.cg_frsum[dmax - cbase - d]++; 812 for (; d < dmax - cbase; d++) { 813 setbit(cg_blksfree(&acg, 0), d); 814 acg.cg_cs.cs_nffree++; 815 } 816 } 817 if (sblock.fs_contigsumsize > 0) { 818 int32_t *sump = cg_clustersum(&acg, 0); 819 u_char *mapp = cg_clustersfree(&acg, 0); 820 int map = *mapp++; 821 int bit = 1; 822 int run = 0; 823 824 for (i = 0; i < acg.cg_nclusterblks; i++) { 825 if ((map & bit) != 0) { 826 run++; 827 } else if (run != 0) { 828 if (run > sblock.fs_contigsumsize) 829 run = sblock.fs_contigsumsize; 830 sump[run]++; 831 run = 0; 832 } 833 if ((i & (NBBY - 1)) != (NBBY - 1)) { 834 bit <<= 1; 835 } else { 836 map = *mapp++; 837 bit = 1; 838 } 839 } 840 if (run != 0) { 841 if (run > sblock.fs_contigsumsize) 842 run = sblock.fs_contigsumsize; 843 sump[run]++; 844 } 845 } 846 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 847 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 848 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 849 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 850 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 851 memcpy(writebuf, &acg, sblock.fs_bsize); 852 if (fsopts->needswap) 853 swap_cg(&acg, (struct cg*)writebuf); 854 ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 855 sblock.fs_bsize, 856 writebuf, fsopts); 857 } 858 859 /* 860 * Calculate number of inodes per group. 861 */ 862 static int32_t 863 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp) 864 { 865 int i; 866 int32_t ipg, new_ipg, ncg, ncyl; 867 off_t usedb; 868 869 /* 870 * Prepare to scale by fssize / (number of sectors in cylinder groups). 871 * Note that fssize is still in sectors, not file system blocks. 872 */ 873 ncyl = howmany(fssize, secpercyl); 874 ncg = howmany(ncyl, cylpg); 875 /* 876 * Iterate a few times to allow for ipg depending on itself. 877 */ 878 ipg = 0; 879 for (i = 0; i < 10; i++) { 880 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 881 * NSPF(&sblock) * (off_t)sectorsize; 882 if (cylpg * (long long)bpcg < usedb) { 883 warnx("Too many inodes per cyl group!"); 884 return (MAXIPG(&sblock)+1); 885 } 886 new_ipg = (cylpg * (long long)bpcg - usedb) / 887 (long long)density * fssize / (ncg * secpercyl * cylpg); 888 if (new_ipg <= 0) 889 new_ipg = 1; /* ensure ipg > 0 */ 890 new_ipg = roundup(new_ipg, INOPB(&sblock)); 891 if (new_ipg == ipg) 892 break; 893 ipg = new_ipg; 894 } 895 *usedbp = usedb; 896 return (ipg); 897 } 898 899 900 /* 901 * read a block from the file system 902 */ 903 void 904 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 905 { 906 int n; 907 off_t offset; 908 909 offset = bno; 910 offset *= fsopts->sectorsize; 911 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 912 err(1, "ffs_rdfs: seek error: %d\n", bno); 913 n = read(fsopts->fd, bf, size); 914 if (n == -1) 915 err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size); 916 else if (n != size) 917 errx(1, 918 "ffs_rdfs: read error bno %d size %d: short read of %d\n", 919 bno, size, n); 920 } 921 922 /* 923 * write a block to the file system 924 */ 925 void 926 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 927 { 928 int n; 929 off_t offset; 930 931 offset = bno; 932 offset *= fsopts->sectorsize; 933 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 934 err(1, "ffs_wtfs: seek error: %d\n", bno); 935 n = write(fsopts->fd, bf, size); 936 if (n == -1) 937 err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size); 938 else if (n != size) 939 errx(1, 940 "ffs_wtfs: write error bno %d size %d: short write of %d\n", 941 bno, size, n); 942 } 943 944 /* swap byte order of cylinder group */ 945 static void 946 swap_cg(struct cg *o, struct cg *n) 947 { 948 int i, btotsize, fbsize; 949 u_int32_t *n32, *o32; 950 u_int16_t *n16, *o16; 951 952 n->cg_firstfield = bswap32(o->cg_firstfield); 953 n->cg_magic = bswap32(o->cg_magic); 954 n->cg_time = bswap32(o->cg_time); 955 n->cg_cgx = bswap32(o->cg_cgx); 956 n->cg_ncyl = bswap16(o->cg_ncyl); 957 n->cg_niblk = bswap16(o->cg_niblk); 958 n->cg_ndblk = bswap32(o->cg_ndblk); 959 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 960 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 961 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 962 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 963 n->cg_rotor = bswap32(o->cg_rotor); 964 n->cg_frotor = bswap32(o->cg_frotor); 965 n->cg_irotor = bswap32(o->cg_irotor); 966 n->cg_btotoff = bswap32(o->cg_btotoff); 967 n->cg_boff = bswap32(o->cg_boff); 968 n->cg_iusedoff = bswap32(o->cg_iusedoff); 969 n->cg_freeoff = bswap32(o->cg_freeoff); 970 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 971 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 972 n->cg_clusteroff = bswap32(o->cg_clusteroff); 973 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 974 for (i=0; i < MAXFRAG; i++) 975 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 976 977 /* alays new format */ 978 if (n->cg_magic == CG_MAGIC) { 979 btotsize = n->cg_boff - n->cg_btotoff; 980 fbsize = n->cg_iusedoff - n->cg_boff; 981 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff); 982 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff); 983 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff); 984 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff); 985 } else { 986 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff); 987 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff); 988 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff)); 989 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff)); 990 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff)); 991 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff)); 992 } 993 for (i=0; i < btotsize / sizeof(u_int32_t); i++) 994 n32[i] = bswap32(o32[i]); 995 996 for (i=0; i < fbsize/sizeof(u_int16_t); i++) 997 n16[i] = bswap16(o16[i]); 998 999 if (n->cg_magic == CG_MAGIC) { 1000 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff); 1001 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff); 1002 } else { 1003 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff)); 1004 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff)); 1005 } 1006 for (i = 1; i < sblock.fs_contigsumsize + 1; i++) 1007 n32[i] = bswap32(o32[i]); 1008 } 1009 1010 /* Determine how many digits are needed to print a given integer */ 1011 static int 1012 count_digits(int num) 1013 { 1014 int ndig; 1015 1016 for(ndig = 1; num > 9; num /=10, ndig++); 1017 1018 return (ndig); 1019 } 1020