1 /* $NetBSD: mkfs.c,v 1.39 2020/03/26 04:25:28 kre Exp $ */ 2 3 /* 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Copyright (c) 1980, 1989, 1993 14 * The Regents of the University of California. All rights reserved. 15 * 16 * Redistribution and use in source and binary forms, with or without 17 * modification, are permitted provided that the following conditions 18 * are met: 19 * 1. Redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer. 21 * 2. Redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution. 24 * 3. Neither the name of the University nor the names of its contributors 25 * may be used to endorse or promote products derived from this software 26 * without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 29 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 30 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 31 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 32 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 33 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 34 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 35 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 36 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 37 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 38 * SUCH DAMAGE. 39 */ 40 41 #if HAVE_NBTOOL_CONFIG_H 42 #include "nbtool_config.h" 43 #endif 44 45 #include <sys/cdefs.h> 46 #ifndef lint 47 #if 0 48 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 49 #else 50 #ifdef __RCSID 51 __RCSID("$NetBSD: mkfs.c,v 1.39 2020/03/26 04:25:28 kre Exp $"); 52 #endif 53 #endif 54 #endif /* not lint */ 55 56 #include <sys/param.h> 57 #include <sys/time.h> 58 #include <sys/resource.h> 59 60 #include <stdio.h> 61 #include <stdlib.h> 62 #include <string.h> 63 #include <unistd.h> 64 #include <errno.h> 65 #include <util.h> 66 67 #include "makefs.h" 68 #include "ffs.h" 69 70 #include <ufs/ufs/dinode.h> 71 #include <ufs/ufs/ufs_bswap.h> 72 #include <ufs/ffs/fs.h> 73 74 #include "ffs/ufs_inode.h" 75 #include "ffs/ffs_extern.h" 76 #include "ffs/newfs_extern.h" 77 78 static void initcg(int, time_t, const fsinfo_t *); 79 static int ilog2(int); 80 81 static int count_digits(int); 82 83 /* 84 * make file system for cylinder-group style file systems 85 */ 86 #define UMASK 0755 87 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 88 89 union { 90 struct fs fs; 91 char pad[SBLOCKSIZE]; 92 } fsun; 93 #define sblock fsun.fs 94 struct csum *fscs; 95 96 union { 97 struct cg cg; 98 char pad[FFS_MAXBSIZE]; 99 } cgun; 100 #define acg cgun.cg 101 102 char *iobuf; 103 int iobufsize; 104 105 union { 106 struct fs fs; 107 char pad[FFS_MAXBSIZE]; 108 } wb; 109 #define writebuf wb.pad 110 111 static int Oflag; /* format as an 4.3BSD file system */ 112 static int64_t fssize; /* file system size */ 113 static int sectorsize; /* bytes/sector */ 114 static int fsize; /* fragment size */ 115 static int bsize; /* block size */ 116 static int maxbsize; /* maximum clustering */ 117 static int maxblkspercg; 118 static int minfree; /* free space threshold */ 119 static int opt; /* optimization preference (space or time) */ 120 static int density; /* number of bytes per inode */ 121 static int maxcontig; /* max contiguous blocks to allocate */ 122 static int maxbpg; /* maximum blocks per file in a cyl group */ 123 static int bbsize; /* boot block size */ 124 static int sbsize; /* superblock size */ 125 static int avgfilesize; /* expected average file size */ 126 static int avgfpdir; /* expected number of files per directory */ 127 128 static void 129 ffs_sb_copy(struct fs *o, const struct fs *i, size_t l, const fsinfo_t *fsopts) 130 { 131 memcpy(o, i, l); 132 /* Zero out pointers */ 133 o->fs_csp = NULL; 134 o->fs_maxcluster = NULL; 135 if (fsopts->needswap) 136 ffs_sb_swap(i, o); 137 } 138 139 struct fs * 140 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts, time_t tstamp) 141 { 142 int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg; 143 int32_t cylno, i, csfrags; 144 long long sizepb; 145 void *space; 146 int size; 147 int nprintcols, printcolwidth; 148 ffs_opt_t *ffs_opts = fsopts->fs_specific; 149 150 Oflag = ffs_opts->version; 151 fssize = fsopts->size / fsopts->sectorsize; 152 sectorsize = fsopts->sectorsize; 153 fsize = ffs_opts->fsize; 154 bsize = ffs_opts->bsize; 155 maxbsize = ffs_opts->maxbsize; 156 maxblkspercg = ffs_opts->maxblkspercg; 157 minfree = ffs_opts->minfree; 158 opt = ffs_opts->optimization; 159 density = ffs_opts->density; 160 maxcontig = ffs_opts->maxcontig; 161 maxbpg = ffs_opts->maxbpg; 162 avgfilesize = ffs_opts->avgfilesize; 163 avgfpdir = ffs_opts->avgfpdir; 164 bbsize = BBSIZE; 165 sbsize = SBLOCKSIZE; 166 167 strlcpy((char *)sblock.fs_volname, ffs_opts->label, 168 sizeof(sblock.fs_volname)); 169 170 if (Oflag == 0) { 171 sblock.fs_old_inodefmt = FS_42INODEFMT; 172 sblock.fs_maxsymlinklen = 0; 173 sblock.fs_old_flags = 0; 174 } else { 175 sblock.fs_old_inodefmt = FS_44INODEFMT; 176 sblock.fs_maxsymlinklen = (Oflag == 1 ? UFS1_MAXSYMLINKLEN : 177 UFS2_MAXSYMLINKLEN); 178 sblock.fs_old_flags = FS_FLAGS_UPDATED; 179 sblock.fs_flags = 0; 180 } 181 /* 182 * Validate the given file system size. 183 * Verify that its last block can actually be accessed. 184 * Convert to file system fragment sized units. 185 */ 186 if (fssize <= 0) { 187 printf("preposterous size %lld\n", (long long)fssize); 188 exit(13); 189 } 190 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 191 192 /* 193 * collect and verify the filesystem density info 194 */ 195 sblock.fs_avgfilesize = avgfilesize; 196 sblock.fs_avgfpdir = avgfpdir; 197 if (sblock.fs_avgfilesize <= 0) 198 printf("illegal expected average file size %d\n", 199 sblock.fs_avgfilesize), exit(14); 200 if (sblock.fs_avgfpdir <= 0) 201 printf("illegal expected number of files per directory %d\n", 202 sblock.fs_avgfpdir), exit(15); 203 /* 204 * collect and verify the block and fragment sizes 205 */ 206 sblock.fs_bsize = bsize; 207 sblock.fs_fsize = fsize; 208 if (!POWEROF2(sblock.fs_bsize)) { 209 printf("block size must be a power of 2, not %d\n", 210 sblock.fs_bsize); 211 exit(16); 212 } 213 if (!POWEROF2(sblock.fs_fsize)) { 214 printf("fragment size must be a power of 2, not %d\n", 215 sblock.fs_fsize); 216 exit(17); 217 } 218 if (sblock.fs_fsize < sectorsize) { 219 printf("fragment size %d is too small, minimum is %d\n", 220 sblock.fs_fsize, sectorsize); 221 exit(18); 222 } 223 if (sblock.fs_bsize < MINBSIZE) { 224 printf("block size %d is too small, minimum is %d\n", 225 sblock.fs_bsize, MINBSIZE); 226 exit(19); 227 } 228 if (sblock.fs_bsize > FFS_MAXBSIZE) { 229 printf("block size %d is too large, maximum is %d\n", 230 sblock.fs_bsize, FFS_MAXBSIZE); 231 exit(19); 232 } 233 if (sblock.fs_bsize < sblock.fs_fsize) { 234 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 235 sblock.fs_bsize, sblock.fs_fsize); 236 exit(20); 237 } 238 239 if (maxbsize < bsize || !POWEROF2(maxbsize)) { 240 sblock.fs_maxbsize = sblock.fs_bsize; 241 printf("Extent size set to %d\n", sblock.fs_maxbsize); 242 } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) { 243 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize; 244 printf("Extent size reduced to %d\n", sblock.fs_maxbsize); 245 } else { 246 sblock.fs_maxbsize = maxbsize; 247 } 248 sblock.fs_maxcontig = maxcontig; 249 if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) { 250 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize; 251 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize); 252 } 253 254 if (sblock.fs_maxcontig > 1) 255 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG); 256 257 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 258 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 259 sblock.fs_qbmask = ~sblock.fs_bmask; 260 sblock.fs_qfmask = ~sblock.fs_fmask; 261 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 262 sblock.fs_bshift++; 263 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 264 sblock.fs_fshift++; 265 sblock.fs_frag = ffs_numfrags(&sblock, sblock.fs_bsize); 266 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 267 sblock.fs_fragshift++; 268 if (sblock.fs_frag > MAXFRAG) { 269 printf("fragment size %d is too small, " 270 "minimum with block size %d is %d\n", 271 sblock.fs_fsize, sblock.fs_bsize, 272 sblock.fs_bsize / MAXFRAG); 273 exit(21); 274 } 275 sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize); 276 sblock.fs_size = fssize = FFS_DBTOFSB(&sblock, fssize); 277 278 if (Oflag <= 1) { 279 sblock.fs_magic = FS_UFS1_MAGIC; 280 sblock.fs_sblockloc = SBLOCK_UFS1; 281 sblock.fs_nindir = sblock.fs_bsize / sizeof(int32_t); 282 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode); 283 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 284 sizeof (int32_t)); 285 sblock.fs_old_inodefmt = FS_44INODEFMT; 286 sblock.fs_old_cgoffset = 0; 287 sblock.fs_old_cgmask = 0xffffffff; 288 sblock.fs_old_size = sblock.fs_size; 289 sblock.fs_old_rotdelay = 0; 290 sblock.fs_old_rps = 60; 291 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize; 292 sblock.fs_old_cpg = 1; 293 sblock.fs_old_interleave = 1; 294 sblock.fs_old_trackskew = 0; 295 sblock.fs_old_cpc = 0; 296 sblock.fs_old_postblformat = 1; 297 sblock.fs_old_nrpos = 1; 298 } else { 299 sblock.fs_magic = FS_UFS2_MAGIC; 300 #if 0 /* XXX makefs is used for small filesystems. */ 301 sblock.fs_sblockloc = SBLOCK_UFS2; 302 #else 303 sblock.fs_sblockloc = SBLOCK_UFS1; 304 #endif 305 sblock.fs_nindir = sblock.fs_bsize / sizeof(int64_t); 306 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode); 307 sblock.fs_maxsymlinklen = ((UFS_NDADDR + UFS_NIADDR) * 308 sizeof (int64_t)); 309 } 310 311 sblock.fs_sblkno = 312 roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize), 313 sblock.fs_frag); 314 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 315 roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag)); 316 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 317 sblock.fs_maxfilesize = sblock.fs_bsize * UFS_NDADDR - 1; 318 for (sizepb = sblock.fs_bsize, i = 0; i < UFS_NIADDR; i++) { 319 sizepb *= FFS_NINDIR(&sblock); 320 sblock.fs_maxfilesize += sizepb; 321 } 322 323 /* 324 * Calculate the number of blocks to put into each cylinder group. 325 * 326 * This algorithm selects the number of blocks per cylinder 327 * group. The first goal is to have at least enough data blocks 328 * in each cylinder group to meet the density requirement. Once 329 * this goal is achieved we try to expand to have at least 330 * 1 cylinder group. Once this goal is achieved, we pack as 331 * many blocks into each cylinder group map as will fit. 332 * 333 * We start by calculating the smallest number of blocks that we 334 * can put into each cylinder group. If this is too big, we reduce 335 * the density until it fits. 336 */ 337 origdensity = density; 338 for (;;) { 339 fragsperinode = MAX(ffs_numfrags(&sblock, density), 1); 340 minfpg = fragsperinode * FFS_INOPB(&sblock); 341 if (minfpg > sblock.fs_size) 342 minfpg = sblock.fs_size; 343 sblock.fs_ipg = FFS_INOPB(&sblock); 344 sblock.fs_fpg = roundup(sblock.fs_iblkno + 345 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag); 346 if (sblock.fs_fpg < minfpg) 347 sblock.fs_fpg = minfpg; 348 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 349 FFS_INOPB(&sblock)); 350 sblock.fs_fpg = roundup(sblock.fs_iblkno + 351 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag); 352 if (sblock.fs_fpg < minfpg) 353 sblock.fs_fpg = minfpg; 354 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 355 FFS_INOPB(&sblock)); 356 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 357 break; 358 density -= sblock.fs_fsize; 359 } 360 if (density != origdensity) 361 printf("density reduced from %d to %d\n", origdensity, density); 362 363 if (maxblkspercg <= 0 || maxblkspercg >= fssize) 364 maxblkspercg = fssize - 1; 365 /* 366 * Start packing more blocks into the cylinder group until 367 * it cannot grow any larger, the number of cylinder groups 368 * drops below 1, or we reach the size requested. 369 */ 370 for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) { 371 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 372 FFS_INOPB(&sblock)); 373 if (sblock.fs_size / sblock.fs_fpg < 1) 374 break; 375 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize) 376 continue; 377 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize) 378 break; 379 sblock.fs_fpg -= sblock.fs_frag; 380 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 381 FFS_INOPB(&sblock)); 382 break; 383 } 384 /* 385 * Check to be sure that the last cylinder group has enough blocks 386 * to be viable. If it is too small, reduce the number of blocks 387 * per cylinder group which will have the effect of moving more 388 * blocks into the last cylinder group. 389 */ 390 optimalfpg = sblock.fs_fpg; 391 for (;;) { 392 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg); 393 lastminfpg = roundup(sblock.fs_iblkno + 394 sblock.fs_ipg / FFS_INOPF(&sblock), sblock.fs_frag); 395 if (sblock.fs_size < lastminfpg) { 396 printf("Filesystem size %lld < minimum size of %d\n", 397 (long long)sblock.fs_size, lastminfpg); 398 exit(28); 399 } 400 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg || 401 sblock.fs_size % sblock.fs_fpg == 0) 402 break; 403 sblock.fs_fpg -= sblock.fs_frag; 404 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode), 405 FFS_INOPB(&sblock)); 406 } 407 if (optimalfpg != sblock.fs_fpg) 408 printf("Reduced frags per cylinder group from %d to %d %s\n", 409 optimalfpg, sblock.fs_fpg, "to enlarge last cyl group"); 410 sblock.fs_cgsize = ffs_fragroundup(&sblock, CGSIZE(&sblock)); 411 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / FFS_INOPF(&sblock); 412 if (Oflag <= 1) { 413 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf; 414 sblock.fs_old_nsect = sblock.fs_old_spc; 415 sblock.fs_old_npsect = sblock.fs_old_spc; 416 sblock.fs_old_ncyl = sblock.fs_ncg; 417 } 418 419 /* 420 * fill in remaining fields of the super block 421 */ 422 sblock.fs_csaddr = cgdmin(&sblock, 0); 423 sblock.fs_cssize = 424 ffs_fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 425 426 /* 427 * Setup memory for temporary in-core cylgroup summaries. 428 * Cribbed from ffs_mountfs(). 429 */ 430 size = sblock.fs_cssize; 431 if (sblock.fs_contigsumsize > 0) 432 size += sblock.fs_ncg * sizeof(int32_t); 433 space = ecalloc(1, size); 434 sblock.fs_csp = space; 435 space = (char *)space + sblock.fs_cssize; 436 if (sblock.fs_contigsumsize > 0) { 437 int32_t *lp; 438 439 sblock.fs_maxcluster = lp = space; 440 for (i = 0; i < sblock.fs_ncg; i++) 441 *lp++ = sblock.fs_contigsumsize; 442 } 443 444 sblock.fs_sbsize = ffs_fragroundup(&sblock, sizeof(struct fs)); 445 if (sblock.fs_sbsize > SBLOCKSIZE) 446 sblock.fs_sbsize = SBLOCKSIZE; 447 sblock.fs_minfree = minfree; 448 sblock.fs_maxcontig = maxcontig; 449 sblock.fs_maxbpg = maxbpg; 450 sblock.fs_optim = opt; 451 sblock.fs_cgrotor = 0; 452 sblock.fs_pendingblocks = 0; 453 sblock.fs_pendinginodes = 0; 454 sblock.fs_cstotal.cs_ndir = 0; 455 sblock.fs_cstotal.cs_nbfree = 0; 456 sblock.fs_cstotal.cs_nifree = 0; 457 sblock.fs_cstotal.cs_nffree = 0; 458 sblock.fs_fmod = 0; 459 sblock.fs_ronly = 0; 460 sblock.fs_state = 0; 461 sblock.fs_clean = FS_ISCLEAN; 462 sblock.fs_ronly = 0; 463 sblock.fs_id[0] = tstamp; 464 sblock.fs_id[1] = random(); 465 sblock.fs_fsmnt[0] = '\0'; 466 csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize); 467 sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno - 468 sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno); 469 sblock.fs_cstotal.cs_nbfree = 470 ffs_fragstoblks(&sblock, sblock.fs_dsize) - 471 howmany(csfrags, sblock.fs_frag); 472 sblock.fs_cstotal.cs_nffree = 473 ffs_fragnum(&sblock, sblock.fs_size) + 474 (ffs_fragnum(&sblock, csfrags) > 0 ? 475 sblock.fs_frag - ffs_fragnum(&sblock, csfrags) : 0); 476 sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - UFS_ROOTINO; 477 sblock.fs_cstotal.cs_ndir = 0; 478 sblock.fs_dsize -= csfrags; 479 sblock.fs_time = tstamp; 480 if (Oflag <= 1) { 481 sblock.fs_old_time = tstamp; 482 sblock.fs_old_dsize = sblock.fs_dsize; 483 sblock.fs_old_csaddr = sblock.fs_csaddr; 484 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 485 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 486 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 487 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 488 } 489 /* 490 * Dump out summary information about file system. 491 */ 492 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 493 printf("%s: %.1fMB (%lld sectors) block size %d, " 494 "fragment size %d\n", 495 fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 496 (long long)FFS_FSBTODB(&sblock, sblock.fs_size), 497 sblock.fs_bsize, sblock.fs_fsize); 498 printf("\tusing %d cylinder groups of %.2fMB, %d blks, " 499 "%d inodes.\n", 500 sblock.fs_ncg, 501 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 502 sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg); 503 #undef B2MBFACTOR 504 /* 505 * Now determine how wide each column will be, and calculate how 506 * many columns will fit in a 76 char line. 76 is the width of the 507 * subwindows in sysinst. 508 */ 509 printcolwidth = count_digits( 510 FFS_FSBTODB(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 511 nprintcols = 76 / (printcolwidth + 2); 512 513 /* 514 * allocate space for superblock, cylinder group map, and 515 * two sets of inode blocks. 516 */ 517 if (sblock.fs_bsize < SBLOCKSIZE) 518 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize; 519 else 520 iobufsize = 4 * sblock.fs_bsize; 521 iobuf = ecalloc(1, iobufsize); 522 /* 523 * Make a copy of the superblock into the buffer that we will be 524 * writing out in each cylinder group. 525 */ 526 ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts); 527 memcpy(iobuf, writebuf, SBLOCKSIZE); 528 529 printf("super-block backups (for fsck -b #) at:"); 530 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 531 initcg(cylno, tstamp, fsopts); 532 if (cylno % nprintcols == 0) 533 printf("\n"); 534 printf(" %*lld,", printcolwidth, 535 (long long)FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno))); 536 fflush(stdout); 537 } 538 printf("\n"); 539 540 /* 541 * Now construct the initial file system, 542 * then write out the super-block. 543 */ 544 sblock.fs_time = tstamp; 545 if (Oflag <= 1) { 546 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir; 547 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree; 548 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree; 549 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree; 550 } 551 if (fsopts->needswap) 552 sblock.fs_flags |= FS_SWAPPED; 553 ffs_write_superblock(&sblock, fsopts); 554 return (&sblock); 555 } 556 557 /* 558 * Write out the superblock and its duplicates, 559 * and the cylinder group summaries 560 */ 561 void 562 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 563 { 564 int cylno, size, blks, i, saveflag; 565 void *space; 566 char *wrbuf; 567 568 saveflag = fs->fs_flags & FS_INTERNAL; 569 fs->fs_flags &= ~FS_INTERNAL; 570 571 ffs_sb_copy(&wb.fs, &sblock, sbsize, fsopts); 572 ffs_wtfs(fs->fs_sblockloc / sectorsize, sbsize, writebuf, fsopts); 573 574 /* Write out the duplicate super blocks */ 575 for (cylno = 0; cylno < fs->fs_ncg; cylno++) 576 ffs_wtfs(FFS_FSBTODB(fs, cgsblock(fs, cylno)), 577 sbsize, writebuf, fsopts); 578 579 /* Write out the cylinder group summaries */ 580 size = fs->fs_cssize; 581 blks = howmany(size, fs->fs_fsize); 582 space = (void *)fs->fs_csp; 583 wrbuf = emalloc(size); 584 for (i = 0; i < blks; i+= fs->fs_frag) { 585 size = fs->fs_bsize; 586 if (i + fs->fs_frag > blks) 587 size = (blks - i) * fs->fs_fsize; 588 if (fsopts->needswap) 589 ffs_csum_swap((struct csum *)space, 590 (struct csum *)wrbuf, size); 591 else 592 memcpy(wrbuf, space, (u_int)size); 593 ffs_wtfs(FFS_FSBTODB(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 594 space = (char *)space + size; 595 } 596 free(wrbuf); 597 fs->fs_flags |= saveflag; 598 } 599 600 /* 601 * Initialize a cylinder group. 602 */ 603 static void 604 initcg(int cylno, time_t utime, const fsinfo_t *fsopts) 605 { 606 daddr_t cbase, dmax; 607 int i, j, d, dlower, dupper, blkno; 608 struct ufs1_dinode *dp1; 609 struct ufs2_dinode *dp2; 610 int start; 611 612 /* 613 * Determine block bounds for cylinder group. 614 * Allow space for super block summary information in first 615 * cylinder group. 616 */ 617 cbase = cgbase(&sblock, cylno); 618 dmax = cbase + sblock.fs_fpg; 619 if (dmax > sblock.fs_size) 620 dmax = sblock.fs_size; 621 dlower = cgsblock(&sblock, cylno) - cbase; 622 dupper = cgdmin(&sblock, cylno) - cbase; 623 if (cylno == 0) 624 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 625 memset(&acg, 0, sblock.fs_cgsize); 626 acg.cg_time = utime; 627 acg.cg_magic = CG_MAGIC; 628 acg.cg_cgx = cylno; 629 acg.cg_niblk = sblock.fs_ipg; 630 acg.cg_initediblk = sblock.fs_ipg < 2 * FFS_INOPB(&sblock) ? 631 sblock.fs_ipg : 2 * FFS_INOPB(&sblock); 632 acg.cg_ndblk = dmax - cbase; 633 if (sblock.fs_contigsumsize > 0) 634 acg.cg_nclusterblks = acg.cg_ndblk >> sblock.fs_fragshift; 635 start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 636 if (Oflag == 2) { 637 acg.cg_iusedoff = start; 638 } else { 639 if (cylno == sblock.fs_ncg - 1) 640 acg.cg_old_ncyl = howmany(acg.cg_ndblk, 641 sblock.fs_fpg / sblock.fs_old_cpg); 642 else 643 acg.cg_old_ncyl = sblock.fs_old_cpg; 644 acg.cg_old_time = acg.cg_time; 645 acg.cg_time = 0; 646 acg.cg_old_niblk = acg.cg_niblk; 647 acg.cg_niblk = 0; 648 acg.cg_initediblk = 0; 649 acg.cg_old_btotoff = start; 650 acg.cg_old_boff = acg.cg_old_btotoff + 651 sblock.fs_old_cpg * sizeof(int32_t); 652 acg.cg_iusedoff = acg.cg_old_boff + 653 sblock.fs_old_cpg * sizeof(u_int16_t); 654 } 655 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT); 656 if (sblock.fs_contigsumsize <= 0) { 657 acg.cg_nextfreeoff = acg.cg_freeoff + 658 howmany(sblock.fs_fpg, CHAR_BIT); 659 } else { 660 acg.cg_clustersumoff = acg.cg_freeoff + 661 howmany(sblock.fs_fpg, CHAR_BIT) - sizeof(int32_t); 662 acg.cg_clustersumoff = 663 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 664 acg.cg_clusteroff = acg.cg_clustersumoff + 665 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 666 acg.cg_nextfreeoff = acg.cg_clusteroff + 667 howmany(ffs_fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT); 668 } 669 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 670 printf("Panic: cylinder group too big\n"); 671 exit(37); 672 } 673 acg.cg_cs.cs_nifree += sblock.fs_ipg; 674 if (cylno == 0) { 675 size_t r; 676 677 for (r = 0; r < UFS_ROOTINO; r++) { 678 setbit(cg_inosused(&acg, 0), r); 679 acg.cg_cs.cs_nifree--; 680 } 681 } 682 if (cylno > 0) { 683 /* 684 * In cylno 0, beginning space is reserved 685 * for boot and super blocks. 686 */ 687 for (d = 0, blkno = 0; d < dlower;) { 688 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); 689 if (sblock.fs_contigsumsize > 0) 690 setbit(cg_clustersfree(&acg, 0), blkno); 691 acg.cg_cs.cs_nbfree++; 692 d += sblock.fs_frag; 693 blkno++; 694 } 695 } 696 if ((i = (dupper & (sblock.fs_frag - 1))) != 0) { 697 acg.cg_frsum[sblock.fs_frag - i]++; 698 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 699 setbit(cg_blksfree(&acg, 0), dupper); 700 acg.cg_cs.cs_nffree++; 701 } 702 } 703 for (d = dupper, blkno = dupper >> sblock.fs_fragshift; 704 d + sblock.fs_frag <= acg.cg_ndblk; ) { 705 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); 706 if (sblock.fs_contigsumsize > 0) 707 setbit(cg_clustersfree(&acg, 0), blkno); 708 acg.cg_cs.cs_nbfree++; 709 d += sblock.fs_frag; 710 blkno++; 711 } 712 if (d < acg.cg_ndblk) { 713 acg.cg_frsum[acg.cg_ndblk - d]++; 714 for (; d < acg.cg_ndblk; d++) { 715 setbit(cg_blksfree(&acg, 0), d); 716 acg.cg_cs.cs_nffree++; 717 } 718 } 719 if (sblock.fs_contigsumsize > 0) { 720 int32_t *sump = cg_clustersum(&acg, 0); 721 u_char *mapp = cg_clustersfree(&acg, 0); 722 int map = *mapp++; 723 int bit = 1; 724 int run = 0; 725 726 for (i = 0; i < acg.cg_nclusterblks; i++) { 727 if ((map & bit) != 0) { 728 run++; 729 } else if (run != 0) { 730 if (run > sblock.fs_contigsumsize) 731 run = sblock.fs_contigsumsize; 732 sump[run]++; 733 run = 0; 734 } 735 if ((i & (CHAR_BIT - 1)) != (CHAR_BIT - 1)) { 736 bit <<= 1; 737 } else { 738 map = *mapp++; 739 bit = 1; 740 } 741 } 742 if (run != 0) { 743 if (run > sblock.fs_contigsumsize) 744 run = sblock.fs_contigsumsize; 745 sump[run]++; 746 } 747 } 748 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 749 /* 750 * Write out the duplicate super block, the cylinder group map 751 * and two blocks worth of inodes in a single write. 752 */ 753 start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE; 754 memcpy(&iobuf[start], &acg, sblock.fs_cgsize); 755 if (fsopts->needswap) 756 ffs_cg_swap(&acg, (struct cg*)&iobuf[start], &sblock); 757 start += sblock.fs_bsize; 758 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 759 dp2 = (struct ufs2_dinode *)(&iobuf[start]); 760 for (i = 0; i < acg.cg_initediblk; i++) { 761 if (sblock.fs_magic == FS_UFS1_MAGIC) { 762 /* No need to swap, it'll stay random */ 763 dp1->di_gen = random(); 764 dp1++; 765 } else { 766 dp2->di_gen = random(); 767 dp2++; 768 } 769 } 770 ffs_wtfs(FFS_FSBTODB(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf, 771 fsopts); 772 /* 773 * For the old file system, we have to initialize all the inodes. 774 */ 775 if (Oflag <= 1) { 776 for (i = 2 * sblock.fs_frag; 777 i < sblock.fs_ipg / FFS_INOPF(&sblock); 778 i += sblock.fs_frag) { 779 dp1 = (struct ufs1_dinode *)(&iobuf[start]); 780 for (j = 0; j < FFS_INOPB(&sblock); j++) { 781 dp1->di_gen = random(); 782 dp1++; 783 } 784 ffs_wtfs(FFS_FSBTODB(&sblock, cgimin(&sblock, cylno) + i), 785 sblock.fs_bsize, &iobuf[start], fsopts); 786 } 787 } 788 } 789 790 /* 791 * read a block from the file system 792 */ 793 void 794 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 795 { 796 int n; 797 off_t offset; 798 799 offset = bno * fsopts->sectorsize + fsopts->offset; 800 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 801 err(EXIT_FAILURE, "%s: seek error for sector %lld", __func__, 802 (long long)bno); 803 n = read(fsopts->fd, bf, size); 804 if (n == -1) { 805 err(EXIT_FAILURE, "%s: read error bno %lld size %d", __func__, 806 (long long)bno, size); 807 } 808 else if (n != size) 809 errx(EXIT_FAILURE, "%s: short read error for sector %lld", __func__, 810 (long long)bno); 811 } 812 813 /* 814 * write a block to the file system 815 */ 816 void 817 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 818 { 819 int n; 820 off_t offset; 821 822 offset = bno * fsopts->sectorsize + fsopts->offset; 823 if (lseek(fsopts->fd, offset, SEEK_SET) == -1) 824 err(EXIT_FAILURE, "%s: seek error @%jd for sector %jd", 825 __func__, (intmax_t)offset, (intmax_t)bno); 826 n = write(fsopts->fd, bf, size); 827 if (n == -1) 828 err(EXIT_FAILURE, "%s: write error for sector %jd", __func__, 829 (intmax_t)bno); 830 else if (n != size) 831 errx(EXIT_FAILURE, "%s: short write error for sector %jd", 832 __func__, (intmax_t)bno); 833 } 834 835 836 /* Determine how many digits are needed to print a given integer */ 837 static int 838 count_digits(int num) 839 { 840 int ndig; 841 842 for(ndig = 1; num > 9; num /=10, ndig++); 843 844 return (ndig); 845 } 846 847 static int 848 ilog2(int val) 849 { 850 u_int n; 851 852 for (n = 0; n < sizeof(n) * CHAR_BIT; n++) 853 if (1 << n == val) 854 return (n); 855 errx(EXIT_FAILURE, "%s: %d is not a power of 2", __func__, val); 856 } 857