xref: /netbsd-src/usr.sbin/makefs/ffs/mkfs.c (revision 06be8101a16cc95f40783b3cb7afd12112103a9a)
1 /*	$NetBSD: mkfs.c,v 1.1.1.1 2001/10/26 06:21:57 lukem Exp $	*/
2 /* From NetBSD: mkfs.c,v 1.55 2001/09/06 02:16:01 lukem Exp $ */
3 
4 /*
5  * Copyright (c) 1980, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #include <sys/cdefs.h>
38 #ifndef lint
39 #if 0
40 static char sccsid[] = "@(#)mkfs.c	8.11 (Berkeley) 5/3/95";
41 #else
42 __RCSID("$NetBSD: mkfs.c,v 1.1.1.1 2001/10/26 06:21:57 lukem Exp $");
43 #endif
44 #endif /* not lint */
45 
46 #include <sys/param.h>
47 #include <sys/time.h>
48 #include <sys/resource.h>
49 
50 #include <err.h>
51 #include <stdio.h>
52 #include <stdlib.h>
53 #include <string.h>
54 #include <unistd.h>
55 
56 #include <ufs/ufs/dir.h>
57 #include <ufs/ufs/inode.h>
58 #include <ufs/ufs/ufs_bswap.h>
59 #include <ufs/ffs/fs.h>
60 
61 #include "makefs.h"
62 
63 #include "ffs/ffs_extern.h"
64 #include "ffs/newfs_extern.h"
65 
66 static void initcg(int, time_t, const fsinfo_t *);
67 static int32_t calcipg(int32_t, int32_t, off_t *);
68 static void swap_cg(struct cg *, struct cg *);
69 
70 static int count_digits(int);
71 
72 /*
73  * make file system for cylinder-group style file systems
74  */
75 
76 /*
77  * We limit the size of the inode map to be no more than a
78  * third of the cylinder group space, since we must leave at
79  * least an equal amount of space for the block map.
80  *
81  * N.B.: MAXIPG must be a multiple of INOPB(fs).
82  */
83 #define MAXIPG(fs)	roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs))
84 
85 #define UMASK		0755
86 #define POWEROF2(num)	(((num) & ((num) - 1)) == 0)
87 
88 union {
89 	struct fs fs;
90 	char pad[SBSIZE];
91 } fsun;
92 #define	sblock	fsun.fs
93 
94 union {
95 	struct cg cg;
96 	char pad[MAXBSIZE];
97 } cgun;
98 #define	acg	cgun.cg
99 
100 struct dinode zino[MAXBSIZE / DINODE_SIZE];
101 
102 char writebuf[MAXBSIZE];
103 
104 static	int	Oflag;		/* format as an 4.3BSD file system */
105 static	int	fssize;		/* file system size */
106 static	int	ntracks;	/* # tracks/cylinder */
107 static	int	nsectors;	/* # sectors/track */
108 static	int	nphyssectors;	/* # sectors/track including spares */
109 static	int	secpercyl;	/* sectors per cylinder */
110 static	int	sectorsize;	/* bytes/sector */
111 static	int	rpm;		/* revolutions/minute of drive */
112 static	int	interleave;	/* hardware sector interleave */
113 static	int	trackskew;	/* sector 0 skew, per track */
114 static	int	fsize;		/* fragment size */
115 static	int	bsize;		/* block size */
116 static	int	cpg;		/* cylinders/cylinder group */
117 static	int	cpgflg;		/* cylinders/cylinder group flag was given */
118 static	int	minfree;	/* free space threshold */
119 static	int	opt;		/* optimization preference (space or time) */
120 static	int	density;	/* number of bytes per inode */
121 static	int	maxcontig;	/* max contiguous blocks to allocate */
122 static	int	rotdelay;	/* rotational delay between blocks */
123 static	int	maxbpg;		/* maximum blocks per file in a cyl group */
124 static	int	nrpos;		/* # of distinguished rotational positions */
125 static	int	bbsize;		/* boot block size */
126 static	int	sbsize;		/* superblock size */
127 static	int	avgfilesize;	/* expected average file size */
128 static	int	avgfpdir;	/* expected number of files per directory */
129 
130 
131 struct fs *
132 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts)
133 {
134 	int32_t i, mincpc, mincpg, inospercg;
135 	int32_t cylno, rpos, blk, j, warned = 0;
136 	int32_t used, mincpgcnt, bpcg;
137 	off_t usedb;
138 	int32_t mapcramped, inodecramped;
139 	int32_t postblsize, rotblsize, totalsbsize;
140 	long long sizepb;
141 	void *space;
142 	int size, blks;
143 	int nprintcols, printcolwidth;
144 
145 	Oflag = 0;
146 	fssize =	fsopts->size / fsopts->sectorsize;
147 	ntracks =	fsopts->ntracks;
148 	nsectors =	fsopts->nsectors;
149 	nphyssectors =	fsopts->nsectors;	/* XXX: no trackspares */
150 	secpercyl =	nsectors * ntracks;
151 	sectorsize =	fsopts->sectorsize;
152 	rpm =		fsopts->rpm;
153 	interleave =	1;				/* XXX: HCD */
154 	trackskew =	0;				/* XXX: HCD */
155 	fsize =		fsopts->fsize;
156 	bsize =		fsopts->bsize;
157 	cpg =		fsopts->cpg;
158 	cpgflg =	1;
159 	minfree =	fsopts->minfree;
160 	opt =		fsopts->optimization;
161 	density =	fsopts->density;
162 	maxcontig =	fsopts->maxcontig;
163 	rotdelay =	fsopts->rotdelay;
164 	maxbpg =	fsopts->maxbpg;
165 	nrpos =		fsopts->nrpos;
166 	bbsize =	BBSIZE;
167 	sbsize =	SBSIZE;
168 	avgfilesize = 	fsopts->avgfilesize;
169 	avgfpdir = 	fsopts->avgfpdir;
170 
171 	if (Oflag) {
172 		sblock.fs_inodefmt = FS_42INODEFMT;
173 		sblock.fs_maxsymlinklen = 0;
174 	} else {
175 		sblock.fs_inodefmt = FS_44INODEFMT;
176 		sblock.fs_maxsymlinklen = MAXSYMLINKLEN;
177 	}
178 	/*
179 	 * Validate the given file system size.
180 	 * Verify that its last block can actually be accessed.
181 	 */
182 	if (fssize <= 0)
183 		printf("preposterous size %d\n", fssize), exit(13);
184 	ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts);
185 
186 	/*
187 	 * collect and verify the sector and track info
188 	 */
189 	sblock.fs_nsect = nsectors;
190 	sblock.fs_ntrak = ntracks;
191 	if (sblock.fs_ntrak <= 0)
192 		printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14);
193 	if (sblock.fs_nsect <= 0)
194 		printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15);
195 	/*
196 	 * collect and verify the filesystem density info
197 	 */
198 	sblock.fs_avgfilesize = avgfilesize;
199 	sblock.fs_avgfpdir = avgfpdir;
200 	if (sblock.fs_avgfilesize <= 0)
201 		printf("illegal expected average file size %d\n",
202 		    sblock.fs_avgfilesize), exit(14);
203 	if (sblock.fs_avgfpdir <= 0)
204 		printf("illegal expected number of files per directory %d\n",
205 		    sblock.fs_avgfpdir), exit(15);
206 	/*
207 	 * collect and verify the block and fragment sizes
208 	 */
209 	sblock.fs_bsize = bsize;
210 	sblock.fs_fsize = fsize;
211 	if (!POWEROF2(sblock.fs_bsize)) {
212 		printf("block size must be a power of 2, not %d\n",
213 		    sblock.fs_bsize);
214 		exit(16);
215 	}
216 	if (!POWEROF2(sblock.fs_fsize)) {
217 		printf("fragment size must be a power of 2, not %d\n",
218 		    sblock.fs_fsize);
219 		exit(17);
220 	}
221 	if (sblock.fs_fsize < sectorsize) {
222 		printf("fragment size %d is too small, minimum is %d\n",
223 		    sblock.fs_fsize, sectorsize);
224 		exit(18);
225 	}
226 	if (sblock.fs_bsize < MINBSIZE) {
227 		printf("block size %d is too small, minimum is %d\n",
228 		    sblock.fs_bsize, MINBSIZE);
229 		exit(19);
230 	}
231 	if (sblock.fs_bsize < sblock.fs_fsize) {
232 		printf("block size (%d) cannot be smaller than fragment size (%d)\n",
233 		    sblock.fs_bsize, sblock.fs_fsize);
234 		exit(20);
235 	}
236 	sblock.fs_bmask = ~(sblock.fs_bsize - 1);
237 	sblock.fs_fmask = ~(sblock.fs_fsize - 1);
238 	sblock.fs_qbmask = ~sblock.fs_bmask;
239 	sblock.fs_qfmask = ~sblock.fs_fmask;
240 	for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1)
241 		sblock.fs_bshift++;
242 	for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1)
243 		sblock.fs_fshift++;
244 	sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
245 	for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1)
246 		sblock.fs_fragshift++;
247 	if (sblock.fs_frag > MAXFRAG) {
248 		printf("fragment size %d is too small, "
249 			"minimum with block size %d is %d\n",
250 		    sblock.fs_fsize, sblock.fs_bsize,
251 		    sblock.fs_bsize / MAXFRAG);
252 		exit(21);
253 	}
254 	sblock.fs_nrpos = nrpos;
255 	sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t);
256 	sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE;
257 	sblock.fs_nspf = sblock.fs_fsize / sectorsize;
258 	for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1)
259 		sblock.fs_fsbtodb++;
260 	sblock.fs_sblkno =
261 	    roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag);
262 	sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno +
263 	    roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag));
264 	sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
265 	sblock.fs_cgoffset = roundup(
266 	    howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag);
267 	for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1)
268 		sblock.fs_cgmask <<= 1;
269 	if (!POWEROF2(sblock.fs_ntrak))
270 		sblock.fs_cgmask <<= 1;
271 	sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
272 	for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
273 		sizepb *= NINDIR(&sblock);
274 		sblock.fs_maxfilesize += sizepb;
275 	}
276 	/*
277 	 * Validate specified/determined secpercyl
278 	 * and calculate minimum cylinders per group.
279 	 */
280 	sblock.fs_spc = secpercyl;
281 	for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc;
282 	     sblock.fs_cpc > 1 && (i & 1) == 0;
283 	     sblock.fs_cpc >>= 1, i >>= 1)
284 		/* void */;
285 	mincpc = sblock.fs_cpc;
286 	bpcg = sblock.fs_spc * sectorsize;
287 	inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock));
288 	if (inospercg > MAXIPG(&sblock))
289 		inospercg = MAXIPG(&sblock);
290 	used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock);
291 	mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used,
292 	    sblock.fs_spc);
293 	mincpg = roundup(mincpgcnt, mincpc);
294 	/*
295 	 * Ensure that cylinder group with mincpg has enough space
296 	 * for block maps.
297 	 */
298 	sblock.fs_cpg = mincpg;
299 	sblock.fs_ipg = inospercg;
300 	if (maxcontig > 1)
301 		sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG);
302 	mapcramped = 0;
303 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
304 		mapcramped = 1;
305 		if (sblock.fs_bsize < MAXBSIZE) {
306 			sblock.fs_bsize <<= 1;
307 			if ((i & 1) == 0) {
308 				i >>= 1;
309 			} else {
310 				sblock.fs_cpc <<= 1;
311 				mincpc <<= 1;
312 				mincpg = roundup(mincpgcnt, mincpc);
313 				sblock.fs_cpg = mincpg;
314 			}
315 			sblock.fs_frag <<= 1;
316 			sblock.fs_fragshift += 1;
317 			if (sblock.fs_frag <= MAXFRAG)
318 				continue;
319 		}
320 		if (sblock.fs_fsize == sblock.fs_bsize) {
321 			printf("There is no block size that");
322 			printf(" can support this disk\n");
323 			exit(22);
324 		}
325 		sblock.fs_frag >>= 1;
326 		sblock.fs_fragshift -= 1;
327 		sblock.fs_fsize <<= 1;
328 		sblock.fs_nspf <<= 1;
329 	}
330 	/*
331 	 * Ensure that cylinder group with mincpg has enough space for inodes.
332 	 */
333 	inodecramped = 0;
334 	inospercg = calcipg(mincpg, bpcg, &usedb);
335 	sblock.fs_ipg = inospercg;
336 	while (inospercg > MAXIPG(&sblock)) {
337 		inodecramped = 1;
338 		if (mincpc == 1 || sblock.fs_frag == 1 ||
339 		    sblock.fs_bsize == MINBSIZE)
340 			break;
341 		printf("With a block size of %d %s %d\n", sblock.fs_bsize,
342 		       "minimum bytes per inode is",
343 		       (int)((mincpg * (off_t)bpcg - usedb)
344 			     / MAXIPG(&sblock) + 1));
345 		sblock.fs_bsize >>= 1;
346 		sblock.fs_frag >>= 1;
347 		sblock.fs_fragshift -= 1;
348 		mincpc >>= 1;
349 		sblock.fs_cpg = roundup(mincpgcnt, mincpc);
350 		if (CGSIZE(&sblock) > sblock.fs_bsize) {
351 			sblock.fs_bsize <<= 1;
352 			break;
353 		}
354 		mincpg = sblock.fs_cpg;
355 		inospercg = calcipg(mincpg, bpcg, &usedb);
356 		sblock.fs_ipg = inospercg;
357 	}
358 	if (inodecramped) {
359 		if (inospercg > MAXIPG(&sblock)) {
360 			printf("Minimum bytes per inode is %d\n",
361 			       (int)((mincpg * (off_t)bpcg - usedb)
362 				     / MAXIPG(&sblock) + 1));
363 		} else if (!mapcramped) {
364 			printf("With %d bytes per inode, ", density);
365 			printf("minimum cylinders per group is %d\n", mincpg);
366 		}
367 	}
368 	if (mapcramped) {
369 		printf("With %d sectors per cylinder, ", sblock.fs_spc);
370 		printf("minimum cylinders per group is %d\n", mincpg);
371 	}
372 	if (inodecramped || mapcramped) {
373 		if (sblock.fs_bsize != bsize)
374 			printf("%s to be changed from %d to %d\n",
375 			    "This requires the block size",
376 			    bsize, sblock.fs_bsize);
377 		if (sblock.fs_fsize != fsize)
378 			printf("\t%s to be changed from %d to %d\n",
379 			    "and the fragment size",
380 			    fsize, sblock.fs_fsize);
381 		exit(23);
382 	}
383 	/*
384 	 * Calculate the number of cylinders per group
385 	 */
386 	sblock.fs_cpg = cpg;
387 	if (sblock.fs_cpg % mincpc != 0) {
388 		printf("%s groups must have a multiple of %d cylinders\n",
389 			cpgflg ? "Cylinder" : "Warning: cylinder", mincpc);
390 		sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc);
391 		if (!cpgflg)
392 			cpg = sblock.fs_cpg;
393 	}
394 	/*
395 	 * Must ensure there is enough space for inodes.
396 	 */
397 	sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
398 	while (sblock.fs_ipg > MAXIPG(&sblock)) {
399 		inodecramped = 1;
400 		sblock.fs_cpg -= mincpc;
401 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
402 	}
403 	/*
404 	 * Must ensure there is enough space to hold block map.
405 	 */
406 	while (CGSIZE(&sblock) > sblock.fs_bsize) {
407 		mapcramped = 1;
408 		sblock.fs_cpg -= mincpc;
409 		sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb);
410 	}
411 	sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock);
412 	if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) {
413 		printf("panic (fs_cpg * fs_spc) %% NSPF != 0");
414 		exit(24);
415 	}
416 	if (sblock.fs_cpg < mincpg) {
417 		printf("cylinder groups must have at least %d cylinders\n",
418 			mincpg);
419 		exit(25);
420 	} else if (sblock.fs_cpg != cpg) {
421 		if (!cpgflg)
422 			printf("Warning: ");
423 		else if (!mapcramped && !inodecramped)
424 			exit(26);
425 		if (mapcramped && inodecramped)
426 			printf("Block size and bytes per inode restrict");
427 		else if (mapcramped)
428 			printf("Block size restricts");
429 		else
430 			printf("Bytes per inode restrict");
431 		printf(" cylinders per group to %d.\n", sblock.fs_cpg);
432 		if (cpgflg)
433 			exit(27);
434 	}
435 	sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
436 	/*
437 	 * Now have size for file system and nsect and ntrak.
438 	 * Determine number of cylinders and blocks in the file system.
439 	 */
440 	sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
441 	sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc;
442 	if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) {
443 		sblock.fs_ncyl++;
444 		warned = 1;
445 	}
446 	if (sblock.fs_ncyl < 1) {
447 		printf("file systems must have at least one cylinder\n");
448 		exit(28);
449 	}
450 	/*
451 	 * Determine feasability/values of rotational layout tables.
452 	 *
453 	 * The size of the rotational layout tables is limited by the
454 	 * size of the superblock, SBSIZE. The amount of space available
455 	 * for tables is calculated as (SBSIZE - sizeof (struct fs)).
456 	 * The size of these tables is inversely proportional to the block
457 	 * size of the file system. The size increases if sectors per track
458 	 * are not powers of two, because more cylinders must be described
459 	 * by the tables before the rotational pattern repeats (fs_cpc).
460 	 */
461 	sblock.fs_interleave = interleave;
462 	sblock.fs_trackskew = trackskew;
463 	sblock.fs_npsect = nphyssectors;
464 	sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT;
465 	sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
466 	if (sblock.fs_ntrak == 1) {
467 		sblock.fs_cpc = 0;
468 		goto next;
469 	}
470 	postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t);
471 	rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock);
472 	totalsbsize = sizeof(struct fs) + rotblsize;
473 	if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) {
474 		/* use old static table space */
475 		sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) -
476 		    (char *)(&sblock.fs_firstfield);
477 		sblock.fs_rotbloff = &sblock.fs_space[0] -
478 		    (u_char *)(&sblock.fs_firstfield);
479 	} else {
480 		/* use dynamic table space */
481 		sblock.fs_postbloff = &sblock.fs_space[0] -
482 		    (u_char *)(&sblock.fs_firstfield);
483 		sblock.fs_rotbloff = sblock.fs_postbloff + postblsize;
484 		totalsbsize += postblsize;
485 	}
486 	if (totalsbsize > SBSIZE ||
487 	    sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) {
488 		printf("%s %s %d %s %d.%s",
489 		    "Warning: insufficient space in super block for\n",
490 		    "rotational layout tables with nsect", sblock.fs_nsect,
491 		    "and ntrak", sblock.fs_ntrak,
492 		    "\nFile system performance may be impaired.\n");
493 		sblock.fs_cpc = 0;
494 		goto next;
495 	}
496 	sblock.fs_sbsize = fragroundup(&sblock, totalsbsize);
497 	/*
498 	 * calculate the available blocks for each rotational position
499 	 */
500 	for (cylno = 0; cylno < sblock.fs_cpc; cylno++)
501 		for (rpos = 0; rpos < sblock.fs_nrpos; rpos++)
502 			fs_postbl(&sblock, cylno)[rpos] = -1;
503 	for (i = (rotblsize - 1) * sblock.fs_frag;
504 	     i >= 0; i -= sblock.fs_frag) {
505 		cylno = cbtocylno(&sblock, i);
506 		rpos = cbtorpos(&sblock, i);
507 		blk = fragstoblks(&sblock, i);
508 		if (fs_postbl(&sblock, cylno)[rpos] == -1)
509 			fs_rotbl(&sblock)[blk] = 0;
510 		else
511 			fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk;
512 		fs_postbl(&sblock, cylno)[rpos] = blk;
513 	}
514 next:
515 	/*
516 	 * Compute/validate number of cylinder groups.
517 	 */
518 	sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg;
519 	if (sblock.fs_ncyl % sblock.fs_cpg)
520 		sblock.fs_ncg++;
521 	sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
522 	i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1);
523 	if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) {
524 		printf("inode blocks/cyl group (%d) >= data blocks (%d)\n",
525 		    cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag,
526 		    sblock.fs_fpg / sblock.fs_frag);
527 		printf("number of cylinders per cylinder group (%d) %s.\n",
528 		    sblock.fs_cpg, "must be increased");
529 		exit(29);
530 	}
531 	j = sblock.fs_ncg - 1;
532 	if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg &&
533 	    cgdmin(&sblock, j) - cgbase(&sblock, j) > i) {
534 		if (j == 0) {
535 			printf("File system must have at least %d sectors\n",
536 			    NSPF(&sblock) *
537 			    (cgdmin(&sblock, 0) + 3 * sblock.fs_frag));
538 			exit(30);
539 		}
540 		printf("Warning: inode blocks/cyl group (%d) >= "
541 			"data blocks (%d) in last\n",
542 		    (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag,
543 		    i / sblock.fs_frag);
544 		printf("    cylinder group. This implies %d sector(s) "
545 			"cannot be allocated.\n",
546 		    i * NSPF(&sblock));
547 		sblock.fs_ncg--;
548 		sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg;
549 		sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc /
550 		    NSPF(&sblock);
551 		warned = 0;
552 	}
553 	if (warned) {
554 		printf("Warning: %d sector(s) in last cylinder unallocated\n",
555 		    sblock.fs_spc -
556 		    (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1)
557 		    * sblock.fs_spc));
558 	}
559 	/*
560 	 * fill in remaining fields of the super block
561 	 */
562 	sblock.fs_csaddr = cgdmin(&sblock, 0);
563 	sblock.fs_cssize =
564 	    fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
565 	/*
566 	 * The superblock fields 'fs_csmask' and 'fs_csshift' are no
567 	 * longer used. However, we still initialise them so that the
568 	 * filesystem remains compatible with old kernels.
569 	 */
570 	i = sblock.fs_bsize / sizeof(struct csum);
571 	sblock.fs_csmask = ~(i - 1);
572 	for (sblock.fs_csshift = 0; i > 1; i >>= 1)
573 		sblock.fs_csshift++;
574 
575 	/*
576 	 * Setup memory for temporary in-core cylgroup summaries.
577 	 * Cribbed from ffs_mountfs().
578 	 */
579 	size = sblock.fs_cssize;
580 	blks = howmany(size, sblock.fs_fsize);
581 	if (sblock.fs_contigsumsize > 0)
582 		size += sblock.fs_ncg * sizeof(int32_t);
583 	if ((space = (char *)calloc(1, size)) == NULL)
584 		err(1, "memory allocation error for cg summaries");
585 	sblock.fs_csp = space;
586 	space = (char *)space + sblock.fs_cssize;
587 	if (sblock.fs_contigsumsize > 0) {
588 		int32_t *lp;
589 
590 		sblock.fs_maxcluster = lp = space;
591 		for (i = 0; i < sblock.fs_ncg; i++)
592 			*lp++ = sblock.fs_contigsumsize;
593 	}
594 
595 	sblock.fs_magic = FS_MAGIC;
596 	sblock.fs_rotdelay = rotdelay;
597 	sblock.fs_minfree = minfree;
598 	sblock.fs_maxcontig = maxcontig;
599 	sblock.fs_maxbpg = maxbpg;
600 	sblock.fs_rps = rpm / 60;
601 	sblock.fs_optim = opt;
602 	sblock.fs_cgrotor = 0;
603 	sblock.fs_cstotal.cs_ndir = 0;
604 	sblock.fs_cstotal.cs_nbfree = 0;
605 	sblock.fs_cstotal.cs_nifree = 0;
606 	sblock.fs_cstotal.cs_nffree = 0;
607 	sblock.fs_fmod = 0;
608 	sblock.fs_clean = FS_ISCLEAN;
609 	sblock.fs_ronly = 0;
610 
611 	/*
612 	 * Dump out summary information about file system.
613 	 */
614 	printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n",
615 		    fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl,
616 		    "cylinders", sblock.fs_ntrak, sblock.fs_nsect);
617 #define B2MBFACTOR (1 / (1024.0 * 1024.0))
618 	printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n",
619 		    (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
620 		    sblock.fs_ncg, sblock.fs_cpg,
621 		    (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
622 		    sblock.fs_ipg);
623 #undef B2MBFACTOR
624 	/*
625 	 * Now determine how wide each column will be, and calculate how
626 	 * many columns will fit in a 76 char line. 76 is the width of the
627 	 * subwindows in sysinst.
628 	 */
629 	printcolwidth = count_digits(
630 			fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1)));
631 	nprintcols = 76 / (printcolwidth + 2);
632 	/*
633 	 * Now build the cylinders group blocks and
634 	 * then print out indices of cylinder groups.
635 	 */
636 		printf("super-block backups (for fsck -b #) at:");
637 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
638 		initcg(cylno, start_time.tv_sec, fsopts);
639 		if (cylno % nprintcols == 0)
640 			printf("\n");
641 		printf(" %*d,", printcolwidth,
642 				fsbtodb(&sblock, cgsblock(&sblock, cylno)));
643 		fflush(stdout);
644 	}
645 	printf("\n");
646 
647 	/*
648 	 * Now construct the initial file system,
649 	 * then write out the super-block.
650 	 */
651 	sblock.fs_time = start_time.tv_sec;
652 	if (fsopts->needswap)
653 		sblock.fs_flags |= FS_SWAPPED;
654 	ffs_write_superblock(&sblock, fsopts);
655 	return (&sblock);
656 }
657 
658 /*
659  * Write out the superblock and its duplicates,
660  * and the cylinder group summaries
661  */
662 void
663 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts)
664 {
665 	int	cylno, size, blks, i, saveflag;
666 	void	*space;
667 	char	*wrbuf;
668 
669 	saveflag = fs->fs_flags & FS_INTERNAL;
670 	fs->fs_flags &= ~FS_INTERNAL;
671 
672 			/* Write out the master super block */
673 	memcpy(writebuf, fs, sbsize);
674 	if (fsopts->needswap)
675 		ffs_sb_swap(fs, (struct fs*)writebuf);
676 	ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts);
677 
678 			/* Write out the duplicate super blocks */
679 	for (cylno = 0; cylno < sblock.fs_ncg; cylno++)
680 		ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)),
681 		    sbsize, writebuf, fsopts);
682 
683 			/* Write out the cylinder group summaries */
684 	size = fs->fs_cssize;
685 	blks = howmany(size, fs->fs_fsize);
686 	space = (void *)fs->fs_csp;
687 	if ((wrbuf = malloc(size)) == NULL)
688 		err(1, "ffs_write_superblock: malloc %d", size);
689 	for (i = 0; i < blks; i+= fs->fs_frag) {
690 		size = fs->fs_bsize;
691 		if (i + fs->fs_frag > blks)
692 			size = (blks - i) * fs->fs_fsize;
693 		if (fsopts->needswap)
694 			ffs_csum_swap((struct csum *)space,
695 			    (struct csum *)wrbuf, size);
696 		else
697 			memcpy(wrbuf, space, (u_int)size);
698 		ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts);
699 		space = (char *)space + size;
700 	}
701 	free(wrbuf);
702 	fs->fs_flags |= saveflag;
703 }
704 
705 
706 /*
707  * Initialize a cylinder group.
708  */
709 static void
710 initcg(int cylno, time_t utime, const fsinfo_t *fsopts)
711 {
712 	daddr_t cbase, d, dlower, dupper, dmax, blkno;
713 	int32_t i;
714 
715 	/*
716 	 * Determine block bounds for cylinder group.
717 	 * Allow space for super block summary information in first
718 	 * cylinder group.
719 	 */
720 	cbase = cgbase(&sblock, cylno);
721 	dmax = cbase + sblock.fs_fpg;
722 	if (dmax > sblock.fs_size)
723 		dmax = sblock.fs_size;
724 	dlower = cgsblock(&sblock, cylno) - cbase;
725 	dupper = cgdmin(&sblock, cylno) - cbase;
726 	if (cylno == 0)
727 		dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
728 	memset(&acg, 0, sblock.fs_cgsize);
729 	acg.cg_time = utime;
730 	acg.cg_magic = CG_MAGIC;
731 	acg.cg_cgx = cylno;
732 	if (cylno == sblock.fs_ncg - 1)
733 		acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg;
734 	else
735 		acg.cg_ncyl = sblock.fs_cpg;
736 	acg.cg_niblk = sblock.fs_ipg;
737 	acg.cg_ndblk = dmax - cbase;
738 	if (sblock.fs_contigsumsize > 0)
739 		acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
740 	acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
741 	acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t);
742 	acg.cg_iusedoff = acg.cg_boff +
743 		sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t);
744 	acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY);
745 	if (sblock.fs_contigsumsize <= 0) {
746 		acg.cg_nextfreeoff = acg.cg_freeoff +
747 		   howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY);
748 	} else {
749 		acg.cg_clustersumoff = acg.cg_freeoff + howmany
750 		    (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) -
751 		    sizeof(int32_t);
752 		acg.cg_clustersumoff =
753 		    roundup(acg.cg_clustersumoff, sizeof(int32_t));
754 		acg.cg_clusteroff = acg.cg_clustersumoff +
755 		    (sblock.fs_contigsumsize + 1) * sizeof(int32_t);
756 		acg.cg_nextfreeoff = acg.cg_clusteroff + howmany
757 		    (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY);
758 	}
759 	if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
760 		printf("Panic: cylinder group too big\n");
761 		exit(37);
762 	}
763 	acg.cg_cs.cs_nifree += sblock.fs_ipg;
764 	if (cylno == 0)
765 		for (i = 0; i < ROOTINO; i++) {
766 			setbit(cg_inosused(&acg, 0), i);
767 			acg.cg_cs.cs_nifree--;
768 		}
769 	for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag)
770 		ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
771 		    sblock.fs_bsize, (char *)zino, fsopts);
772 	if (cylno > 0) {
773 		/*
774 		 * In cylno 0, beginning space is reserved
775 		 * for boot and super blocks.
776 		 */
777 		for (d = 0; d < dlower; d += sblock.fs_frag) {
778 			blkno = d / sblock.fs_frag;
779 			ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
780 			if (sblock.fs_contigsumsize > 0)
781 				setbit(cg_clustersfree(&acg, 0), blkno);
782 			acg.cg_cs.cs_nbfree++;
783 			cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
784 			cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
785 			    [cbtorpos(&sblock, d)]++;
786 		}
787 		sblock.fs_dsize += dlower;
788 	}
789 	sblock.fs_dsize += acg.cg_ndblk - dupper;
790 	if ((i = (dupper % sblock.fs_frag)) != 0) {
791 		acg.cg_frsum[sblock.fs_frag - i]++;
792 		for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
793 			setbit(cg_blksfree(&acg, 0), dupper);
794 			acg.cg_cs.cs_nffree++;
795 		}
796 	}
797 	for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) {
798 		blkno = d / sblock.fs_frag;
799 		ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno);
800 		if (sblock.fs_contigsumsize > 0)
801 			setbit(cg_clustersfree(&acg, 0), blkno);
802 		acg.cg_cs.cs_nbfree++;
803 		cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++;
804 		cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0)
805 		    [cbtorpos(&sblock, d)]++;
806 		d += sblock.fs_frag;
807 	}
808 	if (d < dmax - cbase) {
809 		acg.cg_frsum[dmax - cbase - d]++;
810 		for (; d < dmax - cbase; d++) {
811 			setbit(cg_blksfree(&acg, 0), d);
812 			acg.cg_cs.cs_nffree++;
813 		}
814 	}
815 	if (sblock.fs_contigsumsize > 0) {
816 		int32_t *sump = cg_clustersum(&acg, 0);
817 		u_char *mapp = cg_clustersfree(&acg, 0);
818 		int map = *mapp++;
819 		int bit = 1;
820 		int run = 0;
821 
822 		for (i = 0; i < acg.cg_nclusterblks; i++) {
823 			if ((map & bit) != 0) {
824 				run++;
825 			} else if (run != 0) {
826 				if (run > sblock.fs_contigsumsize)
827 					run = sblock.fs_contigsumsize;
828 				sump[run]++;
829 				run = 0;
830 			}
831 			if ((i & (NBBY - 1)) != (NBBY - 1)) {
832 				bit <<= 1;
833 			} else {
834 				map = *mapp++;
835 				bit = 1;
836 			}
837 		}
838 		if (run != 0) {
839 			if (run > sblock.fs_contigsumsize)
840 				run = sblock.fs_contigsumsize;
841 			sump[run]++;
842 		}
843 	}
844 	sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
845 	sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
846 	sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
847 	sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
848 	sblock.fs_cs(&sblock, cylno) = acg.cg_cs;
849 	memcpy(writebuf, &acg, sblock.fs_bsize);
850 	if (fsopts->needswap)
851 		swap_cg(&acg, (struct cg*)writebuf);
852 	ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
853 		sblock.fs_bsize,
854 		writebuf, fsopts);
855 }
856 
857 /*
858  * Calculate number of inodes per group.
859  */
860 static int32_t
861 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp)
862 {
863 	int i;
864 	int32_t ipg, new_ipg, ncg, ncyl;
865 	off_t usedb;
866 
867 	/*
868 	 * Prepare to scale by fssize / (number of sectors in cylinder groups).
869 	 * Note that fssize is still in sectors, not file system blocks.
870 	 */
871 	ncyl = howmany(fssize, secpercyl);
872 	ncg = howmany(ncyl, cylpg);
873 	/*
874 	 * Iterate a few times to allow for ipg depending on itself.
875 	 */
876 	ipg = 0;
877 	for (i = 0; i < 10; i++) {
878 		usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock))
879 			* NSPF(&sblock) * (off_t)sectorsize;
880 		if (cylpg * (long long)bpcg < usedb) {
881 			warnx("Too many inodes per cyl group!");
882 			return (MAXIPG(&sblock)+1);
883 		}
884 		new_ipg = (cylpg * (long long)bpcg - usedb) /
885 		    ((long long)density * fssize / (ncg * secpercyl * cylpg));
886 		if (new_ipg <= 0)
887 			new_ipg = 1;		/* ensure ipg > 0 */
888 		new_ipg = roundup(new_ipg, INOPB(&sblock));
889 		if (new_ipg == ipg)
890 			break;
891 		ipg = new_ipg;
892 	}
893 	*usedbp = usedb;
894 	return (ipg);
895 }
896 
897 
898 /*
899  * read a block from the file system
900  */
901 void
902 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
903 {
904 	int n;
905 	off_t offset;
906 
907 	offset = bno;
908 	offset *= fsopts->sectorsize;
909 	if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
910 		err(1, "ffs_rdfs: seek error: %d\n", bno);
911 	n = read(fsopts->fd, bf, size);
912 	if (n == -1)
913 		err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size);
914 	else if (n != size)
915 		errx(1,
916 		    "ffs_rdfs: read error bno %d size %d: short read of %d\n",
917 		    bno, size, n);
918 }
919 
920 /*
921  * write a block to the file system
922  */
923 void
924 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts)
925 {
926 	int n;
927 	off_t offset;
928 
929 	offset = bno;
930 	offset *= fsopts->sectorsize;
931 	if (lseek(fsopts->fd, offset, SEEK_SET) < 0)
932 		err(1, "ffs_wtfs: seek error: %d\n", bno);
933 	n = write(fsopts->fd, bf, size);
934 	if (n == -1)
935 		err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size);
936 	else if (n != size)
937 		errx(1,
938 		    "ffs_wtfs: write error bno %d size %d: short write of %d\n",
939 		    bno, size, n);
940 }
941 
942 /* swap byte order of cylinder group */
943 static void
944 swap_cg(struct cg *o, struct cg *n)
945 {
946 	int i, btotsize, fbsize;
947 	u_int32_t *n32, *o32;
948 	u_int16_t *n16, *o16;
949 
950 	n->cg_firstfield = bswap32(o->cg_firstfield);
951 	n->cg_magic = bswap32(o->cg_magic);
952 	n->cg_time = bswap32(o->cg_time);
953 	n->cg_cgx = bswap32(o->cg_cgx);
954 	n->cg_ncyl = bswap16(o->cg_ncyl);
955 	n->cg_niblk = bswap16(o->cg_niblk);
956 	n->cg_ndblk = bswap32(o->cg_ndblk);
957 	n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir);
958 	n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree);
959 	n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree);
960 	n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree);
961 	n->cg_rotor = bswap32(o->cg_rotor);
962 	n->cg_frotor = bswap32(o->cg_frotor);
963 	n->cg_irotor = bswap32(o->cg_irotor);
964 	n->cg_btotoff = bswap32(o->cg_btotoff);
965 	n->cg_boff = bswap32(o->cg_boff);
966 	n->cg_iusedoff = bswap32(o->cg_iusedoff);
967 	n->cg_freeoff = bswap32(o->cg_freeoff);
968 	n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff);
969 	n->cg_clustersumoff = bswap32(o->cg_clustersumoff);
970 	n->cg_clusteroff = bswap32(o->cg_clusteroff);
971 	n->cg_nclusterblks = bswap32(o->cg_nclusterblks);
972 	for (i=0; i < MAXFRAG; i++)
973 		n->cg_frsum[i] = bswap32(o->cg_frsum[i]);
974 
975 	/* alays new format */
976 	if (n->cg_magic == CG_MAGIC) {
977 		btotsize = n->cg_boff - n->cg_btotoff;
978 		fbsize = n->cg_iusedoff - n->cg_boff;
979 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff);
980 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff);
981 		n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff);
982 		o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff);
983 	} else {
984 		btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff);
985 		fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff);
986 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff));
987 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff));
988 		n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff));
989 		o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff));
990 	}
991 	for (i=0; i < btotsize / sizeof(u_int32_t); i++)
992 		n32[i] = bswap32(o32[i]);
993 
994 	for (i=0; i < fbsize/sizeof(u_int16_t); i++)
995 		n16[i] = bswap16(o16[i]);
996 
997 	if (n->cg_magic == CG_MAGIC) {
998 		n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff);
999 		o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff);
1000 	} else {
1001 		n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff));
1002 		o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff));
1003 	}
1004 	for (i = 1; i < sblock.fs_contigsumsize + 1; i++)
1005 		n32[i] = bswap32(o32[i]);
1006 }
1007 
1008 /* Determine how many digits are needed to print a given integer */
1009 static int
1010 count_digits(int num)
1011 {
1012 	int ndig;
1013 
1014 	for(ndig = 1; num > 9; num /=10, ndig++);
1015 
1016 	return (ndig);
1017 }
1018