1 /* $NetBSD: mkfs.c,v 1.1.1.1 2001/10/26 06:21:57 lukem Exp $ */ 2 /* From NetBSD: mkfs.c,v 1.55 2001/09/06 02:16:01 lukem Exp $ */ 3 4 /* 5 * Copyright (c) 1980, 1989, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. All advertising materials mentioning features or use of this software 17 * must display the following acknowledgement: 18 * This product includes software developed by the University of 19 * California, Berkeley and its contributors. 20 * 4. Neither the name of the University nor the names of its contributors 21 * may be used to endorse or promote products derived from this software 22 * without specific prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 34 * SUCH DAMAGE. 35 */ 36 37 #include <sys/cdefs.h> 38 #ifndef lint 39 #if 0 40 static char sccsid[] = "@(#)mkfs.c 8.11 (Berkeley) 5/3/95"; 41 #else 42 __RCSID("$NetBSD: mkfs.c,v 1.1.1.1 2001/10/26 06:21:57 lukem Exp $"); 43 #endif 44 #endif /* not lint */ 45 46 #include <sys/param.h> 47 #include <sys/time.h> 48 #include <sys/resource.h> 49 50 #include <err.h> 51 #include <stdio.h> 52 #include <stdlib.h> 53 #include <string.h> 54 #include <unistd.h> 55 56 #include <ufs/ufs/dir.h> 57 #include <ufs/ufs/inode.h> 58 #include <ufs/ufs/ufs_bswap.h> 59 #include <ufs/ffs/fs.h> 60 61 #include "makefs.h" 62 63 #include "ffs/ffs_extern.h" 64 #include "ffs/newfs_extern.h" 65 66 static void initcg(int, time_t, const fsinfo_t *); 67 static int32_t calcipg(int32_t, int32_t, off_t *); 68 static void swap_cg(struct cg *, struct cg *); 69 70 static int count_digits(int); 71 72 /* 73 * make file system for cylinder-group style file systems 74 */ 75 76 /* 77 * We limit the size of the inode map to be no more than a 78 * third of the cylinder group space, since we must leave at 79 * least an equal amount of space for the block map. 80 * 81 * N.B.: MAXIPG must be a multiple of INOPB(fs). 82 */ 83 #define MAXIPG(fs) roundup((fs)->fs_bsize * NBBY / 3, INOPB(fs)) 84 85 #define UMASK 0755 86 #define POWEROF2(num) (((num) & ((num) - 1)) == 0) 87 88 union { 89 struct fs fs; 90 char pad[SBSIZE]; 91 } fsun; 92 #define sblock fsun.fs 93 94 union { 95 struct cg cg; 96 char pad[MAXBSIZE]; 97 } cgun; 98 #define acg cgun.cg 99 100 struct dinode zino[MAXBSIZE / DINODE_SIZE]; 101 102 char writebuf[MAXBSIZE]; 103 104 static int Oflag; /* format as an 4.3BSD file system */ 105 static int fssize; /* file system size */ 106 static int ntracks; /* # tracks/cylinder */ 107 static int nsectors; /* # sectors/track */ 108 static int nphyssectors; /* # sectors/track including spares */ 109 static int secpercyl; /* sectors per cylinder */ 110 static int sectorsize; /* bytes/sector */ 111 static int rpm; /* revolutions/minute of drive */ 112 static int interleave; /* hardware sector interleave */ 113 static int trackskew; /* sector 0 skew, per track */ 114 static int fsize; /* fragment size */ 115 static int bsize; /* block size */ 116 static int cpg; /* cylinders/cylinder group */ 117 static int cpgflg; /* cylinders/cylinder group flag was given */ 118 static int minfree; /* free space threshold */ 119 static int opt; /* optimization preference (space or time) */ 120 static int density; /* number of bytes per inode */ 121 static int maxcontig; /* max contiguous blocks to allocate */ 122 static int rotdelay; /* rotational delay between blocks */ 123 static int maxbpg; /* maximum blocks per file in a cyl group */ 124 static int nrpos; /* # of distinguished rotational positions */ 125 static int bbsize; /* boot block size */ 126 static int sbsize; /* superblock size */ 127 static int avgfilesize; /* expected average file size */ 128 static int avgfpdir; /* expected number of files per directory */ 129 130 131 struct fs * 132 ffs_mkfs(const char *fsys, const fsinfo_t *fsopts) 133 { 134 int32_t i, mincpc, mincpg, inospercg; 135 int32_t cylno, rpos, blk, j, warned = 0; 136 int32_t used, mincpgcnt, bpcg; 137 off_t usedb; 138 int32_t mapcramped, inodecramped; 139 int32_t postblsize, rotblsize, totalsbsize; 140 long long sizepb; 141 void *space; 142 int size, blks; 143 int nprintcols, printcolwidth; 144 145 Oflag = 0; 146 fssize = fsopts->size / fsopts->sectorsize; 147 ntracks = fsopts->ntracks; 148 nsectors = fsopts->nsectors; 149 nphyssectors = fsopts->nsectors; /* XXX: no trackspares */ 150 secpercyl = nsectors * ntracks; 151 sectorsize = fsopts->sectorsize; 152 rpm = fsopts->rpm; 153 interleave = 1; /* XXX: HCD */ 154 trackskew = 0; /* XXX: HCD */ 155 fsize = fsopts->fsize; 156 bsize = fsopts->bsize; 157 cpg = fsopts->cpg; 158 cpgflg = 1; 159 minfree = fsopts->minfree; 160 opt = fsopts->optimization; 161 density = fsopts->density; 162 maxcontig = fsopts->maxcontig; 163 rotdelay = fsopts->rotdelay; 164 maxbpg = fsopts->maxbpg; 165 nrpos = fsopts->nrpos; 166 bbsize = BBSIZE; 167 sbsize = SBSIZE; 168 avgfilesize = fsopts->avgfilesize; 169 avgfpdir = fsopts->avgfpdir; 170 171 if (Oflag) { 172 sblock.fs_inodefmt = FS_42INODEFMT; 173 sblock.fs_maxsymlinklen = 0; 174 } else { 175 sblock.fs_inodefmt = FS_44INODEFMT; 176 sblock.fs_maxsymlinklen = MAXSYMLINKLEN; 177 } 178 /* 179 * Validate the given file system size. 180 * Verify that its last block can actually be accessed. 181 */ 182 if (fssize <= 0) 183 printf("preposterous size %d\n", fssize), exit(13); 184 ffs_wtfs(fssize - 1, sectorsize, (char *)&sblock, fsopts); 185 186 /* 187 * collect and verify the sector and track info 188 */ 189 sblock.fs_nsect = nsectors; 190 sblock.fs_ntrak = ntracks; 191 if (sblock.fs_ntrak <= 0) 192 printf("preposterous ntrak %d\n", sblock.fs_ntrak), exit(14); 193 if (sblock.fs_nsect <= 0) 194 printf("preposterous nsect %d\n", sblock.fs_nsect), exit(15); 195 /* 196 * collect and verify the filesystem density info 197 */ 198 sblock.fs_avgfilesize = avgfilesize; 199 sblock.fs_avgfpdir = avgfpdir; 200 if (sblock.fs_avgfilesize <= 0) 201 printf("illegal expected average file size %d\n", 202 sblock.fs_avgfilesize), exit(14); 203 if (sblock.fs_avgfpdir <= 0) 204 printf("illegal expected number of files per directory %d\n", 205 sblock.fs_avgfpdir), exit(15); 206 /* 207 * collect and verify the block and fragment sizes 208 */ 209 sblock.fs_bsize = bsize; 210 sblock.fs_fsize = fsize; 211 if (!POWEROF2(sblock.fs_bsize)) { 212 printf("block size must be a power of 2, not %d\n", 213 sblock.fs_bsize); 214 exit(16); 215 } 216 if (!POWEROF2(sblock.fs_fsize)) { 217 printf("fragment size must be a power of 2, not %d\n", 218 sblock.fs_fsize); 219 exit(17); 220 } 221 if (sblock.fs_fsize < sectorsize) { 222 printf("fragment size %d is too small, minimum is %d\n", 223 sblock.fs_fsize, sectorsize); 224 exit(18); 225 } 226 if (sblock.fs_bsize < MINBSIZE) { 227 printf("block size %d is too small, minimum is %d\n", 228 sblock.fs_bsize, MINBSIZE); 229 exit(19); 230 } 231 if (sblock.fs_bsize < sblock.fs_fsize) { 232 printf("block size (%d) cannot be smaller than fragment size (%d)\n", 233 sblock.fs_bsize, sblock.fs_fsize); 234 exit(20); 235 } 236 sblock.fs_bmask = ~(sblock.fs_bsize - 1); 237 sblock.fs_fmask = ~(sblock.fs_fsize - 1); 238 sblock.fs_qbmask = ~sblock.fs_bmask; 239 sblock.fs_qfmask = ~sblock.fs_fmask; 240 for (sblock.fs_bshift = 0, i = sblock.fs_bsize; i > 1; i >>= 1) 241 sblock.fs_bshift++; 242 for (sblock.fs_fshift = 0, i = sblock.fs_fsize; i > 1; i >>= 1) 243 sblock.fs_fshift++; 244 sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize); 245 for (sblock.fs_fragshift = 0, i = sblock.fs_frag; i > 1; i >>= 1) 246 sblock.fs_fragshift++; 247 if (sblock.fs_frag > MAXFRAG) { 248 printf("fragment size %d is too small, " 249 "minimum with block size %d is %d\n", 250 sblock.fs_fsize, sblock.fs_bsize, 251 sblock.fs_bsize / MAXFRAG); 252 exit(21); 253 } 254 sblock.fs_nrpos = nrpos; 255 sblock.fs_nindir = sblock.fs_bsize / sizeof(daddr_t); 256 sblock.fs_inopb = sblock.fs_bsize / DINODE_SIZE; 257 sblock.fs_nspf = sblock.fs_fsize / sectorsize; 258 for (sblock.fs_fsbtodb = 0, i = NSPF(&sblock); i > 1; i >>= 1) 259 sblock.fs_fsbtodb++; 260 sblock.fs_sblkno = 261 roundup(howmany(bbsize + sbsize, sblock.fs_fsize), sblock.fs_frag); 262 sblock.fs_cblkno = (daddr_t)(sblock.fs_sblkno + 263 roundup(howmany(sbsize, sblock.fs_fsize), sblock.fs_frag)); 264 sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag; 265 sblock.fs_cgoffset = roundup( 266 howmany(sblock.fs_nsect, NSPF(&sblock)), sblock.fs_frag); 267 for (sblock.fs_cgmask = 0xffffffff, i = sblock.fs_ntrak; i > 1; i >>= 1) 268 sblock.fs_cgmask <<= 1; 269 if (!POWEROF2(sblock.fs_ntrak)) 270 sblock.fs_cgmask <<= 1; 271 sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1; 272 for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) { 273 sizepb *= NINDIR(&sblock); 274 sblock.fs_maxfilesize += sizepb; 275 } 276 /* 277 * Validate specified/determined secpercyl 278 * and calculate minimum cylinders per group. 279 */ 280 sblock.fs_spc = secpercyl; 281 for (sblock.fs_cpc = NSPB(&sblock), i = sblock.fs_spc; 282 sblock.fs_cpc > 1 && (i & 1) == 0; 283 sblock.fs_cpc >>= 1, i >>= 1) 284 /* void */; 285 mincpc = sblock.fs_cpc; 286 bpcg = sblock.fs_spc * sectorsize; 287 inospercg = roundup(bpcg / DINODE_SIZE, INOPB(&sblock)); 288 if (inospercg > MAXIPG(&sblock)) 289 inospercg = MAXIPG(&sblock); 290 used = (sblock.fs_iblkno + inospercg / INOPF(&sblock)) * NSPF(&sblock); 291 mincpgcnt = howmany(sblock.fs_cgoffset * (~sblock.fs_cgmask) + used, 292 sblock.fs_spc); 293 mincpg = roundup(mincpgcnt, mincpc); 294 /* 295 * Ensure that cylinder group with mincpg has enough space 296 * for block maps. 297 */ 298 sblock.fs_cpg = mincpg; 299 sblock.fs_ipg = inospercg; 300 if (maxcontig > 1) 301 sblock.fs_contigsumsize = MIN(maxcontig, FS_MAXCONTIG); 302 mapcramped = 0; 303 while (CGSIZE(&sblock) > sblock.fs_bsize) { 304 mapcramped = 1; 305 if (sblock.fs_bsize < MAXBSIZE) { 306 sblock.fs_bsize <<= 1; 307 if ((i & 1) == 0) { 308 i >>= 1; 309 } else { 310 sblock.fs_cpc <<= 1; 311 mincpc <<= 1; 312 mincpg = roundup(mincpgcnt, mincpc); 313 sblock.fs_cpg = mincpg; 314 } 315 sblock.fs_frag <<= 1; 316 sblock.fs_fragshift += 1; 317 if (sblock.fs_frag <= MAXFRAG) 318 continue; 319 } 320 if (sblock.fs_fsize == sblock.fs_bsize) { 321 printf("There is no block size that"); 322 printf(" can support this disk\n"); 323 exit(22); 324 } 325 sblock.fs_frag >>= 1; 326 sblock.fs_fragshift -= 1; 327 sblock.fs_fsize <<= 1; 328 sblock.fs_nspf <<= 1; 329 } 330 /* 331 * Ensure that cylinder group with mincpg has enough space for inodes. 332 */ 333 inodecramped = 0; 334 inospercg = calcipg(mincpg, bpcg, &usedb); 335 sblock.fs_ipg = inospercg; 336 while (inospercg > MAXIPG(&sblock)) { 337 inodecramped = 1; 338 if (mincpc == 1 || sblock.fs_frag == 1 || 339 sblock.fs_bsize == MINBSIZE) 340 break; 341 printf("With a block size of %d %s %d\n", sblock.fs_bsize, 342 "minimum bytes per inode is", 343 (int)((mincpg * (off_t)bpcg - usedb) 344 / MAXIPG(&sblock) + 1)); 345 sblock.fs_bsize >>= 1; 346 sblock.fs_frag >>= 1; 347 sblock.fs_fragshift -= 1; 348 mincpc >>= 1; 349 sblock.fs_cpg = roundup(mincpgcnt, mincpc); 350 if (CGSIZE(&sblock) > sblock.fs_bsize) { 351 sblock.fs_bsize <<= 1; 352 break; 353 } 354 mincpg = sblock.fs_cpg; 355 inospercg = calcipg(mincpg, bpcg, &usedb); 356 sblock.fs_ipg = inospercg; 357 } 358 if (inodecramped) { 359 if (inospercg > MAXIPG(&sblock)) { 360 printf("Minimum bytes per inode is %d\n", 361 (int)((mincpg * (off_t)bpcg - usedb) 362 / MAXIPG(&sblock) + 1)); 363 } else if (!mapcramped) { 364 printf("With %d bytes per inode, ", density); 365 printf("minimum cylinders per group is %d\n", mincpg); 366 } 367 } 368 if (mapcramped) { 369 printf("With %d sectors per cylinder, ", sblock.fs_spc); 370 printf("minimum cylinders per group is %d\n", mincpg); 371 } 372 if (inodecramped || mapcramped) { 373 if (sblock.fs_bsize != bsize) 374 printf("%s to be changed from %d to %d\n", 375 "This requires the block size", 376 bsize, sblock.fs_bsize); 377 if (sblock.fs_fsize != fsize) 378 printf("\t%s to be changed from %d to %d\n", 379 "and the fragment size", 380 fsize, sblock.fs_fsize); 381 exit(23); 382 } 383 /* 384 * Calculate the number of cylinders per group 385 */ 386 sblock.fs_cpg = cpg; 387 if (sblock.fs_cpg % mincpc != 0) { 388 printf("%s groups must have a multiple of %d cylinders\n", 389 cpgflg ? "Cylinder" : "Warning: cylinder", mincpc); 390 sblock.fs_cpg = roundup(sblock.fs_cpg, mincpc); 391 if (!cpgflg) 392 cpg = sblock.fs_cpg; 393 } 394 /* 395 * Must ensure there is enough space for inodes. 396 */ 397 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 398 while (sblock.fs_ipg > MAXIPG(&sblock)) { 399 inodecramped = 1; 400 sblock.fs_cpg -= mincpc; 401 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 402 } 403 /* 404 * Must ensure there is enough space to hold block map. 405 */ 406 while (CGSIZE(&sblock) > sblock.fs_bsize) { 407 mapcramped = 1; 408 sblock.fs_cpg -= mincpc; 409 sblock.fs_ipg = calcipg(sblock.fs_cpg, bpcg, &usedb); 410 } 411 sblock.fs_fpg = (sblock.fs_cpg * sblock.fs_spc) / NSPF(&sblock); 412 if ((sblock.fs_cpg * sblock.fs_spc) % NSPB(&sblock) != 0) { 413 printf("panic (fs_cpg * fs_spc) %% NSPF != 0"); 414 exit(24); 415 } 416 if (sblock.fs_cpg < mincpg) { 417 printf("cylinder groups must have at least %d cylinders\n", 418 mincpg); 419 exit(25); 420 } else if (sblock.fs_cpg != cpg) { 421 if (!cpgflg) 422 printf("Warning: "); 423 else if (!mapcramped && !inodecramped) 424 exit(26); 425 if (mapcramped && inodecramped) 426 printf("Block size and bytes per inode restrict"); 427 else if (mapcramped) 428 printf("Block size restricts"); 429 else 430 printf("Bytes per inode restrict"); 431 printf(" cylinders per group to %d.\n", sblock.fs_cpg); 432 if (cpgflg) 433 exit(27); 434 } 435 sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock)); 436 /* 437 * Now have size for file system and nsect and ntrak. 438 * Determine number of cylinders and blocks in the file system. 439 */ 440 sblock.fs_size = fssize = dbtofsb(&sblock, fssize); 441 sblock.fs_ncyl = fssize * NSPF(&sblock) / sblock.fs_spc; 442 if (fssize * NSPF(&sblock) > sblock.fs_ncyl * sblock.fs_spc) { 443 sblock.fs_ncyl++; 444 warned = 1; 445 } 446 if (sblock.fs_ncyl < 1) { 447 printf("file systems must have at least one cylinder\n"); 448 exit(28); 449 } 450 /* 451 * Determine feasability/values of rotational layout tables. 452 * 453 * The size of the rotational layout tables is limited by the 454 * size of the superblock, SBSIZE. The amount of space available 455 * for tables is calculated as (SBSIZE - sizeof (struct fs)). 456 * The size of these tables is inversely proportional to the block 457 * size of the file system. The size increases if sectors per track 458 * are not powers of two, because more cylinders must be described 459 * by the tables before the rotational pattern repeats (fs_cpc). 460 */ 461 sblock.fs_interleave = interleave; 462 sblock.fs_trackskew = trackskew; 463 sblock.fs_npsect = nphyssectors; 464 sblock.fs_postblformat = FS_DYNAMICPOSTBLFMT; 465 sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs)); 466 if (sblock.fs_ntrak == 1) { 467 sblock.fs_cpc = 0; 468 goto next; 469 } 470 postblsize = sblock.fs_nrpos * sblock.fs_cpc * sizeof(int16_t); 471 rotblsize = sblock.fs_cpc * sblock.fs_spc / NSPB(&sblock); 472 totalsbsize = sizeof(struct fs) + rotblsize; 473 if (sblock.fs_nrpos == 8 && sblock.fs_cpc <= 16) { 474 /* use old static table space */ 475 sblock.fs_postbloff = (char *)(&sblock.fs_opostbl[0][0]) - 476 (char *)(&sblock.fs_firstfield); 477 sblock.fs_rotbloff = &sblock.fs_space[0] - 478 (u_char *)(&sblock.fs_firstfield); 479 } else { 480 /* use dynamic table space */ 481 sblock.fs_postbloff = &sblock.fs_space[0] - 482 (u_char *)(&sblock.fs_firstfield); 483 sblock.fs_rotbloff = sblock.fs_postbloff + postblsize; 484 totalsbsize += postblsize; 485 } 486 if (totalsbsize > SBSIZE || 487 sblock.fs_nsect > (1 << NBBY) * NSPB(&sblock)) { 488 printf("%s %s %d %s %d.%s", 489 "Warning: insufficient space in super block for\n", 490 "rotational layout tables with nsect", sblock.fs_nsect, 491 "and ntrak", sblock.fs_ntrak, 492 "\nFile system performance may be impaired.\n"); 493 sblock.fs_cpc = 0; 494 goto next; 495 } 496 sblock.fs_sbsize = fragroundup(&sblock, totalsbsize); 497 /* 498 * calculate the available blocks for each rotational position 499 */ 500 for (cylno = 0; cylno < sblock.fs_cpc; cylno++) 501 for (rpos = 0; rpos < sblock.fs_nrpos; rpos++) 502 fs_postbl(&sblock, cylno)[rpos] = -1; 503 for (i = (rotblsize - 1) * sblock.fs_frag; 504 i >= 0; i -= sblock.fs_frag) { 505 cylno = cbtocylno(&sblock, i); 506 rpos = cbtorpos(&sblock, i); 507 blk = fragstoblks(&sblock, i); 508 if (fs_postbl(&sblock, cylno)[rpos] == -1) 509 fs_rotbl(&sblock)[blk] = 0; 510 else 511 fs_rotbl(&sblock)[blk] = fs_postbl(&sblock, cylno)[rpos] - blk; 512 fs_postbl(&sblock, cylno)[rpos] = blk; 513 } 514 next: 515 /* 516 * Compute/validate number of cylinder groups. 517 */ 518 sblock.fs_ncg = sblock.fs_ncyl / sblock.fs_cpg; 519 if (sblock.fs_ncyl % sblock.fs_cpg) 520 sblock.fs_ncg++; 521 sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock); 522 i = MIN(~sblock.fs_cgmask, sblock.fs_ncg - 1); 523 if (cgdmin(&sblock, i) - cgbase(&sblock, i) >= sblock.fs_fpg) { 524 printf("inode blocks/cyl group (%d) >= data blocks (%d)\n", 525 cgdmin(&sblock, i) - cgbase(&sblock, i) / sblock.fs_frag, 526 sblock.fs_fpg / sblock.fs_frag); 527 printf("number of cylinders per cylinder group (%d) %s.\n", 528 sblock.fs_cpg, "must be increased"); 529 exit(29); 530 } 531 j = sblock.fs_ncg - 1; 532 if ((i = fssize - j * sblock.fs_fpg) < sblock.fs_fpg && 533 cgdmin(&sblock, j) - cgbase(&sblock, j) > i) { 534 if (j == 0) { 535 printf("File system must have at least %d sectors\n", 536 NSPF(&sblock) * 537 (cgdmin(&sblock, 0) + 3 * sblock.fs_frag)); 538 exit(30); 539 } 540 printf("Warning: inode blocks/cyl group (%d) >= " 541 "data blocks (%d) in last\n", 542 (cgdmin(&sblock, j) - cgbase(&sblock, j)) / sblock.fs_frag, 543 i / sblock.fs_frag); 544 printf(" cylinder group. This implies %d sector(s) " 545 "cannot be allocated.\n", 546 i * NSPF(&sblock)); 547 sblock.fs_ncg--; 548 sblock.fs_ncyl -= sblock.fs_ncyl % sblock.fs_cpg; 549 sblock.fs_size = fssize = sblock.fs_ncyl * sblock.fs_spc / 550 NSPF(&sblock); 551 warned = 0; 552 } 553 if (warned) { 554 printf("Warning: %d sector(s) in last cylinder unallocated\n", 555 sblock.fs_spc - 556 (fssize * NSPF(&sblock) - (sblock.fs_ncyl - 1) 557 * sblock.fs_spc)); 558 } 559 /* 560 * fill in remaining fields of the super block 561 */ 562 sblock.fs_csaddr = cgdmin(&sblock, 0); 563 sblock.fs_cssize = 564 fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum)); 565 /* 566 * The superblock fields 'fs_csmask' and 'fs_csshift' are no 567 * longer used. However, we still initialise them so that the 568 * filesystem remains compatible with old kernels. 569 */ 570 i = sblock.fs_bsize / sizeof(struct csum); 571 sblock.fs_csmask = ~(i - 1); 572 for (sblock.fs_csshift = 0; i > 1; i >>= 1) 573 sblock.fs_csshift++; 574 575 /* 576 * Setup memory for temporary in-core cylgroup summaries. 577 * Cribbed from ffs_mountfs(). 578 */ 579 size = sblock.fs_cssize; 580 blks = howmany(size, sblock.fs_fsize); 581 if (sblock.fs_contigsumsize > 0) 582 size += sblock.fs_ncg * sizeof(int32_t); 583 if ((space = (char *)calloc(1, size)) == NULL) 584 err(1, "memory allocation error for cg summaries"); 585 sblock.fs_csp = space; 586 space = (char *)space + sblock.fs_cssize; 587 if (sblock.fs_contigsumsize > 0) { 588 int32_t *lp; 589 590 sblock.fs_maxcluster = lp = space; 591 for (i = 0; i < sblock.fs_ncg; i++) 592 *lp++ = sblock.fs_contigsumsize; 593 } 594 595 sblock.fs_magic = FS_MAGIC; 596 sblock.fs_rotdelay = rotdelay; 597 sblock.fs_minfree = minfree; 598 sblock.fs_maxcontig = maxcontig; 599 sblock.fs_maxbpg = maxbpg; 600 sblock.fs_rps = rpm / 60; 601 sblock.fs_optim = opt; 602 sblock.fs_cgrotor = 0; 603 sblock.fs_cstotal.cs_ndir = 0; 604 sblock.fs_cstotal.cs_nbfree = 0; 605 sblock.fs_cstotal.cs_nifree = 0; 606 sblock.fs_cstotal.cs_nffree = 0; 607 sblock.fs_fmod = 0; 608 sblock.fs_clean = FS_ISCLEAN; 609 sblock.fs_ronly = 0; 610 611 /* 612 * Dump out summary information about file system. 613 */ 614 printf("%s:\t%d sectors in %d %s of %d tracks, %d sectors\n", 615 fsys, sblock.fs_size * NSPF(&sblock), sblock.fs_ncyl, 616 "cylinders", sblock.fs_ntrak, sblock.fs_nsect); 617 #define B2MBFACTOR (1 / (1024.0 * 1024.0)) 618 printf("\t%.1fMB in %d cyl groups (%d c/g, %.2fMB/g, %d i/g)\n", 619 (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR, 620 sblock.fs_ncg, sblock.fs_cpg, 621 (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR, 622 sblock.fs_ipg); 623 #undef B2MBFACTOR 624 /* 625 * Now determine how wide each column will be, and calculate how 626 * many columns will fit in a 76 char line. 76 is the width of the 627 * subwindows in sysinst. 628 */ 629 printcolwidth = count_digits( 630 fsbtodb(&sblock, cgsblock(&sblock, sblock.fs_ncg -1))); 631 nprintcols = 76 / (printcolwidth + 2); 632 /* 633 * Now build the cylinders group blocks and 634 * then print out indices of cylinder groups. 635 */ 636 printf("super-block backups (for fsck -b #) at:"); 637 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) { 638 initcg(cylno, start_time.tv_sec, fsopts); 639 if (cylno % nprintcols == 0) 640 printf("\n"); 641 printf(" %*d,", printcolwidth, 642 fsbtodb(&sblock, cgsblock(&sblock, cylno))); 643 fflush(stdout); 644 } 645 printf("\n"); 646 647 /* 648 * Now construct the initial file system, 649 * then write out the super-block. 650 */ 651 sblock.fs_time = start_time.tv_sec; 652 if (fsopts->needswap) 653 sblock.fs_flags |= FS_SWAPPED; 654 ffs_write_superblock(&sblock, fsopts); 655 return (&sblock); 656 } 657 658 /* 659 * Write out the superblock and its duplicates, 660 * and the cylinder group summaries 661 */ 662 void 663 ffs_write_superblock(struct fs *fs, const fsinfo_t *fsopts) 664 { 665 int cylno, size, blks, i, saveflag; 666 void *space; 667 char *wrbuf; 668 669 saveflag = fs->fs_flags & FS_INTERNAL; 670 fs->fs_flags &= ~FS_INTERNAL; 671 672 /* Write out the master super block */ 673 memcpy(writebuf, fs, sbsize); 674 if (fsopts->needswap) 675 ffs_sb_swap(fs, (struct fs*)writebuf); 676 ffs_wtfs((int)SBOFF / sectorsize, sbsize, writebuf, fsopts); 677 678 /* Write out the duplicate super blocks */ 679 for (cylno = 0; cylno < sblock.fs_ncg; cylno++) 680 ffs_wtfs(fsbtodb(fs, cgsblock(fs, cylno)), 681 sbsize, writebuf, fsopts); 682 683 /* Write out the cylinder group summaries */ 684 size = fs->fs_cssize; 685 blks = howmany(size, fs->fs_fsize); 686 space = (void *)fs->fs_csp; 687 if ((wrbuf = malloc(size)) == NULL) 688 err(1, "ffs_write_superblock: malloc %d", size); 689 for (i = 0; i < blks; i+= fs->fs_frag) { 690 size = fs->fs_bsize; 691 if (i + fs->fs_frag > blks) 692 size = (blks - i) * fs->fs_fsize; 693 if (fsopts->needswap) 694 ffs_csum_swap((struct csum *)space, 695 (struct csum *)wrbuf, size); 696 else 697 memcpy(wrbuf, space, (u_int)size); 698 ffs_wtfs(fsbtodb(fs, fs->fs_csaddr + i), size, wrbuf, fsopts); 699 space = (char *)space + size; 700 } 701 free(wrbuf); 702 fs->fs_flags |= saveflag; 703 } 704 705 706 /* 707 * Initialize a cylinder group. 708 */ 709 static void 710 initcg(int cylno, time_t utime, const fsinfo_t *fsopts) 711 { 712 daddr_t cbase, d, dlower, dupper, dmax, blkno; 713 int32_t i; 714 715 /* 716 * Determine block bounds for cylinder group. 717 * Allow space for super block summary information in first 718 * cylinder group. 719 */ 720 cbase = cgbase(&sblock, cylno); 721 dmax = cbase + sblock.fs_fpg; 722 if (dmax > sblock.fs_size) 723 dmax = sblock.fs_size; 724 dlower = cgsblock(&sblock, cylno) - cbase; 725 dupper = cgdmin(&sblock, cylno) - cbase; 726 if (cylno == 0) 727 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize); 728 memset(&acg, 0, sblock.fs_cgsize); 729 acg.cg_time = utime; 730 acg.cg_magic = CG_MAGIC; 731 acg.cg_cgx = cylno; 732 if (cylno == sblock.fs_ncg - 1) 733 acg.cg_ncyl = sblock.fs_ncyl % sblock.fs_cpg; 734 else 735 acg.cg_ncyl = sblock.fs_cpg; 736 acg.cg_niblk = sblock.fs_ipg; 737 acg.cg_ndblk = dmax - cbase; 738 if (sblock.fs_contigsumsize > 0) 739 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag; 740 acg.cg_btotoff = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield); 741 acg.cg_boff = acg.cg_btotoff + sblock.fs_cpg * sizeof(int32_t); 742 acg.cg_iusedoff = acg.cg_boff + 743 sblock.fs_cpg * sblock.fs_nrpos * sizeof(int16_t); 744 acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, NBBY); 745 if (sblock.fs_contigsumsize <= 0) { 746 acg.cg_nextfreeoff = acg.cg_freeoff + 747 howmany(sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY); 748 } else { 749 acg.cg_clustersumoff = acg.cg_freeoff + howmany 750 (sblock.fs_cpg * sblock.fs_spc / NSPF(&sblock), NBBY) - 751 sizeof(int32_t); 752 acg.cg_clustersumoff = 753 roundup(acg.cg_clustersumoff, sizeof(int32_t)); 754 acg.cg_clusteroff = acg.cg_clustersumoff + 755 (sblock.fs_contigsumsize + 1) * sizeof(int32_t); 756 acg.cg_nextfreeoff = acg.cg_clusteroff + howmany 757 (sblock.fs_cpg * sblock.fs_spc / NSPB(&sblock), NBBY); 758 } 759 if (acg.cg_nextfreeoff > sblock.fs_cgsize) { 760 printf("Panic: cylinder group too big\n"); 761 exit(37); 762 } 763 acg.cg_cs.cs_nifree += sblock.fs_ipg; 764 if (cylno == 0) 765 for (i = 0; i < ROOTINO; i++) { 766 setbit(cg_inosused(&acg, 0), i); 767 acg.cg_cs.cs_nifree--; 768 } 769 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock); i += sblock.fs_frag) 770 ffs_wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i), 771 sblock.fs_bsize, (char *)zino, fsopts); 772 if (cylno > 0) { 773 /* 774 * In cylno 0, beginning space is reserved 775 * for boot and super blocks. 776 */ 777 for (d = 0; d < dlower; d += sblock.fs_frag) { 778 blkno = d / sblock.fs_frag; 779 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); 780 if (sblock.fs_contigsumsize > 0) 781 setbit(cg_clustersfree(&acg, 0), blkno); 782 acg.cg_cs.cs_nbfree++; 783 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++; 784 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0) 785 [cbtorpos(&sblock, d)]++; 786 } 787 sblock.fs_dsize += dlower; 788 } 789 sblock.fs_dsize += acg.cg_ndblk - dupper; 790 if ((i = (dupper % sblock.fs_frag)) != 0) { 791 acg.cg_frsum[sblock.fs_frag - i]++; 792 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) { 793 setbit(cg_blksfree(&acg, 0), dupper); 794 acg.cg_cs.cs_nffree++; 795 } 796 } 797 for (d = dupper; d + sblock.fs_frag <= dmax - cbase; ) { 798 blkno = d / sblock.fs_frag; 799 ffs_setblock(&sblock, cg_blksfree(&acg, 0), blkno); 800 if (sblock.fs_contigsumsize > 0) 801 setbit(cg_clustersfree(&acg, 0), blkno); 802 acg.cg_cs.cs_nbfree++; 803 cg_blktot(&acg, 0)[cbtocylno(&sblock, d)]++; 804 cg_blks(&sblock, &acg, cbtocylno(&sblock, d), 0) 805 [cbtorpos(&sblock, d)]++; 806 d += sblock.fs_frag; 807 } 808 if (d < dmax - cbase) { 809 acg.cg_frsum[dmax - cbase - d]++; 810 for (; d < dmax - cbase; d++) { 811 setbit(cg_blksfree(&acg, 0), d); 812 acg.cg_cs.cs_nffree++; 813 } 814 } 815 if (sblock.fs_contigsumsize > 0) { 816 int32_t *sump = cg_clustersum(&acg, 0); 817 u_char *mapp = cg_clustersfree(&acg, 0); 818 int map = *mapp++; 819 int bit = 1; 820 int run = 0; 821 822 for (i = 0; i < acg.cg_nclusterblks; i++) { 823 if ((map & bit) != 0) { 824 run++; 825 } else if (run != 0) { 826 if (run > sblock.fs_contigsumsize) 827 run = sblock.fs_contigsumsize; 828 sump[run]++; 829 run = 0; 830 } 831 if ((i & (NBBY - 1)) != (NBBY - 1)) { 832 bit <<= 1; 833 } else { 834 map = *mapp++; 835 bit = 1; 836 } 837 } 838 if (run != 0) { 839 if (run > sblock.fs_contigsumsize) 840 run = sblock.fs_contigsumsize; 841 sump[run]++; 842 } 843 } 844 sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir; 845 sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree; 846 sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree; 847 sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree; 848 sblock.fs_cs(&sblock, cylno) = acg.cg_cs; 849 memcpy(writebuf, &acg, sblock.fs_bsize); 850 if (fsopts->needswap) 851 swap_cg(&acg, (struct cg*)writebuf); 852 ffs_wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), 853 sblock.fs_bsize, 854 writebuf, fsopts); 855 } 856 857 /* 858 * Calculate number of inodes per group. 859 */ 860 static int32_t 861 calcipg(int32_t cylpg, int32_t bpcg, off_t *usedbp) 862 { 863 int i; 864 int32_t ipg, new_ipg, ncg, ncyl; 865 off_t usedb; 866 867 /* 868 * Prepare to scale by fssize / (number of sectors in cylinder groups). 869 * Note that fssize is still in sectors, not file system blocks. 870 */ 871 ncyl = howmany(fssize, secpercyl); 872 ncg = howmany(ncyl, cylpg); 873 /* 874 * Iterate a few times to allow for ipg depending on itself. 875 */ 876 ipg = 0; 877 for (i = 0; i < 10; i++) { 878 usedb = (sblock.fs_iblkno + ipg / INOPF(&sblock)) 879 * NSPF(&sblock) * (off_t)sectorsize; 880 if (cylpg * (long long)bpcg < usedb) { 881 warnx("Too many inodes per cyl group!"); 882 return (MAXIPG(&sblock)+1); 883 } 884 new_ipg = (cylpg * (long long)bpcg - usedb) / 885 ((long long)density * fssize / (ncg * secpercyl * cylpg)); 886 if (new_ipg <= 0) 887 new_ipg = 1; /* ensure ipg > 0 */ 888 new_ipg = roundup(new_ipg, INOPB(&sblock)); 889 if (new_ipg == ipg) 890 break; 891 ipg = new_ipg; 892 } 893 *usedbp = usedb; 894 return (ipg); 895 } 896 897 898 /* 899 * read a block from the file system 900 */ 901 void 902 ffs_rdfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 903 { 904 int n; 905 off_t offset; 906 907 offset = bno; 908 offset *= fsopts->sectorsize; 909 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 910 err(1, "ffs_rdfs: seek error: %d\n", bno); 911 n = read(fsopts->fd, bf, size); 912 if (n == -1) 913 err(1, "ffs_rdfs: read error bno %d size %d\n", bno, size); 914 else if (n != size) 915 errx(1, 916 "ffs_rdfs: read error bno %d size %d: short read of %d\n", 917 bno, size, n); 918 } 919 920 /* 921 * write a block to the file system 922 */ 923 void 924 ffs_wtfs(daddr_t bno, int size, void *bf, const fsinfo_t *fsopts) 925 { 926 int n; 927 off_t offset; 928 929 offset = bno; 930 offset *= fsopts->sectorsize; 931 if (lseek(fsopts->fd, offset, SEEK_SET) < 0) 932 err(1, "ffs_wtfs: seek error: %d\n", bno); 933 n = write(fsopts->fd, bf, size); 934 if (n == -1) 935 err(1, "ffs_wtfs: write error bno %d size %d\n", bno, size); 936 else if (n != size) 937 errx(1, 938 "ffs_wtfs: write error bno %d size %d: short write of %d\n", 939 bno, size, n); 940 } 941 942 /* swap byte order of cylinder group */ 943 static void 944 swap_cg(struct cg *o, struct cg *n) 945 { 946 int i, btotsize, fbsize; 947 u_int32_t *n32, *o32; 948 u_int16_t *n16, *o16; 949 950 n->cg_firstfield = bswap32(o->cg_firstfield); 951 n->cg_magic = bswap32(o->cg_magic); 952 n->cg_time = bswap32(o->cg_time); 953 n->cg_cgx = bswap32(o->cg_cgx); 954 n->cg_ncyl = bswap16(o->cg_ncyl); 955 n->cg_niblk = bswap16(o->cg_niblk); 956 n->cg_ndblk = bswap32(o->cg_ndblk); 957 n->cg_cs.cs_ndir = bswap32(o->cg_cs.cs_ndir); 958 n->cg_cs.cs_nbfree = bswap32(o->cg_cs.cs_nbfree); 959 n->cg_cs.cs_nifree = bswap32(o->cg_cs.cs_nifree); 960 n->cg_cs.cs_nffree = bswap32(o->cg_cs.cs_nffree); 961 n->cg_rotor = bswap32(o->cg_rotor); 962 n->cg_frotor = bswap32(o->cg_frotor); 963 n->cg_irotor = bswap32(o->cg_irotor); 964 n->cg_btotoff = bswap32(o->cg_btotoff); 965 n->cg_boff = bswap32(o->cg_boff); 966 n->cg_iusedoff = bswap32(o->cg_iusedoff); 967 n->cg_freeoff = bswap32(o->cg_freeoff); 968 n->cg_nextfreeoff = bswap32(o->cg_nextfreeoff); 969 n->cg_clustersumoff = bswap32(o->cg_clustersumoff); 970 n->cg_clusteroff = bswap32(o->cg_clusteroff); 971 n->cg_nclusterblks = bswap32(o->cg_nclusterblks); 972 for (i=0; i < MAXFRAG; i++) 973 n->cg_frsum[i] = bswap32(o->cg_frsum[i]); 974 975 /* alays new format */ 976 if (n->cg_magic == CG_MAGIC) { 977 btotsize = n->cg_boff - n->cg_btotoff; 978 fbsize = n->cg_iusedoff - n->cg_boff; 979 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_btotoff); 980 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_btotoff); 981 n16 = (u_int16_t*)((u_int8_t*)n + n->cg_boff); 982 o16 = (u_int16_t*)((u_int8_t*)o + n->cg_boff); 983 } else { 984 btotsize = bswap32(n->cg_boff) - bswap32(n->cg_btotoff); 985 fbsize = bswap32(n->cg_iusedoff) - bswap32(n->cg_boff); 986 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_btotoff)); 987 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_btotoff)); 988 n16 = (u_int16_t*)((u_int8_t*)n + bswap32(n->cg_boff)); 989 o16 = (u_int16_t*)((u_int8_t*)o + bswap32(n->cg_boff)); 990 } 991 for (i=0; i < btotsize / sizeof(u_int32_t); i++) 992 n32[i] = bswap32(o32[i]); 993 994 for (i=0; i < fbsize/sizeof(u_int16_t); i++) 995 n16[i] = bswap16(o16[i]); 996 997 if (n->cg_magic == CG_MAGIC) { 998 n32 = (u_int32_t*)((u_int8_t*)n + n->cg_clustersumoff); 999 o32 = (u_int32_t*)((u_int8_t*)o + n->cg_clustersumoff); 1000 } else { 1001 n32 = (u_int32_t*)((u_int8_t*)n + bswap32(n->cg_clustersumoff)); 1002 o32 = (u_int32_t*)((u_int8_t*)o + bswap32(n->cg_clustersumoff)); 1003 } 1004 for (i = 1; i < sblock.fs_contigsumsize + 1; i++) 1005 n32[i] = bswap32(o32[i]); 1006 } 1007 1008 /* Determine how many digits are needed to print a given integer */ 1009 static int 1010 count_digits(int num) 1011 { 1012 int ndig; 1013 1014 for(ndig = 1; num > 9; num /=10, ndig++); 1015 1016 return (ndig); 1017 } 1018