xref: /netbsd-src/usr.sbin/makefs/ffs/ffs_alloc.c (revision d20841bb642898112fe68f0ad3f7b26dddf56f07)
1 /*	$NetBSD: ffs_alloc.c,v 1.13 2003/08/07 11:25:33 agc Exp $	*/
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3 
4 /*
5  * Copyright (c) 2002 Networks Associates Technology, Inc.
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Marshall
9  * Kirk McKusick and Network Associates Laboratories, the Security
10  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12  * research program
13  *
14  * Copyright (c) 1982, 1986, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
42  */
43 
44 #include <sys/cdefs.h>
45 #if defined(__RCSID) && !defined(__lint)
46 __RCSID("$NetBSD: ffs_alloc.c,v 1.13 2003/08/07 11:25:33 agc Exp $");
47 #endif	/* !__lint */
48 
49 #include <sys/param.h>
50 #include <sys/time.h>
51 
52 #include <errno.h>
53 
54 #include "makefs.h"
55 
56 #include <ufs/ufs/dinode.h>
57 #include <ufs/ufs/ufs_bswap.h>
58 #include <ufs/ffs/fs.h>
59 
60 #include "ffs/buf.h"
61 #include "ffs/ufs_inode.h"
62 #include "ffs/ffs_extern.h"
63 
64 
65 static int scanc(u_int, const u_char *, const u_char *, int);
66 
67 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
68 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
69 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
70 		     daddr_t (*)(struct inode *, int, daddr_t, int));
71 static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
72 
73 /* in ffs_tables.c */
74 extern const int inside[], around[];
75 extern const u_char * const fragtbl[];
76 
77 /*
78  * Allocate a block in the file system.
79  *
80  * The size of the requested block is given, which must be some
81  * multiple of fs_fsize and <= fs_bsize.
82  * A preference may be optionally specified. If a preference is given
83  * the following hierarchy is used to allocate a block:
84  *   1) allocate the requested block.
85  *   2) allocate a rotationally optimal block in the same cylinder.
86  *   3) allocate a block in the same cylinder group.
87  *   4) quadradically rehash into other cylinder groups, until an
88  *      available block is located.
89  * If no block preference is given the following hierarchy is used
90  * to allocate a block:
91  *   1) allocate a block in the cylinder group that contains the
92  *      inode for the file.
93  *   2) quadradically rehash into other cylinder groups, until an
94  *      available block is located.
95  */
96 int
97 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
98     daddr_t *bnp)
99 {
100 	struct fs *fs = ip->i_fs;
101 	daddr_t bno;
102 	int cg;
103 
104 	*bnp = 0;
105 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
106 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
107 		    fs->fs_bsize, size);
108 	}
109 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
110 		goto nospace;
111 	if (bpref >= fs->fs_size)
112 		bpref = 0;
113 	if (bpref == 0)
114 		cg = ino_to_cg(fs, ip->i_number);
115 	else
116 		cg = dtog(fs, bpref);
117 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
118 	if (bno > 0) {
119 		DIP(ip, blocks) += size / DEV_BSIZE;
120 		*bnp = bno;
121 		return (0);
122 	}
123 nospace:
124 	return (ENOSPC);
125 }
126 
127 /*
128  * Select the desired position for the next block in a file.  The file is
129  * logically divided into sections. The first section is composed of the
130  * direct blocks. Each additional section contains fs_maxbpg blocks.
131  *
132  * If no blocks have been allocated in the first section, the policy is to
133  * request a block in the same cylinder group as the inode that describes
134  * the file. If no blocks have been allocated in any other section, the
135  * policy is to place the section in a cylinder group with a greater than
136  * average number of free blocks.  An appropriate cylinder group is found
137  * by using a rotor that sweeps the cylinder groups. When a new group of
138  * blocks is needed, the sweep begins in the cylinder group following the
139  * cylinder group from which the previous allocation was made. The sweep
140  * continues until a cylinder group with greater than the average number
141  * of free blocks is found. If the allocation is for the first block in an
142  * indirect block, the information on the previous allocation is unavailable;
143  * here a best guess is made based upon the logical block number being
144  * allocated.
145  *
146  * If a section is already partially allocated, the policy is to
147  * contiguously allocate fs_maxcontig blocks.  The end of one of these
148  * contiguous blocks and the beginning of the next is physically separated
149  * so that the disk head will be in transit between them for at least
150  * fs_rotdelay milliseconds.  This is to allow time for the processor to
151  * schedule another I/O transfer.
152  */
153 /* XXX ondisk32 */
154 daddr_t
155 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
156 {
157 	struct fs *fs;
158 	int cg;
159 	int avgbfree, startcg;
160 
161 	fs = ip->i_fs;
162 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
163 		if (lbn < NDADDR + NINDIR(fs)) {
164 			cg = ino_to_cg(fs, ip->i_number);
165 			return (fs->fs_fpg * cg + fs->fs_frag);
166 		}
167 		/*
168 		 * Find a cylinder with greater than average number of
169 		 * unused data blocks.
170 		 */
171 		if (indx == 0 || bap[indx - 1] == 0)
172 			startcg =
173 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
174 		else
175 			startcg = dtog(fs,
176 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
177 		startcg %= fs->fs_ncg;
178 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
179 		for (cg = startcg; cg < fs->fs_ncg; cg++)
180 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
181 				return (fs->fs_fpg * cg + fs->fs_frag);
182 		for (cg = 0; cg <= startcg; cg++)
183 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
184 				return (fs->fs_fpg * cg + fs->fs_frag);
185 		return (0);
186 	}
187 	/*
188 	 * We just always try to lay things out contiguously.
189 	 */
190 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
191 }
192 
193 daddr_t
194 ffs_blkpref_ufs2(ip, lbn, indx, bap)
195 	struct inode *ip;
196 	daddr_t lbn;
197 	int indx;
198 	int64_t *bap;
199 {
200 	struct fs *fs;
201 	int cg;
202 	int avgbfree, startcg;
203 
204 	fs = ip->i_fs;
205 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
206 		if (lbn < NDADDR + NINDIR(fs)) {
207 			cg = ino_to_cg(fs, ip->i_number);
208 			return (fs->fs_fpg * cg + fs->fs_frag);
209 		}
210 		/*
211 		 * Find a cylinder with greater than average number of
212 		 * unused data blocks.
213 		 */
214 		if (indx == 0 || bap[indx - 1] == 0)
215 			startcg =
216 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
217 		else
218 			startcg = dtog(fs,
219 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
220 		startcg %= fs->fs_ncg;
221 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
222 		for (cg = startcg; cg < fs->fs_ncg; cg++)
223 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
224 				return (fs->fs_fpg * cg + fs->fs_frag);
225 			}
226 		for (cg = 0; cg < startcg; cg++)
227 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
228 				return (fs->fs_fpg * cg + fs->fs_frag);
229 			}
230 		return (0);
231 	}
232 	/*
233 	 * We just always try to lay things out contiguously.
234 	 */
235 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
236 }
237 
238 /*
239  * Implement the cylinder overflow algorithm.
240  *
241  * The policy implemented by this algorithm is:
242  *   1) allocate the block in its requested cylinder group.
243  *   2) quadradically rehash on the cylinder group number.
244  *   3) brute force search for a free block.
245  *
246  * `size':	size for data blocks, mode for inodes
247  */
248 /*VARARGS5*/
249 static daddr_t
250 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
251     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
252 {
253 	struct fs *fs;
254 	daddr_t result;
255 	int i, icg = cg;
256 
257 	fs = ip->i_fs;
258 	/*
259 	 * 1: preferred cylinder group
260 	 */
261 	result = (*allocator)(ip, cg, pref, size);
262 	if (result)
263 		return (result);
264 	/*
265 	 * 2: quadratic rehash
266 	 */
267 	for (i = 1; i < fs->fs_ncg; i *= 2) {
268 		cg += i;
269 		if (cg >= fs->fs_ncg)
270 			cg -= fs->fs_ncg;
271 		result = (*allocator)(ip, cg, 0, size);
272 		if (result)
273 			return (result);
274 	}
275 	/*
276 	 * 3: brute force search
277 	 * Note that we start at i == 2, since 0 was checked initially,
278 	 * and 1 is always checked in the quadratic rehash.
279 	 */
280 	cg = (icg + 2) % fs->fs_ncg;
281 	for (i = 2; i < fs->fs_ncg; i++) {
282 		result = (*allocator)(ip, cg, 0, size);
283 		if (result)
284 			return (result);
285 		cg++;
286 		if (cg == fs->fs_ncg)
287 			cg = 0;
288 	}
289 	return (0);
290 }
291 
292 /*
293  * Determine whether a block can be allocated.
294  *
295  * Check to see if a block of the appropriate size is available,
296  * and if it is, allocate it.
297  */
298 static daddr_t
299 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
300 {
301 	struct cg *cgp;
302 	struct buf *bp;
303 	daddr_t bno, blkno;
304 	int error, frags, allocsiz, i;
305 	struct fs *fs = ip->i_fs;
306 	const int needswap = UFS_FSNEEDSWAP(fs);
307 
308 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
309 		return (0);
310 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
311 		(int)fs->fs_cgsize, &bp);
312 	if (error) {
313 		brelse(bp);
314 		return (0);
315 	}
316 	cgp = (struct cg *)bp->b_data;
317 	if (!cg_chkmagic(cgp, needswap) ||
318 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
319 		brelse(bp);
320 		return (0);
321 	}
322 	if (size == fs->fs_bsize) {
323 		bno = ffs_alloccgblk(ip, bp, bpref);
324 		bdwrite(bp);
325 		return (bno);
326 	}
327 	/*
328 	 * check to see if any fragments are already available
329 	 * allocsiz is the size which will be allocated, hacking
330 	 * it down to a smaller size if necessary
331 	 */
332 	frags = numfrags(fs, size);
333 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
334 		if (cgp->cg_frsum[allocsiz] != 0)
335 			break;
336 	if (allocsiz == fs->fs_frag) {
337 		/*
338 		 * no fragments were available, so a block will be
339 		 * allocated, and hacked up
340 		 */
341 		if (cgp->cg_cs.cs_nbfree == 0) {
342 			brelse(bp);
343 			return (0);
344 		}
345 		bno = ffs_alloccgblk(ip, bp, bpref);
346 		bpref = dtogd(fs, bno);
347 		for (i = frags; i < fs->fs_frag; i++)
348 			setbit(cg_blksfree(cgp, needswap), bpref + i);
349 		i = fs->fs_frag - frags;
350 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
351 		fs->fs_cstotal.cs_nffree += i;
352 		fs->fs_cs(fs, cg).cs_nffree += i;
353 		fs->fs_fmod = 1;
354 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
355 		bdwrite(bp);
356 		return (bno);
357 	}
358 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
359 	for (i = 0; i < frags; i++)
360 		clrbit(cg_blksfree(cgp, needswap), bno + i);
361 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
362 	fs->fs_cstotal.cs_nffree -= frags;
363 	fs->fs_cs(fs, cg).cs_nffree -= frags;
364 	fs->fs_fmod = 1;
365 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
366 	if (frags != allocsiz)
367 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
368 	blkno = cg * fs->fs_fpg + bno;
369 	bdwrite(bp);
370 	return blkno;
371 }
372 
373 /*
374  * Allocate a block in a cylinder group.
375  *
376  * This algorithm implements the following policy:
377  *   1) allocate the requested block.
378  *   2) allocate a rotationally optimal block in the same cylinder.
379  *   3) allocate the next available block on the block rotor for the
380  *      specified cylinder group.
381  * Note that this routine only allocates fs_bsize blocks; these
382  * blocks may be fragmented by the routine that allocates them.
383  */
384 static daddr_t
385 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
386 {
387 	struct cg *cgp;
388 	daddr_t blkno;
389 	int32_t bno;
390 	struct fs *fs = ip->i_fs;
391 	const int needswap = UFS_FSNEEDSWAP(fs);
392 	u_int8_t *blksfree;
393 
394 	cgp = (struct cg *)bp->b_data;
395 	blksfree = cg_blksfree(cgp, needswap);
396 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
397 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
398 	} else {
399 		bpref = blknum(fs, bpref);
400 		bno = dtogd(fs, bpref);
401 		/*
402 		 * if the requested block is available, use it
403 		 */
404 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
405 			goto gotit;
406 	}
407 	/*
408 	 * Take the next available one in this cylinder group.
409 	 */
410 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
411 	if (bno < 0)
412 		return (0);
413 	cgp->cg_rotor = ufs_rw32(bno, needswap);
414 gotit:
415 	blkno = fragstoblks(fs, bno);
416 	ffs_clrblock(fs, blksfree, (long)blkno);
417 	ffs_clusteracct(fs, cgp, blkno, -1);
418 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
419 	fs->fs_cstotal.cs_nbfree--;
420 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
421 	fs->fs_fmod = 1;
422 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
423 	return (blkno);
424 }
425 
426 /*
427  * Free a block or fragment.
428  *
429  * The specified block or fragment is placed back in the
430  * free map. If a fragment is deallocated, a possible
431  * block reassembly is checked.
432  */
433 void
434 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
435 {
436 	struct cg *cgp;
437 	struct buf *bp;
438 	int32_t fragno, cgbno;
439 	int i, error, cg, blk, frags, bbase;
440 	struct fs *fs = ip->i_fs;
441 	const int needswap = UFS_FSNEEDSWAP(fs);
442 
443 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
444 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
445 		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
446 		    (long long)bno, fs->fs_bsize, size);
447 	}
448 	cg = dtog(fs, bno);
449 	if (bno >= fs->fs_size) {
450 		warnx("bad block %lld, ino %d", (long long)bno, ip->i_number);
451 		return;
452 	}
453 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
454 		(int)fs->fs_cgsize, &bp);
455 	if (error) {
456 		brelse(bp);
457 		return;
458 	}
459 	cgp = (struct cg *)bp->b_data;
460 	if (!cg_chkmagic(cgp, needswap)) {
461 		brelse(bp);
462 		return;
463 	}
464 	cgbno = dtogd(fs, bno);
465 	if (size == fs->fs_bsize) {
466 		fragno = fragstoblks(fs, cgbno);
467 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
468 			errx(1, "blkfree: freeing free block %lld",
469 			    (long long)bno);
470 		}
471 		ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
472 		ffs_clusteracct(fs, cgp, fragno, 1);
473 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
474 		fs->fs_cstotal.cs_nbfree++;
475 		fs->fs_cs(fs, cg).cs_nbfree++;
476 	} else {
477 		bbase = cgbno - fragnum(fs, cgbno);
478 		/*
479 		 * decrement the counts associated with the old frags
480 		 */
481 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
482 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
483 		/*
484 		 * deallocate the fragment
485 		 */
486 		frags = numfrags(fs, size);
487 		for (i = 0; i < frags; i++) {
488 			if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
489 				errx(1, "blkfree: freeing free frag: block %lld",
490 				    (long long)(cgbno + i));
491 			}
492 			setbit(cg_blksfree(cgp, needswap), cgbno + i);
493 		}
494 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
495 		fs->fs_cstotal.cs_nffree += i;
496 		fs->fs_cs(fs, cg).cs_nffree += i;
497 		/*
498 		 * add back in counts associated with the new frags
499 		 */
500 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
501 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
502 		/*
503 		 * if a complete block has been reassembled, account for it
504 		 */
505 		fragno = fragstoblks(fs, bbase);
506 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
507 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
508 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
509 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
510 			ffs_clusteracct(fs, cgp, fragno, 1);
511 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
512 			fs->fs_cstotal.cs_nbfree++;
513 			fs->fs_cs(fs, cg).cs_nbfree++;
514 		}
515 	}
516 	fs->fs_fmod = 1;
517 	bdwrite(bp);
518 }
519 
520 
521 static int
522 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
523 {
524 	const u_char *end = &cp[size];
525 
526 	while (cp < end && (table[*cp] & mask) == 0)
527 		cp++;
528 	return (end - cp);
529 }
530 
531 /*
532  * Find a block of the specified size in the specified cylinder group.
533  *
534  * It is a panic if a request is made to find a block if none are
535  * available.
536  */
537 static int32_t
538 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
539 {
540 	int32_t bno;
541 	int start, len, loc, i;
542 	int blk, field, subfield, pos;
543 	int ostart, olen;
544 	const int needswap = UFS_FSNEEDSWAP(fs);
545 
546 	/*
547 	 * find the fragment by searching through the free block
548 	 * map for an appropriate bit pattern
549 	 */
550 	if (bpref)
551 		start = dtogd(fs, bpref) / NBBY;
552 	else
553 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
554 	len = howmany(fs->fs_fpg, NBBY) - start;
555 	ostart = start;
556 	olen = len;
557 	loc = scanc((u_int)len,
558 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
559 		(const u_char *)fragtbl[fs->fs_frag],
560 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
561 	if (loc == 0) {
562 		len = start + 1;
563 		start = 0;
564 		loc = scanc((u_int)len,
565 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
566 			(const u_char *)fragtbl[fs->fs_frag],
567 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
568 		if (loc == 0) {
569 			errx(1,
570     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
571 				ostart, olen,
572 				ufs_rw32(cgp->cg_freeoff, needswap),
573 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
574 			/* NOTREACHED */
575 		}
576 	}
577 	bno = (start + len - loc) * NBBY;
578 	cgp->cg_frotor = ufs_rw32(bno, needswap);
579 	/*
580 	 * found the byte in the map
581 	 * sift through the bits to find the selected frag
582 	 */
583 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
584 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
585 		blk <<= 1;
586 		field = around[allocsiz];
587 		subfield = inside[allocsiz];
588 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
589 			if ((blk & field) == subfield)
590 				return (bno + pos);
591 			field <<= 1;
592 			subfield <<= 1;
593 		}
594 	}
595 	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
596 	return (-1);
597 }
598 
599 /*
600  * Update the cluster map because of an allocation or free.
601  *
602  * Cnt == 1 means free; cnt == -1 means allocating.
603  */
604 void
605 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
606 {
607 	int32_t *sump;
608 	int32_t *lp;
609 	u_char *freemapp, *mapp;
610 	int i, start, end, forw, back, map, bit;
611 	const int needswap = UFS_FSNEEDSWAP(fs);
612 
613 	if (fs->fs_contigsumsize <= 0)
614 		return;
615 	freemapp = cg_clustersfree(cgp, needswap);
616 	sump = cg_clustersum(cgp, needswap);
617 	/*
618 	 * Allocate or clear the actual block.
619 	 */
620 	if (cnt > 0)
621 		setbit(freemapp, blkno);
622 	else
623 		clrbit(freemapp, blkno);
624 	/*
625 	 * Find the size of the cluster going forward.
626 	 */
627 	start = blkno + 1;
628 	end = start + fs->fs_contigsumsize;
629 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
630 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
631 	mapp = &freemapp[start / NBBY];
632 	map = *mapp++;
633 	bit = 1 << (start % NBBY);
634 	for (i = start; i < end; i++) {
635 		if ((map & bit) == 0)
636 			break;
637 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
638 			bit <<= 1;
639 		} else {
640 			map = *mapp++;
641 			bit = 1;
642 		}
643 	}
644 	forw = i - start;
645 	/*
646 	 * Find the size of the cluster going backward.
647 	 */
648 	start = blkno - 1;
649 	end = start - fs->fs_contigsumsize;
650 	if (end < 0)
651 		end = -1;
652 	mapp = &freemapp[start / NBBY];
653 	map = *mapp--;
654 	bit = 1 << (start % NBBY);
655 	for (i = start; i > end; i--) {
656 		if ((map & bit) == 0)
657 			break;
658 		if ((i & (NBBY - 1)) != 0) {
659 			bit >>= 1;
660 		} else {
661 			map = *mapp--;
662 			bit = 1 << (NBBY - 1);
663 		}
664 	}
665 	back = start - i;
666 	/*
667 	 * Account for old cluster and the possibly new forward and
668 	 * back clusters.
669 	 */
670 	i = back + forw + 1;
671 	if (i > fs->fs_contigsumsize)
672 		i = fs->fs_contigsumsize;
673 	ufs_add32(sump[i], cnt, needswap);
674 	if (back > 0)
675 		ufs_add32(sump[back], -cnt, needswap);
676 	if (forw > 0)
677 		ufs_add32(sump[forw], -cnt, needswap);
678 
679 	/*
680 	 * Update cluster summary information.
681 	 */
682 	lp = &sump[fs->fs_contigsumsize];
683 	for (i = fs->fs_contigsumsize; i > 0; i--)
684 		if (ufs_rw32(*lp--, needswap) > 0)
685 			break;
686 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
687 }
688