xref: /netbsd-src/usr.sbin/makefs/ffs/ffs_alloc.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: ffs_alloc.c,v 1.14 2004/06/20 22:20:18 jmc Exp $	*/
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3 
4 /*
5  * Copyright (c) 2002 Networks Associates Technology, Inc.
6  * All rights reserved.
7  *
8  * This software was developed for the FreeBSD Project by Marshall
9  * Kirk McKusick and Network Associates Laboratories, the Security
10  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
11  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
12  * research program
13  *
14  * Copyright (c) 1982, 1986, 1989, 1993
15  *	The Regents of the University of California.  All rights reserved.
16  *
17  * Redistribution and use in source and binary forms, with or without
18  * modification, are permitted provided that the following conditions
19  * are met:
20  * 1. Redistributions of source code must retain the above copyright
21  *    notice, this list of conditions and the following disclaimer.
22  * 2. Redistributions in binary form must reproduce the above copyright
23  *    notice, this list of conditions and the following disclaimer in the
24  *    documentation and/or other materials provided with the distribution.
25  * 3. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
42  */
43 
44 #if HAVE_NBTOOL_CONFIG_H
45 #include "nbtool_config.h"
46 #endif
47 
48 #include <sys/cdefs.h>
49 #if defined(__RCSID) && !defined(__lint)
50 __RCSID("$NetBSD: ffs_alloc.c,v 1.14 2004/06/20 22:20:18 jmc Exp $");
51 #endif	/* !__lint */
52 
53 #include <sys/param.h>
54 #include <sys/time.h>
55 
56 #include <errno.h>
57 
58 #include "makefs.h"
59 
60 #include <ufs/ufs/dinode.h>
61 #include <ufs/ufs/ufs_bswap.h>
62 #include <ufs/ffs/fs.h>
63 
64 #include "ffs/buf.h"
65 #include "ffs/ufs_inode.h"
66 #include "ffs/ffs_extern.h"
67 
68 
69 static int scanc(u_int, const u_char *, const u_char *, int);
70 
71 static daddr_t ffs_alloccg(struct inode *, int, daddr_t, int);
72 static daddr_t ffs_alloccgblk(struct inode *, struct buf *, daddr_t);
73 static daddr_t ffs_hashalloc(struct inode *, int, daddr_t, int,
74 		     daddr_t (*)(struct inode *, int, daddr_t, int));
75 static int32_t ffs_mapsearch(struct fs *, struct cg *, daddr_t, int);
76 
77 /* in ffs_tables.c */
78 extern const int inside[], around[];
79 extern const u_char * const fragtbl[];
80 
81 /*
82  * Allocate a block in the file system.
83  *
84  * The size of the requested block is given, which must be some
85  * multiple of fs_fsize and <= fs_bsize.
86  * A preference may be optionally specified. If a preference is given
87  * the following hierarchy is used to allocate a block:
88  *   1) allocate the requested block.
89  *   2) allocate a rotationally optimal block in the same cylinder.
90  *   3) allocate a block in the same cylinder group.
91  *   4) quadradically rehash into other cylinder groups, until an
92  *      available block is located.
93  * If no block preference is given the following hierarchy is used
94  * to allocate a block:
95  *   1) allocate a block in the cylinder group that contains the
96  *      inode for the file.
97  *   2) quadradically rehash into other cylinder groups, until an
98  *      available block is located.
99  */
100 int
101 ffs_alloc(struct inode *ip, daddr_t lbn, daddr_t bpref, int size,
102     daddr_t *bnp)
103 {
104 	struct fs *fs = ip->i_fs;
105 	daddr_t bno;
106 	int cg;
107 
108 	*bnp = 0;
109 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
110 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
111 		    fs->fs_bsize, size);
112 	}
113 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
114 		goto nospace;
115 	if (bpref >= fs->fs_size)
116 		bpref = 0;
117 	if (bpref == 0)
118 		cg = ino_to_cg(fs, ip->i_number);
119 	else
120 		cg = dtog(fs, bpref);
121 	bno = ffs_hashalloc(ip, cg, bpref, size, ffs_alloccg);
122 	if (bno > 0) {
123 		DIP(ip, blocks) += size / DEV_BSIZE;
124 		*bnp = bno;
125 		return (0);
126 	}
127 nospace:
128 	return (ENOSPC);
129 }
130 
131 /*
132  * Select the desired position for the next block in a file.  The file is
133  * logically divided into sections. The first section is composed of the
134  * direct blocks. Each additional section contains fs_maxbpg blocks.
135  *
136  * If no blocks have been allocated in the first section, the policy is to
137  * request a block in the same cylinder group as the inode that describes
138  * the file. If no blocks have been allocated in any other section, the
139  * policy is to place the section in a cylinder group with a greater than
140  * average number of free blocks.  An appropriate cylinder group is found
141  * by using a rotor that sweeps the cylinder groups. When a new group of
142  * blocks is needed, the sweep begins in the cylinder group following the
143  * cylinder group from which the previous allocation was made. The sweep
144  * continues until a cylinder group with greater than the average number
145  * of free blocks is found. If the allocation is for the first block in an
146  * indirect block, the information on the previous allocation is unavailable;
147  * here a best guess is made based upon the logical block number being
148  * allocated.
149  *
150  * If a section is already partially allocated, the policy is to
151  * contiguously allocate fs_maxcontig blocks.  The end of one of these
152  * contiguous blocks and the beginning of the next is physically separated
153  * so that the disk head will be in transit between them for at least
154  * fs_rotdelay milliseconds.  This is to allow time for the processor to
155  * schedule another I/O transfer.
156  */
157 /* XXX ondisk32 */
158 daddr_t
159 ffs_blkpref_ufs1(struct inode *ip, daddr_t lbn, int indx, int32_t *bap)
160 {
161 	struct fs *fs;
162 	int cg;
163 	int avgbfree, startcg;
164 
165 	fs = ip->i_fs;
166 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
167 		if (lbn < NDADDR + NINDIR(fs)) {
168 			cg = ino_to_cg(fs, ip->i_number);
169 			return (fs->fs_fpg * cg + fs->fs_frag);
170 		}
171 		/*
172 		 * Find a cylinder with greater than average number of
173 		 * unused data blocks.
174 		 */
175 		if (indx == 0 || bap[indx - 1] == 0)
176 			startcg =
177 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
178 		else
179 			startcg = dtog(fs,
180 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
181 		startcg %= fs->fs_ncg;
182 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
183 		for (cg = startcg; cg < fs->fs_ncg; cg++)
184 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
185 				return (fs->fs_fpg * cg + fs->fs_frag);
186 		for (cg = 0; cg <= startcg; cg++)
187 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree)
188 				return (fs->fs_fpg * cg + fs->fs_frag);
189 		return (0);
190 	}
191 	/*
192 	 * We just always try to lay things out contiguously.
193 	 */
194 	return ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
195 }
196 
197 daddr_t
198 ffs_blkpref_ufs2(ip, lbn, indx, bap)
199 	struct inode *ip;
200 	daddr_t lbn;
201 	int indx;
202 	int64_t *bap;
203 {
204 	struct fs *fs;
205 	int cg;
206 	int avgbfree, startcg;
207 
208 	fs = ip->i_fs;
209 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
210 		if (lbn < NDADDR + NINDIR(fs)) {
211 			cg = ino_to_cg(fs, ip->i_number);
212 			return (fs->fs_fpg * cg + fs->fs_frag);
213 		}
214 		/*
215 		 * Find a cylinder with greater than average number of
216 		 * unused data blocks.
217 		 */
218 		if (indx == 0 || bap[indx - 1] == 0)
219 			startcg =
220 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
221 		else
222 			startcg = dtog(fs,
223 				ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
224 		startcg %= fs->fs_ncg;
225 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
226 		for (cg = startcg; cg < fs->fs_ncg; cg++)
227 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
228 				return (fs->fs_fpg * cg + fs->fs_frag);
229 			}
230 		for (cg = 0; cg < startcg; cg++)
231 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
232 				return (fs->fs_fpg * cg + fs->fs_frag);
233 			}
234 		return (0);
235 	}
236 	/*
237 	 * We just always try to lay things out contiguously.
238 	 */
239 	return ufs_rw64(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
240 }
241 
242 /*
243  * Implement the cylinder overflow algorithm.
244  *
245  * The policy implemented by this algorithm is:
246  *   1) allocate the block in its requested cylinder group.
247  *   2) quadradically rehash on the cylinder group number.
248  *   3) brute force search for a free block.
249  *
250  * `size':	size for data blocks, mode for inodes
251  */
252 /*VARARGS5*/
253 static daddr_t
254 ffs_hashalloc(struct inode *ip, int cg, daddr_t pref, int size,
255     daddr_t (*allocator)(struct inode *, int, daddr_t, int))
256 {
257 	struct fs *fs;
258 	daddr_t result;
259 	int i, icg = cg;
260 
261 	fs = ip->i_fs;
262 	/*
263 	 * 1: preferred cylinder group
264 	 */
265 	result = (*allocator)(ip, cg, pref, size);
266 	if (result)
267 		return (result);
268 	/*
269 	 * 2: quadratic rehash
270 	 */
271 	for (i = 1; i < fs->fs_ncg; i *= 2) {
272 		cg += i;
273 		if (cg >= fs->fs_ncg)
274 			cg -= fs->fs_ncg;
275 		result = (*allocator)(ip, cg, 0, size);
276 		if (result)
277 			return (result);
278 	}
279 	/*
280 	 * 3: brute force search
281 	 * Note that we start at i == 2, since 0 was checked initially,
282 	 * and 1 is always checked in the quadratic rehash.
283 	 */
284 	cg = (icg + 2) % fs->fs_ncg;
285 	for (i = 2; i < fs->fs_ncg; i++) {
286 		result = (*allocator)(ip, cg, 0, size);
287 		if (result)
288 			return (result);
289 		cg++;
290 		if (cg == fs->fs_ncg)
291 			cg = 0;
292 	}
293 	return (0);
294 }
295 
296 /*
297  * Determine whether a block can be allocated.
298  *
299  * Check to see if a block of the appropriate size is available,
300  * and if it is, allocate it.
301  */
302 static daddr_t
303 ffs_alloccg(struct inode *ip, int cg, daddr_t bpref, int size)
304 {
305 	struct cg *cgp;
306 	struct buf *bp;
307 	daddr_t bno, blkno;
308 	int error, frags, allocsiz, i;
309 	struct fs *fs = ip->i_fs;
310 	const int needswap = UFS_FSNEEDSWAP(fs);
311 
312 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
313 		return (0);
314 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
315 		(int)fs->fs_cgsize, &bp);
316 	if (error) {
317 		brelse(bp);
318 		return (0);
319 	}
320 	cgp = (struct cg *)bp->b_data;
321 	if (!cg_chkmagic(cgp, needswap) ||
322 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
323 		brelse(bp);
324 		return (0);
325 	}
326 	if (size == fs->fs_bsize) {
327 		bno = ffs_alloccgblk(ip, bp, bpref);
328 		bdwrite(bp);
329 		return (bno);
330 	}
331 	/*
332 	 * check to see if any fragments are already available
333 	 * allocsiz is the size which will be allocated, hacking
334 	 * it down to a smaller size if necessary
335 	 */
336 	frags = numfrags(fs, size);
337 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
338 		if (cgp->cg_frsum[allocsiz] != 0)
339 			break;
340 	if (allocsiz == fs->fs_frag) {
341 		/*
342 		 * no fragments were available, so a block will be
343 		 * allocated, and hacked up
344 		 */
345 		if (cgp->cg_cs.cs_nbfree == 0) {
346 			brelse(bp);
347 			return (0);
348 		}
349 		bno = ffs_alloccgblk(ip, bp, bpref);
350 		bpref = dtogd(fs, bno);
351 		for (i = frags; i < fs->fs_frag; i++)
352 			setbit(cg_blksfree(cgp, needswap), bpref + i);
353 		i = fs->fs_frag - frags;
354 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
355 		fs->fs_cstotal.cs_nffree += i;
356 		fs->fs_cs(fs, cg).cs_nffree += i;
357 		fs->fs_fmod = 1;
358 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
359 		bdwrite(bp);
360 		return (bno);
361 	}
362 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
363 	for (i = 0; i < frags; i++)
364 		clrbit(cg_blksfree(cgp, needswap), bno + i);
365 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
366 	fs->fs_cstotal.cs_nffree -= frags;
367 	fs->fs_cs(fs, cg).cs_nffree -= frags;
368 	fs->fs_fmod = 1;
369 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
370 	if (frags != allocsiz)
371 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
372 	blkno = cg * fs->fs_fpg + bno;
373 	bdwrite(bp);
374 	return blkno;
375 }
376 
377 /*
378  * Allocate a block in a cylinder group.
379  *
380  * This algorithm implements the following policy:
381  *   1) allocate the requested block.
382  *   2) allocate a rotationally optimal block in the same cylinder.
383  *   3) allocate the next available block on the block rotor for the
384  *      specified cylinder group.
385  * Note that this routine only allocates fs_bsize blocks; these
386  * blocks may be fragmented by the routine that allocates them.
387  */
388 static daddr_t
389 ffs_alloccgblk(struct inode *ip, struct buf *bp, daddr_t bpref)
390 {
391 	struct cg *cgp;
392 	daddr_t blkno;
393 	int32_t bno;
394 	struct fs *fs = ip->i_fs;
395 	const int needswap = UFS_FSNEEDSWAP(fs);
396 	u_int8_t *blksfree;
397 
398 	cgp = (struct cg *)bp->b_data;
399 	blksfree = cg_blksfree(cgp, needswap);
400 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
401 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
402 	} else {
403 		bpref = blknum(fs, bpref);
404 		bno = dtogd(fs, bpref);
405 		/*
406 		 * if the requested block is available, use it
407 		 */
408 		if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno)))
409 			goto gotit;
410 	}
411 	/*
412 	 * Take the next available one in this cylinder group.
413 	 */
414 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
415 	if (bno < 0)
416 		return (0);
417 	cgp->cg_rotor = ufs_rw32(bno, needswap);
418 gotit:
419 	blkno = fragstoblks(fs, bno);
420 	ffs_clrblock(fs, blksfree, (long)blkno);
421 	ffs_clusteracct(fs, cgp, blkno, -1);
422 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
423 	fs->fs_cstotal.cs_nbfree--;
424 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
425 	fs->fs_fmod = 1;
426 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
427 	return (blkno);
428 }
429 
430 /*
431  * Free a block or fragment.
432  *
433  * The specified block or fragment is placed back in the
434  * free map. If a fragment is deallocated, a possible
435  * block reassembly is checked.
436  */
437 void
438 ffs_blkfree(struct inode *ip, daddr_t bno, long size)
439 {
440 	struct cg *cgp;
441 	struct buf *bp;
442 	int32_t fragno, cgbno;
443 	int i, error, cg, blk, frags, bbase;
444 	struct fs *fs = ip->i_fs;
445 	const int needswap = UFS_FSNEEDSWAP(fs);
446 
447 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
448 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
449 		errx(1, "blkfree: bad size: bno %lld bsize %d size %ld",
450 		    (long long)bno, fs->fs_bsize, size);
451 	}
452 	cg = dtog(fs, bno);
453 	if (bno >= fs->fs_size) {
454 		warnx("bad block %lld, ino %d", (long long)bno, ip->i_number);
455 		return;
456 	}
457 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
458 		(int)fs->fs_cgsize, &bp);
459 	if (error) {
460 		brelse(bp);
461 		return;
462 	}
463 	cgp = (struct cg *)bp->b_data;
464 	if (!cg_chkmagic(cgp, needswap)) {
465 		brelse(bp);
466 		return;
467 	}
468 	cgbno = dtogd(fs, bno);
469 	if (size == fs->fs_bsize) {
470 		fragno = fragstoblks(fs, cgbno);
471 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), fragno)) {
472 			errx(1, "blkfree: freeing free block %lld",
473 			    (long long)bno);
474 		}
475 		ffs_setblock(fs, cg_blksfree(cgp, needswap), fragno);
476 		ffs_clusteracct(fs, cgp, fragno, 1);
477 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
478 		fs->fs_cstotal.cs_nbfree++;
479 		fs->fs_cs(fs, cg).cs_nbfree++;
480 	} else {
481 		bbase = cgbno - fragnum(fs, cgbno);
482 		/*
483 		 * decrement the counts associated with the old frags
484 		 */
485 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
486 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
487 		/*
488 		 * deallocate the fragment
489 		 */
490 		frags = numfrags(fs, size);
491 		for (i = 0; i < frags; i++) {
492 			if (isset(cg_blksfree(cgp, needswap), cgbno + i)) {
493 				errx(1, "blkfree: freeing free frag: block %lld",
494 				    (long long)(cgbno + i));
495 			}
496 			setbit(cg_blksfree(cgp, needswap), cgbno + i);
497 		}
498 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
499 		fs->fs_cstotal.cs_nffree += i;
500 		fs->fs_cs(fs, cg).cs_nffree += i;
501 		/*
502 		 * add back in counts associated with the new frags
503 		 */
504 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
505 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
506 		/*
507 		 * if a complete block has been reassembled, account for it
508 		 */
509 		fragno = fragstoblks(fs, bbase);
510 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), fragno)) {
511 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
512 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
513 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
514 			ffs_clusteracct(fs, cgp, fragno, 1);
515 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
516 			fs->fs_cstotal.cs_nbfree++;
517 			fs->fs_cs(fs, cg).cs_nbfree++;
518 		}
519 	}
520 	fs->fs_fmod = 1;
521 	bdwrite(bp);
522 }
523 
524 
525 static int
526 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
527 {
528 	const u_char *end = &cp[size];
529 
530 	while (cp < end && (table[*cp] & mask) == 0)
531 		cp++;
532 	return (end - cp);
533 }
534 
535 /*
536  * Find a block of the specified size in the specified cylinder group.
537  *
538  * It is a panic if a request is made to find a block if none are
539  * available.
540  */
541 static int32_t
542 ffs_mapsearch(struct fs *fs, struct cg *cgp, daddr_t bpref, int allocsiz)
543 {
544 	int32_t bno;
545 	int start, len, loc, i;
546 	int blk, field, subfield, pos;
547 	int ostart, olen;
548 	const int needswap = UFS_FSNEEDSWAP(fs);
549 
550 	/*
551 	 * find the fragment by searching through the free block
552 	 * map for an appropriate bit pattern
553 	 */
554 	if (bpref)
555 		start = dtogd(fs, bpref) / NBBY;
556 	else
557 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
558 	len = howmany(fs->fs_fpg, NBBY) - start;
559 	ostart = start;
560 	olen = len;
561 	loc = scanc((u_int)len,
562 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
563 		(const u_char *)fragtbl[fs->fs_frag],
564 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
565 	if (loc == 0) {
566 		len = start + 1;
567 		start = 0;
568 		loc = scanc((u_int)len,
569 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
570 			(const u_char *)fragtbl[fs->fs_frag],
571 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
572 		if (loc == 0) {
573 			errx(1,
574     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
575 				ostart, olen,
576 				ufs_rw32(cgp->cg_freeoff, needswap),
577 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
578 			/* NOTREACHED */
579 		}
580 	}
581 	bno = (start + len - loc) * NBBY;
582 	cgp->cg_frotor = ufs_rw32(bno, needswap);
583 	/*
584 	 * found the byte in the map
585 	 * sift through the bits to find the selected frag
586 	 */
587 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
588 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
589 		blk <<= 1;
590 		field = around[allocsiz];
591 		subfield = inside[allocsiz];
592 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
593 			if ((blk & field) == subfield)
594 				return (bno + pos);
595 			field <<= 1;
596 			subfield <<= 1;
597 		}
598 	}
599 	errx(1, "ffs_alloccg: block not in map: bno %lld", (long long)bno);
600 	return (-1);
601 }
602 
603 /*
604  * Update the cluster map because of an allocation or free.
605  *
606  * Cnt == 1 means free; cnt == -1 means allocating.
607  */
608 void
609 ffs_clusteracct(struct fs *fs, struct cg *cgp, int32_t blkno, int cnt)
610 {
611 	int32_t *sump;
612 	int32_t *lp;
613 	u_char *freemapp, *mapp;
614 	int i, start, end, forw, back, map, bit;
615 	const int needswap = UFS_FSNEEDSWAP(fs);
616 
617 	if (fs->fs_contigsumsize <= 0)
618 		return;
619 	freemapp = cg_clustersfree(cgp, needswap);
620 	sump = cg_clustersum(cgp, needswap);
621 	/*
622 	 * Allocate or clear the actual block.
623 	 */
624 	if (cnt > 0)
625 		setbit(freemapp, blkno);
626 	else
627 		clrbit(freemapp, blkno);
628 	/*
629 	 * Find the size of the cluster going forward.
630 	 */
631 	start = blkno + 1;
632 	end = start + fs->fs_contigsumsize;
633 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
634 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
635 	mapp = &freemapp[start / NBBY];
636 	map = *mapp++;
637 	bit = 1 << (start % NBBY);
638 	for (i = start; i < end; i++) {
639 		if ((map & bit) == 0)
640 			break;
641 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
642 			bit <<= 1;
643 		} else {
644 			map = *mapp++;
645 			bit = 1;
646 		}
647 	}
648 	forw = i - start;
649 	/*
650 	 * Find the size of the cluster going backward.
651 	 */
652 	start = blkno - 1;
653 	end = start - fs->fs_contigsumsize;
654 	if (end < 0)
655 		end = -1;
656 	mapp = &freemapp[start / NBBY];
657 	map = *mapp--;
658 	bit = 1 << (start % NBBY);
659 	for (i = start; i > end; i--) {
660 		if ((map & bit) == 0)
661 			break;
662 		if ((i & (NBBY - 1)) != 0) {
663 			bit >>= 1;
664 		} else {
665 			map = *mapp--;
666 			bit = 1 << (NBBY - 1);
667 		}
668 	}
669 	back = start - i;
670 	/*
671 	 * Account for old cluster and the possibly new forward and
672 	 * back clusters.
673 	 */
674 	i = back + forw + 1;
675 	if (i > fs->fs_contigsumsize)
676 		i = fs->fs_contigsumsize;
677 	ufs_add32(sump[i], cnt, needswap);
678 	if (back > 0)
679 		ufs_add32(sump[back], -cnt, needswap);
680 	if (forw > 0)
681 		ufs_add32(sump[forw], -cnt, needswap);
682 
683 	/*
684 	 * Update cluster summary information.
685 	 */
686 	lp = &sump[fs->fs_contigsumsize];
687 	for (i = fs->fs_contigsumsize; i > 0; i--)
688 		if (ufs_rw32(*lp--, needswap) > 0)
689 			break;
690 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
691 }
692