xref: /netbsd-src/usr.sbin/makefs/ffs/ffs_alloc.c (revision 220b5c059a84c51ea44107ea8951a57ffaecdc8c)
1 /*	$NetBSD: ffs_alloc.c,v 1.3 2001/11/22 02:47:26 lukem Exp $	*/
2 /* From: NetBSD: ffs_alloc.c,v 1.50 2001/09/06 02:16:01 lukem Exp */
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)ffs_alloc.c	8.19 (Berkeley) 7/13/95
37  */
38 
39 #include <sys/cdefs.h>
40 #ifndef __lint
41 __RCSID("$NetBSD: ffs_alloc.c,v 1.3 2001/11/22 02:47:26 lukem Exp $");
42 #endif	/* !__lint */
43 
44 #include <sys/param.h>
45 #include <sys/time.h>
46 
47 #include <err.h>
48 #include <errno.h>
49 
50 #include "ufs/ufs/ufs_bswap.h"
51 #include "ufs/ufs/inode.h"
52 #include "ufs/ffs/fs.h"
53 
54 #include "ffs/buf.h"
55 #include "ffs/ffs_extern.h"
56 
57 
58 static int scanc(u_int, const u_char *, const u_char *, int);
59 
60 static ufs_daddr_t ffs_alloccg(struct inode *, int, ufs_daddr_t, int);
61 static ufs_daddr_t ffs_alloccgblk(struct inode *, struct buf *, ufs_daddr_t);
62 static u_long ffs_hashalloc(struct inode *, int, long, int,
63 		     ufs_daddr_t (*)(struct inode *, int, ufs_daddr_t, int));
64 static ufs_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs_daddr_t, int);
65 
66 /* in ffs_tables.c */
67 extern const int inside[], around[];
68 extern const u_char * const fragtbl[];
69 
70 /*
71  * Allocate a block in the file system.
72  *
73  * The size of the requested block is given, which must be some
74  * multiple of fs_fsize and <= fs_bsize.
75  * A preference may be optionally specified. If a preference is given
76  * the following hierarchy is used to allocate a block:
77  *   1) allocate the requested block.
78  *   2) allocate a rotationally optimal block in the same cylinder.
79  *   3) allocate a block in the same cylinder group.
80  *   4) quadradically rehash into other cylinder groups, until an
81  *      available block is located.
82  * If no block preference is given the following hierarchy is used
83  * to allocate a block:
84  *   1) allocate a block in the cylinder group that contains the
85  *      inode for the file.
86  *   2) quadradically rehash into other cylinder groups, until an
87  *      available block is located.
88  */
89 int
90 ffs_alloc(struct inode *ip, ufs_daddr_t lbn, ufs_daddr_t bpref, int size,
91     ufs_daddr_t *bnp)
92 {
93 	struct fs *fs = ip->i_fs;
94 	ufs_daddr_t bno;
95 	int cg;
96 
97 	*bnp = 0;
98 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) {
99 		errx(1, "ffs_alloc: bad size: bsize %d size %d",
100 		    fs->fs_bsize, size);
101 	}
102 	if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0)
103 		goto nospace;
104 	if (bpref >= fs->fs_size)
105 		bpref = 0;
106 	if (bpref == 0)
107 		cg = ino_to_cg(fs, ip->i_number);
108 	else
109 		cg = dtog(fs, bpref);
110 	bno = (ufs_daddr_t)ffs_hashalloc(ip, cg, (long)bpref, size,
111 	    			     ffs_alloccg);
112 	if (bno > 0) {
113 		ip->i_ffs_blocks += btodb(size);
114 		*bnp = bno;
115 		return (0);
116 	}
117 nospace:
118 	return (ENOSPC);
119 }
120 
121 /*
122  * Select the desired position for the next block in a file.  The file is
123  * logically divided into sections. The first section is composed of the
124  * direct blocks. Each additional section contains fs_maxbpg blocks.
125  *
126  * If no blocks have been allocated in the first section, the policy is to
127  * request a block in the same cylinder group as the inode that describes
128  * the file. If no blocks have been allocated in any other section, the
129  * policy is to place the section in a cylinder group with a greater than
130  * average number of free blocks.  An appropriate cylinder group is found
131  * by using a rotor that sweeps the cylinder groups. When a new group of
132  * blocks is needed, the sweep begins in the cylinder group following the
133  * cylinder group from which the previous allocation was made. The sweep
134  * continues until a cylinder group with greater than the average number
135  * of free blocks is found. If the allocation is for the first block in an
136  * indirect block, the information on the previous allocation is unavailable;
137  * here a best guess is made based upon the logical block number being
138  * allocated.
139  *
140  * If a section is already partially allocated, the policy is to
141  * contiguously allocate fs_maxcontig blocks.  The end of one of these
142  * contiguous blocks and the beginning of the next is physically separated
143  * so that the disk head will be in transit between them for at least
144  * fs_rotdelay milliseconds.  This is to allow time for the processor to
145  * schedule another I/O transfer.
146  */
147 ufs_daddr_t
148 ffs_blkpref(struct inode *ip, ufs_daddr_t lbn, int indx, ufs_daddr_t *bap)
149 {
150 	struct fs *fs;
151 	int cg;
152 	int avgbfree, startcg;
153 	ufs_daddr_t nextblk;
154 
155 	fs = ip->i_fs;
156 	if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) {
157 		if (lbn < NDADDR + NINDIR(fs)) {
158 			cg = ino_to_cg(fs, ip->i_number);
159 			return (fs->fs_fpg * cg + fs->fs_frag);
160 		}
161 		/*
162 		 * Find a cylinder with greater than average number of
163 		 * unused data blocks.
164 		 */
165 		if (indx == 0 || bap[indx - 1] == 0)
166 			startcg =
167 			    ino_to_cg(fs, ip->i_number) + lbn / fs->fs_maxbpg;
168 		else
169 			startcg = dtog(fs,
170 				ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + 1);
171 		startcg %= fs->fs_ncg;
172 		avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg;
173 		for (cg = startcg; cg < fs->fs_ncg; cg++)
174 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
175 				fs->fs_cgrotor = cg;
176 				return (fs->fs_fpg * cg + fs->fs_frag);
177 			}
178 		for (cg = 0; cg <= startcg; cg++)
179 			if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) {
180 				fs->fs_cgrotor = cg;
181 				return (fs->fs_fpg * cg + fs->fs_frag);
182 			}
183 		return (0);
184 	}
185 	/*
186 	 * One or more previous blocks have been laid out. If less
187 	 * than fs_maxcontig previous blocks are contiguous, the
188 	 * next block is requested contiguously, otherwise it is
189 	 * requested rotationally delayed by fs_rotdelay milliseconds.
190 	 */
191 	nextblk = ufs_rw32(bap[indx - 1], UFS_FSNEEDSWAP(fs)) + fs->fs_frag;
192 	if (indx < fs->fs_maxcontig ||
193 		ufs_rw32(bap[indx - fs->fs_maxcontig], UFS_FSNEEDSWAP(fs)) +
194 	    blkstofrags(fs, fs->fs_maxcontig) != nextblk)
195 		return (nextblk);
196 	if (fs->fs_rotdelay != 0)
197 		/*
198 		 * Here we convert ms of delay to frags as:
199 		 * (frags) = (ms) * (rev/sec) * (sect/rev) /
200 		 *	((sect/frag) * (ms/sec))
201 		 * then round up to the next block.
202 		 */
203 		nextblk += roundup(fs->fs_rotdelay * fs->fs_rps * fs->fs_nsect /
204 		    (NSPF(fs) * 1000), fs->fs_frag);
205 	return (nextblk);
206 }
207 
208 /*
209  * Implement the cylinder overflow algorithm.
210  *
211  * The policy implemented by this algorithm is:
212  *   1) allocate the block in its requested cylinder group.
213  *   2) quadradically rehash on the cylinder group number.
214  *   3) brute force search for a free block.
215  *
216  * `size':	size for data blocks, mode for inodes
217  */
218 /*VARARGS5*/
219 static u_long
220 ffs_hashalloc(struct inode *ip, int cg, long pref, int size,
221     ufs_daddr_t (*allocator)(struct inode *, int, ufs_daddr_t, int))
222 {
223 	struct fs *fs;
224 	long result;
225 	int i, icg = cg;
226 
227 	fs = ip->i_fs;
228 	/*
229 	 * 1: preferred cylinder group
230 	 */
231 	result = (*allocator)(ip, cg, pref, size);
232 	if (result)
233 		return (result);
234 	/*
235 	 * 2: quadratic rehash
236 	 */
237 	for (i = 1; i < fs->fs_ncg; i *= 2) {
238 		cg += i;
239 		if (cg >= fs->fs_ncg)
240 			cg -= fs->fs_ncg;
241 		result = (*allocator)(ip, cg, 0, size);
242 		if (result)
243 			return (result);
244 	}
245 	/*
246 	 * 3: brute force search
247 	 * Note that we start at i == 2, since 0 was checked initially,
248 	 * and 1 is always checked in the quadratic rehash.
249 	 */
250 	cg = (icg + 2) % fs->fs_ncg;
251 	for (i = 2; i < fs->fs_ncg; i++) {
252 		result = (*allocator)(ip, cg, 0, size);
253 		if (result)
254 			return (result);
255 		cg++;
256 		if (cg == fs->fs_ncg)
257 			cg = 0;
258 	}
259 	return (0);
260 }
261 
262 /*
263  * Determine whether a block can be allocated.
264  *
265  * Check to see if a block of the appropriate size is available,
266  * and if it is, allocate it.
267  */
268 static ufs_daddr_t
269 ffs_alloccg(struct inode *ip, int cg, ufs_daddr_t bpref, int size)
270 {
271 	struct cg *cgp;
272 	struct buf *bp;
273 	ufs_daddr_t bno, blkno;
274 	int error, frags, allocsiz, i;
275 	struct fs *fs = ip->i_fs;
276 	const int needswap = UFS_FSNEEDSWAP(fs);
277 
278 	if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize)
279 		return (0);
280 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
281 		(int)fs->fs_cgsize, &bp);
282 	if (error) {
283 		brelse(bp);
284 		return (0);
285 	}
286 	cgp = (struct cg *)bp->b_data;
287 	if (!cg_chkmagic(cgp, needswap) ||
288 	    (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) {
289 		brelse(bp);
290 		return (0);
291 	}
292 	if (size == fs->fs_bsize) {
293 		bno = ffs_alloccgblk(ip, bp, bpref);
294 		bdwrite(bp);
295 		return (bno);
296 	}
297 	/*
298 	 * check to see if any fragments are already available
299 	 * allocsiz is the size which will be allocated, hacking
300 	 * it down to a smaller size if necessary
301 	 */
302 	frags = numfrags(fs, size);
303 	for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++)
304 		if (cgp->cg_frsum[allocsiz] != 0)
305 			break;
306 	if (allocsiz == fs->fs_frag) {
307 		/*
308 		 * no fragments were available, so a block will be
309 		 * allocated, and hacked up
310 		 */
311 		if (cgp->cg_cs.cs_nbfree == 0) {
312 			brelse(bp);
313 			return (0);
314 		}
315 		bno = ffs_alloccgblk(ip, bp, bpref);
316 		bpref = dtogd(fs, bno);
317 		for (i = frags; i < fs->fs_frag; i++)
318 			setbit(cg_blksfree(cgp, needswap), bpref + i);
319 		i = fs->fs_frag - frags;
320 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
321 		fs->fs_cstotal.cs_nffree += i;
322 		fs->fs_cs(fs, cg).cs_nffree += i;
323 		fs->fs_fmod = 1;
324 		ufs_add32(cgp->cg_frsum[i], 1, needswap);
325 		bdwrite(bp);
326 		return (bno);
327 	}
328 	bno = ffs_mapsearch(fs, cgp, bpref, allocsiz);
329 	for (i = 0; i < frags; i++)
330 		clrbit(cg_blksfree(cgp, needswap), bno + i);
331 	ufs_add32(cgp->cg_cs.cs_nffree, -frags, needswap);
332 	fs->fs_cstotal.cs_nffree -= frags;
333 	fs->fs_cs(fs, cg).cs_nffree -= frags;
334 	fs->fs_fmod = 1;
335 	ufs_add32(cgp->cg_frsum[allocsiz], -1, needswap);
336 	if (frags != allocsiz)
337 		ufs_add32(cgp->cg_frsum[allocsiz - frags], 1, needswap);
338 	blkno = cg * fs->fs_fpg + bno;
339 	bdwrite(bp);
340 	return blkno;
341 }
342 
343 /*
344  * Allocate a block in a cylinder group.
345  *
346  * This algorithm implements the following policy:
347  *   1) allocate the requested block.
348  *   2) allocate a rotationally optimal block in the same cylinder.
349  *   3) allocate the next available block on the block rotor for the
350  *      specified cylinder group.
351  * Note that this routine only allocates fs_bsize blocks; these
352  * blocks may be fragmented by the routine that allocates them.
353  */
354 static ufs_daddr_t
355 ffs_alloccgblk(struct inode *ip, struct buf *bp, ufs_daddr_t bpref)
356 {
357 	struct cg *cgp;
358 	ufs_daddr_t bno, blkno;
359 	int cylno, pos, delta;
360 	short *cylbp;
361 	int i;
362 	struct fs *fs = ip->i_fs;
363 	const int needswap = UFS_FSNEEDSWAP(fs);
364 
365 	cgp = (struct cg *)bp->b_data;
366 	if (bpref == 0 || dtog(fs, bpref) != ufs_rw32(cgp->cg_cgx, needswap)) {
367 		bpref = ufs_rw32(cgp->cg_rotor, needswap);
368 		goto norot;
369 	}
370 	bpref = blknum(fs, bpref);
371 	bpref = dtogd(fs, bpref);
372 	/*
373 	 * if the requested block is available, use it
374 	 */
375 	if (ffs_isblock(fs, cg_blksfree(cgp, needswap),
376 		fragstoblks(fs, bpref))) {
377 		bno = bpref;
378 		goto gotit;
379 	}
380 	if (fs->fs_nrpos <= 1 || fs->fs_cpc == 0) {
381 		/*
382 		 * Block layout information is not available.
383 		 * Leaving bpref unchanged means we take the
384 		 * next available free block following the one
385 		 * we just allocated. Hopefully this will at
386 		 * least hit a track cache on drives of unknown
387 		 * geometry (e.g. SCSI).
388 		 */
389 		goto norot;
390 	}
391 	/*
392 	 * check for a block available on the same cylinder
393 	 */
394 	cylno = cbtocylno(fs, bpref);
395 	if (cg_blktot(cgp, needswap)[cylno] == 0)
396 		goto norot;
397 	/*
398 	 * check the summary information to see if a block is
399 	 * available in the requested cylinder starting at the
400 	 * requested rotational position and proceeding around.
401 	 */
402 	cylbp = cg_blks(fs, cgp, cylno, needswap);
403 	pos = cbtorpos(fs, bpref);
404 	for (i = pos; i < fs->fs_nrpos; i++)
405 		if (ufs_rw16(cylbp[i], needswap) > 0)
406 			break;
407 	if (i == fs->fs_nrpos)
408 		for (i = 0; i < pos; i++)
409 			if (ufs_rw16(cylbp[i], needswap) > 0)
410 				break;
411 	if (ufs_rw16(cylbp[i], needswap) > 0) {
412 		/*
413 		 * found a rotational position, now find the actual
414 		 * block. A panic if none is actually there.
415 		 */
416 		pos = cylno % fs->fs_cpc;
417 		bno = (cylno - pos) * fs->fs_spc / NSPB(fs);
418 		if (fs_postbl(fs, pos)[i] == -1) {
419 			errx(1,
420 			    "ffs_alloccgblk: cyl groups corrupted: pos %d i %d",
421 			    pos, i);
422 		}
423 		for (i = fs_postbl(fs, pos)[i];; ) {
424 			if (ffs_isblock(fs, cg_blksfree(cgp, needswap), bno + i)) {
425 				bno = blkstofrags(fs, (bno + i));
426 				goto gotit;
427 			}
428 			delta = fs_rotbl(fs)[i];
429 			if (delta <= 0 ||
430 			    delta + i > fragstoblks(fs, fs->fs_fpg))
431 				break;
432 			i += delta;
433 		}
434 		errx(1, "ffs_alloccgblk: can't find blk in cyl: pos %d i %d",
435 		    pos, i);
436 	}
437 norot:
438 	/*
439 	 * no blocks in the requested cylinder, so take next
440 	 * available one in this cylinder group.
441 	 */
442 	bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag);
443 	if (bno < 0)
444 		return (0);
445 	cgp->cg_rotor = ufs_rw32(bno, needswap);
446 gotit:
447 	blkno = fragstoblks(fs, bno);
448 	ffs_clrblock(fs, cg_blksfree(cgp, needswap), (long)blkno);
449 	ffs_clusteracct(fs, cgp, blkno, -1);
450 	ufs_add32(cgp->cg_cs.cs_nbfree, -1, needswap);
451 	fs->fs_cstotal.cs_nbfree--;
452 	fs->fs_cs(fs, ufs_rw32(cgp->cg_cgx, needswap)).cs_nbfree--;
453 	cylno = cbtocylno(fs, bno);
454 	ufs_add16(cg_blks(fs, cgp, cylno, needswap)[cbtorpos(fs, bno)], -1,
455 	    needswap);
456 	ufs_add32(cg_blktot(cgp, needswap)[cylno], -1, needswap);
457 	fs->fs_fmod = 1;
458 	blkno = ufs_rw32(cgp->cg_cgx, needswap) * fs->fs_fpg + bno;
459 	return (blkno);
460 }
461 
462 /*
463  * Free a block or fragment.
464  *
465  * The specified block or fragment is placed back in the
466  * free map. If a fragment is deallocated, a possible
467  * block reassembly is checked.
468  */
469 void
470 ffs_blkfree(struct inode *ip, ufs_daddr_t bno, long size)
471 {
472 	struct cg *cgp;
473 	struct buf *bp;
474 	ufs_daddr_t blkno;
475 	int i, error, cg, blk, frags, bbase;
476 	struct fs *fs = ip->i_fs;
477 	const int needswap = UFS_FSNEEDSWAP(fs);
478 
479 	if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 ||
480 	    fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) {
481 		errx(1, "blkfree: bad size: bno %u bsize %d size %ld",
482 		    bno, fs->fs_bsize, size);
483 	}
484 	cg = dtog(fs, bno);
485 	if ((u_int)bno >= fs->fs_size) {
486 		warnx("bad block %d, ino %d\n", bno, ip->i_number);
487 		return;
488 	}
489 	error = bread(ip->i_fd, ip->i_fs, fsbtodb(fs, cgtod(fs, cg)),
490 		(int)fs->fs_cgsize, &bp);
491 	if (error) {
492 		brelse(bp);
493 		return;
494 	}
495 	cgp = (struct cg *)bp->b_data;
496 	if (!cg_chkmagic(cgp, needswap)) {
497 		brelse(bp);
498 		return;
499 	}
500 	bno = dtogd(fs, bno);
501 	if (size == fs->fs_bsize) {
502 		blkno = fragstoblks(fs, bno);
503 		if (!ffs_isfreeblock(fs, cg_blksfree(cgp, needswap), blkno)) {
504 			errx(1, "blkfree: freeing free block %d", bno);
505 		}
506 		ffs_setblock(fs, cg_blksfree(cgp, needswap), blkno);
507 		ffs_clusteracct(fs, cgp, blkno, 1);
508 		ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
509 		fs->fs_cstotal.cs_nbfree++;
510 		fs->fs_cs(fs, cg).cs_nbfree++;
511 		i = cbtocylno(fs, bno);
512 		ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs, bno)], 1,
513 		    needswap);
514 		ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
515 	} else {
516 		bbase = bno - fragnum(fs, bno);
517 		/*
518 		 * decrement the counts associated with the old frags
519 		 */
520 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
521 		ffs_fragacct(fs, blk, cgp->cg_frsum, -1, needswap);
522 		/*
523 		 * deallocate the fragment
524 		 */
525 		frags = numfrags(fs, size);
526 		for (i = 0; i < frags; i++) {
527 			if (isset(cg_blksfree(cgp, needswap), bno + i)) {
528 				errx(1, "blkfree: freeing free frag: block %d",
529 				    bno + i);
530 			}
531 			setbit(cg_blksfree(cgp, needswap), bno + i);
532 		}
533 		ufs_add32(cgp->cg_cs.cs_nffree, i, needswap);
534 		fs->fs_cstotal.cs_nffree += i;
535 		fs->fs_cs(fs, cg).cs_nffree += i;
536 		/*
537 		 * add back in counts associated with the new frags
538 		 */
539 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bbase);
540 		ffs_fragacct(fs, blk, cgp->cg_frsum, 1, needswap);
541 		/*
542 		 * if a complete block has been reassembled, account for it
543 		 */
544 		blkno = fragstoblks(fs, bbase);
545 		if (ffs_isblock(fs, cg_blksfree(cgp, needswap), blkno)) {
546 			ufs_add32(cgp->cg_cs.cs_nffree, -fs->fs_frag, needswap);
547 			fs->fs_cstotal.cs_nffree -= fs->fs_frag;
548 			fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag;
549 			ffs_clusteracct(fs, cgp, blkno, 1);
550 			ufs_add32(cgp->cg_cs.cs_nbfree, 1, needswap);
551 			fs->fs_cstotal.cs_nbfree++;
552 			fs->fs_cs(fs, cg).cs_nbfree++;
553 			i = cbtocylno(fs, bbase);
554 			ufs_add16(cg_blks(fs, cgp, i, needswap)[cbtorpos(fs,
555 								bbase)], 1,
556 			    needswap);
557 			ufs_add32(cg_blktot(cgp, needswap)[i], 1, needswap);
558 		}
559 	}
560 	fs->fs_fmod = 1;
561 	bdwrite(bp);
562 }
563 
564 
565 static int
566 scanc(u_int size, const u_char *cp, const u_char table[], int mask)
567 {
568 	const u_char *end = &cp[size];
569 
570 	while (cp < end && (table[*cp] & mask) == 0)
571 		cp++;
572 	return (end - cp);
573 }
574 
575 /*
576  * Find a block of the specified size in the specified cylinder group.
577  *
578  * It is a panic if a request is made to find a block if none are
579  * available.
580  */
581 static ufs_daddr_t
582 ffs_mapsearch(struct fs *fs, struct cg *cgp, ufs_daddr_t bpref, int allocsiz)
583 {
584 	ufs_daddr_t bno;
585 	int start, len, loc, i;
586 	int blk, field, subfield, pos;
587 	int ostart, olen;
588 	const int needswap = UFS_FSNEEDSWAP(fs);
589 
590 	/*
591 	 * find the fragment by searching through the free block
592 	 * map for an appropriate bit pattern
593 	 */
594 	if (bpref)
595 		start = dtogd(fs, bpref) / NBBY;
596 	else
597 		start = ufs_rw32(cgp->cg_frotor, needswap) / NBBY;
598 	len = howmany(fs->fs_fpg, NBBY) - start;
599 	ostart = start;
600 	olen = len;
601 	loc = scanc((u_int)len,
602 		(const u_char *)&cg_blksfree(cgp, needswap)[start],
603 		(const u_char *)fragtbl[fs->fs_frag],
604 		(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
605 	if (loc == 0) {
606 		len = start + 1;
607 		start = 0;
608 		loc = scanc((u_int)len,
609 			(const u_char *)&cg_blksfree(cgp, needswap)[0],
610 			(const u_char *)fragtbl[fs->fs_frag],
611 			(1 << (allocsiz - 1 + (fs->fs_frag % NBBY))));
612 		if (loc == 0) {
613 			errx(1,
614     "ffs_alloccg: map corrupted: start %d len %d offset %d %ld",
615 				ostart, olen,
616 				ufs_rw32(cgp->cg_freeoff, needswap),
617 				(long)cg_blksfree(cgp, needswap) - (long)cgp);
618 			/* NOTREACHED */
619 		}
620 	}
621 	bno = (start + len - loc) * NBBY;
622 	cgp->cg_frotor = ufs_rw32(bno, needswap);
623 	/*
624 	 * found the byte in the map
625 	 * sift through the bits to find the selected frag
626 	 */
627 	for (i = bno + NBBY; bno < i; bno += fs->fs_frag) {
628 		blk = blkmap(fs, cg_blksfree(cgp, needswap), bno);
629 		blk <<= 1;
630 		field = around[allocsiz];
631 		subfield = inside[allocsiz];
632 		for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) {
633 			if ((blk & field) == subfield)
634 				return (bno + pos);
635 			field <<= 1;
636 			subfield <<= 1;
637 		}
638 	}
639 	errx(1, "ffs_alloccg: block not in map: bno %d", bno);
640 	return (-1);
641 }
642 
643 /*
644  * Update the cluster map because of an allocation or free.
645  *
646  * Cnt == 1 means free; cnt == -1 means allocating.
647  */
648 void
649 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs_daddr_t blkno, int cnt)
650 {
651 	int32_t *sump;
652 	int32_t *lp;
653 	u_char *freemapp, *mapp;
654 	int i, start, end, forw, back, map, bit;
655 	const int needswap = UFS_FSNEEDSWAP(fs);
656 
657 	if (fs->fs_contigsumsize <= 0)
658 		return;
659 	freemapp = cg_clustersfree(cgp, needswap);
660 	sump = cg_clustersum(cgp, needswap);
661 	/*
662 	 * Allocate or clear the actual block.
663 	 */
664 	if (cnt > 0)
665 		setbit(freemapp, blkno);
666 	else
667 		clrbit(freemapp, blkno);
668 	/*
669 	 * Find the size of the cluster going forward.
670 	 */
671 	start = blkno + 1;
672 	end = start + fs->fs_contigsumsize;
673 	if (end >= ufs_rw32(cgp->cg_nclusterblks, needswap))
674 		end = ufs_rw32(cgp->cg_nclusterblks, needswap);
675 	mapp = &freemapp[start / NBBY];
676 	map = *mapp++;
677 	bit = 1 << (start % NBBY);
678 	for (i = start; i < end; i++) {
679 		if ((map & bit) == 0)
680 			break;
681 		if ((i & (NBBY - 1)) != (NBBY - 1)) {
682 			bit <<= 1;
683 		} else {
684 			map = *mapp++;
685 			bit = 1;
686 		}
687 	}
688 	forw = i - start;
689 	/*
690 	 * Find the size of the cluster going backward.
691 	 */
692 	start = blkno - 1;
693 	end = start - fs->fs_contigsumsize;
694 	if (end < 0)
695 		end = -1;
696 	mapp = &freemapp[start / NBBY];
697 	map = *mapp--;
698 	bit = 1 << (start % NBBY);
699 	for (i = start; i > end; i--) {
700 		if ((map & bit) == 0)
701 			break;
702 		if ((i & (NBBY - 1)) != 0) {
703 			bit >>= 1;
704 		} else {
705 			map = *mapp--;
706 			bit = 1 << (NBBY - 1);
707 		}
708 	}
709 	back = start - i;
710 	/*
711 	 * Account for old cluster and the possibly new forward and
712 	 * back clusters.
713 	 */
714 	i = back + forw + 1;
715 	if (i > fs->fs_contigsumsize)
716 		i = fs->fs_contigsumsize;
717 	ufs_add32(sump[i], cnt, needswap);
718 	if (back > 0)
719 		ufs_add32(sump[back], -cnt, needswap);
720 	if (forw > 0)
721 		ufs_add32(sump[forw], -cnt, needswap);
722 
723 	/*
724 	 * Update cluster summary information.
725 	 */
726 	lp = &sump[fs->fs_contigsumsize];
727 	for (i = fs->fs_contigsumsize; i > 0; i--)
728 		if (ufs_rw32(*lp--, needswap) > 0)
729 			break;
730 	fs->fs_maxcluster[ufs_rw32(cgp->cg_cgx, needswap)] = i;
731 }
732