1 /* $NetBSD: hammer2_disk.h,v 1.1 2020/01/01 08:56:41 tkusumi Exp $ */ 2 3 /* 4 * Copyright (c) 2011-2019 The DragonFly Project. All rights reserved. 5 * 6 * This code is derived from software contributed to The DragonFly Project 7 * by Matthew Dillon <dillon@dragonflybsd.org> 8 * by Venkatesh Srinivas <vsrinivas@dragonflybsd.org> 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 14 * 1. Redistributions of source code must retain the above copyright 15 * notice, this list of conditions and the following disclaimer. 16 * 2. Redistributions in binary form must reproduce the above copyright 17 * notice, this list of conditions and the following disclaimer in 18 * the documentation and/or other materials provided with the 19 * distribution. 20 * 3. Neither the name of The DragonFly Project nor the names of its 21 * contributors may be used to endorse or promote products derived 22 * from this software without specific, prior written permission. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 26 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 27 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 28 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 29 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING, 30 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 31 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 32 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 33 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 34 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 */ 37 #include <sys/cdefs.h> 38 __KERNEL_RCSID(0, "$NetBSD: hammer2_disk.h,v 1.1 2020/01/01 08:56:41 tkusumi Exp $"); 39 40 #ifndef _VFS_HAMMER2_DISK_H_ 41 #define _VFS_HAMMER2_DISK_H_ 42 43 #ifndef _SYS_UUID_H_ 44 #include <sys/uuid.h> 45 #endif 46 #if 0 47 #ifndef _SYS_DMSG_H_ 48 #include <sys/dmsg.h> 49 #endif 50 #endif 51 52 /* 53 * The structures below represent the on-disk media structures for the HAMMER2 54 * filesystem. Note that all fields for on-disk structures are naturally 55 * aligned. The host endian format is typically used - compatibility is 56 * possible if the implementation detects reversed endian and adjusts accesses 57 * accordingly. 58 * 59 * HAMMER2 primarily revolves around the directory topology: inodes, 60 * directory entries, and block tables. Block device buffer cache buffers 61 * are always 64KB. Logical file buffers are typically 16KB. All data 62 * references utilize 64-bit byte offsets. 63 * 64 * Free block management is handled independently using blocks reserved by 65 * the media topology. 66 */ 67 68 /* 69 * The data at the end of a file or directory may be a fragment in order 70 * to optimize storage efficiency. The minimum fragment size is 1KB. 71 * Since allocations are in powers of 2 fragments must also be sized in 72 * powers of 2 (1024, 2048, ... 65536). 73 * 74 * For the moment the maximum allocation size is HAMMER2_PBUFSIZE (64K), 75 * which is 2^16. Larger extents may be supported in the future. Smaller 76 * fragments might be supported in the future (down to 64 bytes is possible), 77 * but probably will not be. 78 * 79 * A full indirect block use supports 512 x 128-byte blockrefs in a 64KB 80 * buffer. Indirect blocks down to 1KB are supported to keep small 81 * directories small. 82 * 83 * A maximally sized file (2^64-1 bytes) requires ~6 indirect block levels 84 * using 64KB indirect blocks (128 byte refs, 512 or radix 9 per indblk). 85 * 86 * 16(datablk) + 9 + 9 + 9 + 9 + 9 + 9 = ~70. 87 * 16(datablk) + 7 + 9 + 9 + 9 + 9 + 9 = ~68. (smaller top level indblk) 88 * 89 * The actual depth depends on copies redundancy and whether the filesystem 90 * has chosen to use a smaller indirect block size at the top level or not. 91 */ 92 #define HAMMER2_ALLOC_MIN 1024 /* minimum allocation size */ 93 #define HAMMER2_RADIX_MIN 10 /* minimum allocation size 2^N */ 94 #define HAMMER2_ALLOC_MAX 65536 /* maximum allocation size */ 95 #define HAMMER2_RADIX_MAX 16 /* maximum allocation size 2^N */ 96 #define HAMMER2_RADIX_KEY 64 /* number of bits in key */ 97 98 /* 99 * MINALLOCSIZE - The minimum allocation size. This can be smaller 100 * or larger than the minimum physical IO size. 101 * 102 * NOTE: Should not be larger than 1K since inodes 103 * are 1K. 104 * 105 * MINIOSIZE - The minimum IO size. This must be less than 106 * or equal to HAMMER2_LBUFSIZE. 107 * 108 * HAMMER2_LBUFSIZE - Nominal buffer size for I/O rollups. 109 * 110 * HAMMER2_PBUFSIZE - Topological block size used by files for all 111 * blocks except the block straddling EOF. 112 * 113 * HAMMER2_SEGSIZE - Allocation map segment size, typically 4MB 114 * (space represented by a level0 bitmap). 115 */ 116 117 #define HAMMER2_SEGSIZE (1 << HAMMER2_FREEMAP_LEVEL0_RADIX) 118 #define HAMMER2_SEGRADIX HAMMER2_FREEMAP_LEVEL0_RADIX 119 120 #define HAMMER2_PBUFRADIX 16 /* physical buf (1<<16) bytes */ 121 #define HAMMER2_PBUFSIZE 65536 122 #define HAMMER2_LBUFRADIX 14 /* logical buf (1<<14) bytes */ 123 #define HAMMER2_LBUFSIZE 16384 124 125 /* 126 * Generally speaking we want to use 16K and 64K I/Os 127 */ 128 #define HAMMER2_MINIORADIX HAMMER2_LBUFRADIX 129 #define HAMMER2_MINIOSIZE HAMMER2_LBUFSIZE 130 131 #define HAMMER2_IND_BYTES_MIN 4096 132 #define HAMMER2_IND_BYTES_NOM HAMMER2_LBUFSIZE 133 #define HAMMER2_IND_BYTES_MAX HAMMER2_PBUFSIZE 134 #define HAMMER2_IND_RADIX_MIN 12 135 #define HAMMER2_IND_RADIX_NOM HAMMER2_LBUFRADIX 136 #define HAMMER2_IND_RADIX_MAX HAMMER2_PBUFRADIX 137 #define HAMMER2_IND_COUNT_MIN (HAMMER2_IND_BYTES_MIN / \ 138 sizeof(hammer2_blockref_t)) 139 #define HAMMER2_IND_COUNT_MAX (HAMMER2_IND_BYTES_MAX / \ 140 sizeof(hammer2_blockref_t)) 141 142 /* 143 * In HAMMER2, arrays of blockrefs are fully set-associative, meaning that 144 * any element can occur at any index and holes can be anywhere. As a 145 * future optimization we will be able to flag that such arrays are sorted 146 * and thus optimize lookups, but for now we don't. 147 * 148 * Inodes embed either 512 bytes of direct data or an array of 4 blockrefs, 149 * resulting in highly efficient storage for files <= 512 bytes and for files 150 * <= 512KB. Up to 4 directory entries can be referenced from a directory 151 * without requiring an indirect block. 152 * 153 * Indirect blocks are typically either 4KB (64 blockrefs / ~4MB represented), 154 * or 64KB (1024 blockrefs / ~64MB represented). 155 */ 156 #define HAMMER2_SET_RADIX 2 /* radix 2 = 4 entries */ 157 #define HAMMER2_SET_COUNT (1 << HAMMER2_SET_RADIX) 158 #define HAMMER2_EMBEDDED_BYTES 512 /* inode blockset/dd size */ 159 #define HAMMER2_EMBEDDED_RADIX 9 160 161 #define HAMMER2_PBUFMASK (HAMMER2_PBUFSIZE - 1) 162 #define HAMMER2_LBUFMASK (HAMMER2_LBUFSIZE - 1) 163 #define HAMMER2_SEGMASK (HAMMER2_SEGSIZE - 1) 164 165 #define HAMMER2_LBUFMASK64 ((hammer2_off_t)HAMMER2_LBUFMASK) 166 #define HAMMER2_PBUFSIZE64 ((hammer2_off_t)HAMMER2_PBUFSIZE) 167 #define HAMMER2_PBUFMASK64 ((hammer2_off_t)HAMMER2_PBUFMASK) 168 #define HAMMER2_SEGSIZE64 ((hammer2_off_t)HAMMER2_SEGSIZE) 169 #define HAMMER2_SEGMASK64 ((hammer2_off_t)HAMMER2_SEGMASK) 170 171 #define HAMMER2_UUID_STRING "5cbb9ad1-862d-11dc-a94d-01301bb8a9f5" 172 173 /* 174 * A 4MB segment is reserved at the beginning of each 2GB zone. This segment 175 * contains the volume header (or backup volume header), the free block 176 * table, and possibly other information in the future. A 4MB segment for 177 * freemap is reserved at the beginning of every 1GB. 178 * 179 * 4MB = 64 x 64K blocks. Each 4MB segment is broken down as follows: 180 * 181 * ========== 182 * 0 volume header (for the first four 2GB zones) 183 * 1 freemap00 level1 FREEMAP_LEAF (256 x 128B bitmap data per 1GB) 184 * 2 level2 FREEMAP_NODE (256 x 128B indirect block per 256GB) 185 * 3 level3 FREEMAP_NODE (256 x 128B indirect block per 64TB) 186 * 4 level4 FREEMAP_NODE (256 x 128B indirect block per 16PB) 187 * 5 level5 FREEMAP_NODE (256 x 128B indirect block per 4EB) 188 * 6 freemap01 level1 (rotation) 189 * 7 level2 190 * 8 level3 191 * 9 level4 192 * 10 level5 193 * 11 freemap02 level1 (rotation) 194 * 12 level2 195 * 13 level3 196 * 14 level4 197 * 15 level5 198 * 16 freemap03 level1 (rotation) 199 * 17 level2 200 * 18 level3 201 * 19 level4 202 * 20 level5 203 * 21 freemap04 level1 (rotation) 204 * 22 level2 205 * 23 level3 206 * 24 level4 207 * 25 level5 208 * 26 freemap05 level1 (rotation) 209 * 27 level2 210 * 28 level3 211 * 29 level4 212 * 30 level5 213 * 31 freemap06 level1 (rotation) 214 * 32 level2 215 * 33 level3 216 * 34 level4 217 * 35 level5 218 * 36 freemap07 level1 (rotation) 219 * 37 level2 220 * 38 level3 221 * 39 level4 222 * 40 level5 223 * 41 unused 224 * .. unused 225 * 63 unused 226 * ========== 227 * 228 * The first four 2GB zones contain volume headers and volume header backups. 229 * After that the volume header block# is reserved for future use. Similarly, 230 * there are many blocks related to various Freemap levels which are not 231 * used in every segment and those are also reserved for future use. 232 * Note that each FREEMAP_LEAF or FREEMAP_NODE uses 32KB out of 64KB slot. 233 * 234 * Freemap (see the FREEMAP document) 235 * 236 * The freemap utilizes blocks #1-40 in 8 sets of 5 blocks. Each block in 237 * a set represents a level of depth in the freemap topology. Eight sets 238 * exist to prevent live updates from disturbing the state of the freemap 239 * were a crash/reboot to occur. That is, a live update is not committed 240 * until the update's flush reaches the volume root. There are FOUR volume 241 * roots representing the last four synchronization points, so the freemap 242 * must be consistent no matter which volume root is chosen by the mount 243 * code. 244 * 245 * Each freemap set is 5 x 64K blocks and represents the 1GB, 256GB, 64TB, 246 * 16PB and 4EB indirect map. The volume header itself has a set of 4 freemap 247 * blockrefs representing another 2 bits, giving us a total 64 bits of 248 * representable address space. 249 * 250 * The Level 0 64KB block represents 1GB of storage represented by 32KB 251 * (256 x struct hammer2_bmap_data). Each structure represents 4MB of storage 252 * and has a 512 bit bitmap, using 2 bits to represent a 16KB chunk of 253 * storage. These 2 bits represent the following states: 254 * 255 * 00 Free 256 * 01 (reserved) (Possibly partially allocated) 257 * 10 Possibly free 258 * 11 Allocated 259 * 260 * One important thing to note here is that the freemap resolution is 16KB, 261 * but the minimum storage allocation size is 1KB. The hammer2 vfs keeps 262 * track of sub-allocations in memory, which means that on a unmount or reboot 263 * the entire 16KB of a partially allocated block will be considered fully 264 * allocated. It is possible for fragmentation to build up over time, but 265 * defragmentation is fairly easy to accomplish since all modifications 266 * allocate a new block. 267 * 268 * The Second thing to note is that due to the way snapshots and inode 269 * replication works, deleting a file cannot immediately free the related 270 * space. Furthermore, deletions often do not bother to traverse the 271 * block subhierarchy being deleted. And to go even further, whole 272 * sub-directory trees can be deleted simply by deleting the directory inode 273 * at the top. So even though we have a symbol to represent a 'possibly free' 274 * block (binary 10), only the bulk free scanning code can actually use it. 275 * Normal 'rm's or other deletions do not. 276 * 277 * WARNING! ZONE_SEG and VOLUME_ALIGN must be a multiple of 1<<LEVEL0_RADIX 278 * (i.e. a multiple of 4MB). VOLUME_ALIGN must be >= ZONE_SEG. 279 * 280 * In Summary: 281 * 282 * (1) Modifications to freemap blocks 'allocate' a new copy (aka use a block 283 * from the next set). The new copy is reused until a flush occurs at 284 * which point the next modification will then rotate to the next set. 285 */ 286 #define HAMMER2_VOLUME_ALIGN (8 * 1024 * 1024) 287 #define HAMMER2_VOLUME_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 288 #define HAMMER2_VOLUME_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 289 #define HAMMER2_VOLUME_ALIGNMASK64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGNMASK) 290 291 #define HAMMER2_NEWFS_ALIGN (HAMMER2_VOLUME_ALIGN) 292 #define HAMMER2_NEWFS_ALIGN64 ((hammer2_off_t)HAMMER2_VOLUME_ALIGN) 293 #define HAMMER2_NEWFS_ALIGNMASK (HAMMER2_VOLUME_ALIGN - 1) 294 #define HAMMER2_NEWFS_ALIGNMASK64 ((hammer2_off_t)HAMMER2_NEWFS_ALIGNMASK) 295 296 #define HAMMER2_ZONE_BYTES64 (2LLU * 1024 * 1024 * 1024) 297 #define HAMMER2_ZONE_MASK64 (HAMMER2_ZONE_BYTES64 - 1) 298 #define HAMMER2_ZONE_SEG (4 * 1024 * 1024) 299 #define HAMMER2_ZONE_SEG64 ((hammer2_off_t)HAMMER2_ZONE_SEG) 300 #define HAMMER2_ZONE_BLOCKS_SEG (HAMMER2_ZONE_SEG / HAMMER2_PBUFSIZE) 301 302 #define HAMMER2_ZONE_FREEMAP_INC 5 /* 5 deep */ 303 304 #define HAMMER2_ZONE_VOLHDR 0 /* volume header or backup */ 305 #define HAMMER2_ZONE_FREEMAP_00 1 /* normal freemap rotation */ 306 #define HAMMER2_ZONE_FREEMAP_01 6 /* normal freemap rotation */ 307 #define HAMMER2_ZONE_FREEMAP_02 11 /* normal freemap rotation */ 308 #define HAMMER2_ZONE_FREEMAP_03 16 /* normal freemap rotation */ 309 #define HAMMER2_ZONE_FREEMAP_04 21 /* normal freemap rotation */ 310 #define HAMMER2_ZONE_FREEMAP_05 26 /* normal freemap rotation */ 311 #define HAMMER2_ZONE_FREEMAP_06 31 /* normal freemap rotation */ 312 #define HAMMER2_ZONE_FREEMAP_07 36 /* normal freemap rotation */ 313 #define HAMMER2_ZONE_FREEMAP_END 41 /* (non-inclusive) */ 314 315 #define HAMMER2_ZONE_UNUSED41 41 316 #define HAMMER2_ZONE_UNUSED42 42 317 #define HAMMER2_ZONE_UNUSED43 43 318 #define HAMMER2_ZONE_UNUSED44 44 319 #define HAMMER2_ZONE_UNUSED45 45 320 #define HAMMER2_ZONE_UNUSED46 46 321 #define HAMMER2_ZONE_UNUSED47 47 322 #define HAMMER2_ZONE_UNUSED48 48 323 #define HAMMER2_ZONE_UNUSED49 49 324 #define HAMMER2_ZONE_UNUSED50 50 325 #define HAMMER2_ZONE_UNUSED51 51 326 #define HAMMER2_ZONE_UNUSED52 52 327 #define HAMMER2_ZONE_UNUSED53 53 328 #define HAMMER2_ZONE_UNUSED54 54 329 #define HAMMER2_ZONE_UNUSED55 55 330 #define HAMMER2_ZONE_UNUSED56 56 331 #define HAMMER2_ZONE_UNUSED57 57 332 #define HAMMER2_ZONE_UNUSED58 58 333 #define HAMMER2_ZONE_UNUSED59 59 334 #define HAMMER2_ZONE_UNUSED60 60 335 #define HAMMER2_ZONE_UNUSED61 61 336 #define HAMMER2_ZONE_UNUSED62 62 337 #define HAMMER2_ZONE_UNUSED63 63 338 #define HAMMER2_ZONE_END 64 /* non-inclusive */ 339 340 #define HAMMER2_NFREEMAPS 8 /* FREEMAP_00 - FREEMAP_07 */ 341 342 /* relative to FREEMAP_x */ 343 #define HAMMER2_ZONEFM_LEVEL1 0 /* 1GB leafmap */ 344 #define HAMMER2_ZONEFM_LEVEL2 1 /* 256GB indmap */ 345 #define HAMMER2_ZONEFM_LEVEL3 2 /* 64TB indmap */ 346 #define HAMMER2_ZONEFM_LEVEL4 3 /* 16PB indmap */ 347 #define HAMMER2_ZONEFM_LEVEL5 4 /* 4EB indmap */ 348 /* LEVEL6 is a set of 4 blockrefs in the volume header 16EB */ 349 350 /* 351 * Freemap radix. Assumes a set-count of 4, 128-byte blockrefs, 352 * 32KB indirect block for freemap (LEVELN_PSIZE below). 353 * 354 * Leaf entry represents 4MB of storage broken down into a 512-bit 355 * bitmap, 2-bits per entry. So course bitmap item represents 16KB. 356 */ 357 #if HAMMER2_SET_COUNT != 4 358 #error "hammer2_disk.h - freemap assumes SET_COUNT is 4" 359 #endif 360 #define HAMMER2_FREEMAP_LEVEL6_RADIX 64 /* 16EB (end) */ 361 #define HAMMER2_FREEMAP_LEVEL5_RADIX 62 /* 4EB */ 362 #define HAMMER2_FREEMAP_LEVEL4_RADIX 54 /* 16PB */ 363 #define HAMMER2_FREEMAP_LEVEL3_RADIX 46 /* 64TB */ 364 #define HAMMER2_FREEMAP_LEVEL2_RADIX 38 /* 256GB */ 365 #define HAMMER2_FREEMAP_LEVEL1_RADIX 30 /* 1GB */ 366 #define HAMMER2_FREEMAP_LEVEL0_RADIX 22 /* 4MB (128by in l-1 leaf) */ 367 368 #define HAMMER2_FREEMAP_LEVELN_PSIZE 32768 /* physical bytes */ 369 370 #define HAMMER2_FREEMAP_LEVEL5_SIZE ((hammer2_off_t)1 << \ 371 HAMMER2_FREEMAP_LEVEL5_RADIX) 372 #define HAMMER2_FREEMAP_LEVEL4_SIZE ((hammer2_off_t)1 << \ 373 HAMMER2_FREEMAP_LEVEL4_RADIX) 374 #define HAMMER2_FREEMAP_LEVEL3_SIZE ((hammer2_off_t)1 << \ 375 HAMMER2_FREEMAP_LEVEL3_RADIX) 376 #define HAMMER2_FREEMAP_LEVEL2_SIZE ((hammer2_off_t)1 << \ 377 HAMMER2_FREEMAP_LEVEL2_RADIX) 378 #define HAMMER2_FREEMAP_LEVEL1_SIZE ((hammer2_off_t)1 << \ 379 HAMMER2_FREEMAP_LEVEL1_RADIX) 380 #define HAMMER2_FREEMAP_LEVEL0_SIZE ((hammer2_off_t)1 << \ 381 HAMMER2_FREEMAP_LEVEL0_RADIX) 382 383 #define HAMMER2_FREEMAP_LEVEL5_MASK (HAMMER2_FREEMAP_LEVEL5_SIZE - 1) 384 #define HAMMER2_FREEMAP_LEVEL4_MASK (HAMMER2_FREEMAP_LEVEL4_SIZE - 1) 385 #define HAMMER2_FREEMAP_LEVEL3_MASK (HAMMER2_FREEMAP_LEVEL3_SIZE - 1) 386 #define HAMMER2_FREEMAP_LEVEL2_MASK (HAMMER2_FREEMAP_LEVEL2_SIZE - 1) 387 #define HAMMER2_FREEMAP_LEVEL1_MASK (HAMMER2_FREEMAP_LEVEL1_SIZE - 1) 388 #define HAMMER2_FREEMAP_LEVEL0_MASK (HAMMER2_FREEMAP_LEVEL0_SIZE - 1) 389 390 #define HAMMER2_FREEMAP_COUNT (int)(HAMMER2_FREEMAP_LEVELN_PSIZE / \ 391 sizeof(hammer2_bmap_data_t)) 392 393 /* 394 * XXX I made a mistake and made the reserved area begin at each LEVEL1 zone, 395 * which is on a 1GB demark. This will eat a little more space but for 396 * now we retain compatibility and make FMZONEBASE every 1GB 397 */ 398 #define H2FMZONEBASE(key) ((key) & ~HAMMER2_FREEMAP_LEVEL1_MASK) 399 #define H2FMBASE(key, radix) rounddown2(key, (hammer2_off_t)1 << (radix)) 400 401 /* 402 * 16KB bitmap granularity (x2 bits per entry). 403 */ 404 #define HAMMER2_FREEMAP_BLOCK_RADIX 14 405 #define HAMMER2_FREEMAP_BLOCK_SIZE (1 << HAMMER2_FREEMAP_BLOCK_RADIX) 406 #define HAMMER2_FREEMAP_BLOCK_MASK (HAMMER2_FREEMAP_BLOCK_SIZE - 1) 407 408 /* 409 * bitmap[] structure. 2 bits per HAMMER2_FREEMAP_BLOCK_SIZE. 410 * 411 * 8 x 64-bit elements, 2 bits per block. 412 * 32 blocks (radix 5) per element. 413 * representing INDEX_SIZE bytes worth of storage per element. 414 */ 415 416 typedef uint64_t hammer2_bitmap_t; 417 418 #define HAMMER2_BMAP_ALLONES ((hammer2_bitmap_t)-1) 419 #define HAMMER2_BMAP_ELEMENTS 8 420 #define HAMMER2_BMAP_BITS_PER_ELEMENT 64 421 #define HAMMER2_BMAP_INDEX_RADIX 5 /* 32 blocks per element */ 422 #define HAMMER2_BMAP_BLOCKS_PER_ELEMENT (1 << HAMMER2_BMAP_INDEX_RADIX) 423 424 #define HAMMER2_BMAP_INDEX_SIZE (HAMMER2_FREEMAP_BLOCK_SIZE * \ 425 HAMMER2_BMAP_BLOCKS_PER_ELEMENT) 426 #define HAMMER2_BMAP_INDEX_MASK (HAMMER2_BMAP_INDEX_SIZE - 1) 427 428 #define HAMMER2_BMAP_SIZE (HAMMER2_BMAP_INDEX_SIZE * \ 429 HAMMER2_BMAP_ELEMENTS) 430 #define HAMMER2_BMAP_MASK (HAMMER2_BMAP_SIZE - 1) 431 432 /* 433 * Two linear areas can be reserved after the initial 4MB segment in the base 434 * zone (the one starting at offset 0). These areas are NOT managed by the 435 * block allocator and do not fall under HAMMER2 crc checking rules based 436 * at the volume header (but can be self-CRCd internally, depending). 437 */ 438 #define HAMMER2_BOOT_MIN_BYTES HAMMER2_VOLUME_ALIGN 439 #define HAMMER2_BOOT_NOM_BYTES (64*1024*1024) 440 #define HAMMER2_BOOT_MAX_BYTES (256*1024*1024) 441 442 #define HAMMER2_REDO_MIN_BYTES HAMMER2_VOLUME_ALIGN 443 #define HAMMER2_REDO_NOM_BYTES (256*1024*1024) 444 #define HAMMER2_REDO_MAX_BYTES (1024*1024*1024) 445 446 /* 447 * Most HAMMER2 types are implemented as unsigned 64-bit integers. 448 * Transaction ids are monotonic. 449 * 450 * We utilize 32-bit iSCSI CRCs. 451 */ 452 typedef uint64_t hammer2_tid_t; 453 typedef uint64_t hammer2_off_t; 454 typedef uint64_t hammer2_key_t; 455 typedef uint32_t hammer2_crc32_t; 456 457 /* 458 * Miscellanious ranges (all are unsigned). 459 */ 460 #define HAMMER2_TID_MIN 1ULL 461 #define HAMMER2_TID_MAX 0xFFFFFFFFFFFFFFFFULL 462 #define HAMMER2_KEY_MIN 0ULL 463 #define HAMMER2_KEY_MAX 0xFFFFFFFFFFFFFFFFULL 464 #define HAMMER2_OFFSET_MIN 0ULL 465 #define HAMMER2_OFFSET_MAX 0xFFFFFFFFFFFFFFFFULL 466 467 /* 468 * HAMMER2 data offset special cases and masking. 469 * 470 * All HAMMER2 data offsets have to be broken down into a 64K buffer base 471 * offset (HAMMER2_OFF_MASK_HI) and a 64K buffer index (HAMMER2_OFF_MASK_LO). 472 * 473 * Indexes into physical buffers are always 64-byte aligned. The low 6 bits 474 * of the data offset field specifies how large the data chunk being pointed 475 * to as a power of 2. The theoretical minimum radix is thus 6 (The space 476 * needed in the low bits of the data offset field). However, the practical 477 * minimum allocation chunk size is 1KB (a radix of 10), so HAMMER2 sets 478 * HAMMER2_RADIX_MIN to 10. The maximum radix is currently 16 (64KB), but 479 * we fully intend to support larger extents in the future. 480 * 481 * WARNING! A radix of 0 (such as when data_off is all 0's) is a special 482 * case which means no data associated with the blockref, and 483 * not the '1 byte' it would otherwise calculate to. 484 */ 485 #define HAMMER2_OFF_BAD ((hammer2_off_t)-1) 486 #define HAMMER2_OFF_MASK 0xFFFFFFFFFFFFFFC0ULL 487 #define HAMMER2_OFF_MASK_LO (HAMMER2_OFF_MASK & HAMMER2_PBUFMASK64) 488 #define HAMMER2_OFF_MASK_HI (~HAMMER2_PBUFMASK64) 489 #define HAMMER2_OFF_MASK_RADIX 0x000000000000003FULL 490 #define HAMMER2_MAX_COPIES 6 491 492 /* 493 * HAMMER2 directory support and pre-defined keys 494 */ 495 #define HAMMER2_DIRHASH_VISIBLE 0x8000000000000000ULL 496 #define HAMMER2_DIRHASH_USERMSK 0x7FFFFFFFFFFFFFFFULL 497 #define HAMMER2_DIRHASH_LOMASK 0x0000000000007FFFULL 498 #define HAMMER2_DIRHASH_HIMASK 0xFFFFFFFFFFFF0000ULL 499 #define HAMMER2_DIRHASH_FORCED 0x0000000000008000ULL /* bit forced on */ 500 501 #define HAMMER2_SROOT_KEY 0x0000000000000000ULL /* volume to sroot */ 502 #define HAMMER2_BOOT_KEY 0xd9b36ce135528000ULL /* sroot to BOOT PFS */ 503 504 /************************************************************************ 505 * DMSG SUPPORT * 506 ************************************************************************ 507 * LNK_VOLCONF 508 * 509 * All HAMMER2 directories directly under the super-root on your local 510 * media can be mounted separately, even if they share the same physical 511 * device. 512 * 513 * When you do a HAMMER2 mount you are effectively tying into a HAMMER2 514 * cluster via local media. The local media does not have to participate 515 * in the cluster, other than to provide the hammer2_volconf[] array and 516 * root inode for the mount. 517 * 518 * This is important: The mount device path you specify serves to bootstrap 519 * your entry into the cluster, but your mount will make active connections 520 * to ALL copy elements in the hammer2_volconf[] array which match the 521 * PFSID of the directory in the super-root that you specified. The local 522 * media path does not have to be mentioned in this array but becomes part 523 * of the cluster based on its type and access rights. ALL ELEMENTS ARE 524 * TREATED ACCORDING TO TYPE NO MATTER WHICH ONE YOU MOUNT FROM. 525 * 526 * The actual cluster may be far larger than the elements you list in the 527 * hammer2_volconf[] array. You list only the elements you wish to 528 * directly connect to and you are able to access the rest of the cluster 529 * indirectly through those connections. 530 * 531 * WARNING! This structure must be exactly 128 bytes long for its config 532 * array to fit in the volume header. 533 */ 534 struct hammer2_volconf { 535 uint8_t copyid; /* 00 copyid 0-255 (must match slot) */ 536 uint8_t inprog; /* 01 operation in progress, or 0 */ 537 uint8_t chain_to; /* 02 operation chaining to, or 0 */ 538 uint8_t chain_from; /* 03 operation chaining from, or 0 */ 539 uint16_t flags; /* 04-05 flags field */ 540 uint8_t error; /* 06 last operational error */ 541 uint8_t priority; /* 07 priority and round-robin flag */ 542 uint8_t remote_pfs_type;/* 08 probed direct remote PFS type */ 543 uint8_t reserved08[23]; /* 09-1F */ 544 uuid_t pfs_clid; /* 20-2F copy target must match this uuid */ 545 uint8_t label[16]; /* 30-3F import/export label */ 546 uint8_t path[64]; /* 40-7F target specification string or key */ 547 } __packed; 548 549 typedef struct hammer2_volconf hammer2_volconf_t; 550 551 #define DMSG_VOLF_ENABLED 0x0001 552 #define DMSG_VOLF_INPROG 0x0002 553 #define DMSG_VOLF_CONN_RR 0x80 /* round-robin at same priority */ 554 #define DMSG_VOLF_CONN_EF 0x40 /* media errors flagged */ 555 #define DMSG_VOLF_CONN_PRI 0x0F /* select priority 0-15 (15=best) */ 556 557 #if 0 558 struct dmsg_lnk_hammer2_volconf { 559 dmsg_hdr_t head; 560 hammer2_volconf_t copy; /* copy spec */ 561 int32_t index; 562 int32_t unused01; 563 uuid_t mediaid; 564 int64_t reserved02[32]; 565 } __packed; 566 #endif 567 568 typedef struct dmsg_lnk_hammer2_volconf dmsg_lnk_hammer2_volconf_t; 569 570 #define DMSG_LNK_HAMMER2_VOLCONF DMSG_LNK(DMSG_LNK_CMD_HAMMER2_VOLCONF, \ 571 dmsg_lnk_hammer2_volconf) 572 573 #define H2_LNK_VOLCONF(msg) ((dmsg_lnk_hammer2_volconf_t *)(msg)->any.buf) 574 575 /* 576 * HAMMER2 directory entry header (embedded in blockref) exactly 16 bytes 577 */ 578 struct hammer2_dirent_head { 579 hammer2_tid_t inum; /* inode number */ 580 uint16_t namlen; /* name length */ 581 uint8_t type; /* OBJTYPE_* */ 582 uint8_t unused0B; 583 uint8_t unused0C[4]; 584 } __packed; 585 586 typedef struct hammer2_dirent_head hammer2_dirent_head_t; 587 588 /* 589 * The media block reference structure. This forms the core of the HAMMER2 590 * media topology recursion. This 128-byte data structure is embedded in the 591 * volume header, in inodes (which are also directory entries), and in 592 * indirect blocks. 593 * 594 * A blockref references a single media item, which typically can be a 595 * directory entry (aka inode), indirect block, or data block. 596 * 597 * The primary feature a blockref represents is the ability to validate 598 * the entire tree underneath it via its check code. Any modification to 599 * anything propagates up the blockref tree all the way to the root, replacing 600 * the related blocks and compounding the generated check code. 601 * 602 * The check code can be a simple 32-bit iscsi code, a 64-bit crc, or as 603 * complex as a 512 bit cryptographic hash. I originally used a 64-byte 604 * blockref but later expanded it to 128 bytes to be able to support the 605 * larger check code as well as to embed statistics for quota operation. 606 * 607 * Simple check codes are not sufficient for unverified dedup. Even with 608 * a maximally-sized check code unverified dedup should only be used in 609 * in subdirectory trees where you do not need 100% data integrity. 610 * 611 * Unverified dedup is deduping based on meta-data only without verifying 612 * that the data blocks are actually identical. Verified dedup guarantees 613 * integrity but is a far more I/O-expensive operation. 614 * 615 * -- 616 * 617 * mirror_tid - per cluster node modified (propagated upward by flush) 618 * modify_tid - clc record modified (not propagated). 619 * update_tid - clc record updated (propagated upward on verification) 620 * 621 * CLC - Stands for 'Cluster Level Change', identifiers which are identical 622 * within the topology across all cluster nodes (when fully 623 * synchronized). 624 * 625 * NOTE: The range of keys represented by the blockref is (key) to 626 * ((key) + (1LL << keybits) - 1). HAMMER2 usually populates 627 * blocks bottom-up, inserting a new root when radix expansion 628 * is required. 629 * 630 * leaf_count - Helps manage leaf collapse calculations when indirect 631 * blocks become mostly empty. This value caps out at 632 * HAMMER2_BLOCKREF_LEAF_MAX (65535). 633 * 634 * Used by the chain code to determine when to pull leafs up 635 * from nearly empty indirect blocks. For the purposes of this 636 * calculation, BREF_TYPE_INODE is considered a leaf, along 637 * with DIRENT and DATA. 638 * 639 * RESERVED FIELDS 640 * 641 * A number of blockref fields are reserved and should generally be set to 642 * 0 for future compatibility. 643 * 644 * FUTURE BLOCKREF EXPANSION 645 * 646 * CONTENT ADDRESSABLE INDEXING (future) - Using a 256 or 512-bit check code. 647 */ 648 struct hammer2_blockref { /* MUST BE EXACTLY 64 BYTES */ 649 uint8_t type; /* type of underlying item */ 650 uint8_t methods; /* check method & compression method */ 651 uint8_t copyid; /* specify which copy this is */ 652 uint8_t keybits; /* #of keybits masked off 0=leaf */ 653 uint8_t vradix; /* virtual data/meta-data size */ 654 uint8_t flags; /* blockref flags */ 655 uint16_t leaf_count; /* leaf aggregation count */ 656 hammer2_key_t key; /* key specification */ 657 hammer2_tid_t mirror_tid; /* media flush topology & freemap */ 658 hammer2_tid_t modify_tid; /* clc modify (not propagated) */ 659 hammer2_off_t data_off; /* low 6 bits is phys size (radix)*/ 660 hammer2_tid_t update_tid; /* clc modify (propagated upward) */ 661 union { 662 char buf[16]; 663 664 /* 665 * Directory entry header (BREF_TYPE_DIRENT) 666 * 667 * NOTE: check.buf contains filename if <= 64 bytes. Longer 668 * filenames are stored in a data reference of size 669 * HAMMER2_ALLOC_MIN (at least 256, typically 1024). 670 * 671 * NOTE: inode structure may contain a copy of a recently 672 * associated filename, for recovery purposes. 673 * 674 * NOTE: Superroot entries are INODEs, not DIRENTs. Code 675 * allows both cases. 676 */ 677 hammer2_dirent_head_t dirent; 678 679 /* 680 * Statistics aggregation (BREF_TYPE_INODE, BREF_TYPE_INDIRECT) 681 */ 682 struct { 683 hammer2_key_t data_count; 684 hammer2_key_t inode_count; 685 } stats; 686 } embed; 687 union { /* check info */ 688 char buf[64]; 689 struct { 690 uint32_t value; 691 uint32_t reserved[15]; 692 } iscsi32; 693 struct { 694 uint64_t value; 695 uint64_t reserved[7]; 696 } xxhash64; 697 struct { 698 char data[24]; 699 char reserved[40]; 700 } sha192; 701 struct { 702 char data[32]; 703 char reserved[32]; 704 } sha256; 705 struct { 706 char data[64]; 707 } sha512; 708 709 /* 710 * Freemap hints are embedded in addition to the icrc32. 711 * 712 * bigmask - Radixes available for allocation (0-31). 713 * Heuristical (may be permissive but not 714 * restrictive). Typically only radix values 715 * 10-16 are used (i.e. (1<<10) through (1<<16)). 716 * 717 * avail - Total available space remaining, in bytes 718 */ 719 struct { 720 uint32_t icrc32; 721 uint32_t bigmask; /* available radixes */ 722 uint64_t avail; /* total available bytes */ 723 char reserved[48]; 724 } freemap; 725 } check; 726 } __packed; 727 728 typedef struct hammer2_blockref hammer2_blockref_t; 729 730 #define HAMMER2_BLOCKREF_BYTES 128 /* blockref struct in bytes */ 731 #define HAMMER2_BLOCKREF_RADIX 7 732 733 #define HAMMER2_BLOCKREF_LEAF_MAX 65535 734 735 /* 736 * On-media and off-media blockref types. 737 * 738 * types >= 128 are pseudo values that should never be present on-media. 739 */ 740 #define HAMMER2_BREF_TYPE_EMPTY 0 741 #define HAMMER2_BREF_TYPE_INODE 1 742 #define HAMMER2_BREF_TYPE_INDIRECT 2 743 #define HAMMER2_BREF_TYPE_DATA 3 744 #define HAMMER2_BREF_TYPE_DIRENT 4 745 #define HAMMER2_BREF_TYPE_FREEMAP_NODE 5 746 #define HAMMER2_BREF_TYPE_FREEMAP_LEAF 6 747 #define HAMMER2_BREF_TYPE_FREEMAP 254 /* pseudo-type */ 748 #define HAMMER2_BREF_TYPE_VOLUME 255 /* pseudo-type */ 749 750 #define HAMMER2_BREF_FLAG_PFSROOT 0x01 /* see also related opflag */ 751 #define HAMMER2_BREF_FLAG_ZERO 0x02 752 #define HAMMER2_BREF_FLAG_EMERG_MIP 0x04 /* emerg modified-in-place */ 753 754 /* 755 * Encode/decode check mode and compression mode for 756 * bref.methods. The compression level is not encoded in 757 * bref.methods. 758 */ 759 #define HAMMER2_ENC_CHECK(n) (((n) & 15) << 4) 760 #define HAMMER2_DEC_CHECK(n) (((n) >> 4) & 15) 761 #define HAMMER2_ENC_COMP(n) ((n) & 15) 762 #define HAMMER2_DEC_COMP(n) ((n) & 15) 763 764 #define HAMMER2_CHECK_NONE 0 765 #define HAMMER2_CHECK_DISABLED 1 766 #define HAMMER2_CHECK_ISCSI32 2 767 #define HAMMER2_CHECK_XXHASH64 3 768 #define HAMMER2_CHECK_SHA192 4 769 #define HAMMER2_CHECK_FREEMAP 5 770 771 #define HAMMER2_CHECK_DEFAULT HAMMER2_CHECK_XXHASH64 772 773 /* user-specifiable check modes only */ 774 #define HAMMER2_CHECK_STRINGS { "none", "disabled", "crc32", \ 775 "xxhash64", "sha192" } 776 #define HAMMER2_CHECK_STRINGS_COUNT 5 777 778 /* 779 * Encode/decode check or compression algorithm request in 780 * ipdata->meta.check_algo and ipdata->meta.comp_algo. 781 */ 782 #define HAMMER2_ENC_ALGO(n) (n) 783 #define HAMMER2_DEC_ALGO(n) ((n) & 15) 784 #define HAMMER2_ENC_LEVEL(n) ((n) << 4) 785 #define HAMMER2_DEC_LEVEL(n) (((n) >> 4) & 15) 786 787 #define HAMMER2_COMP_NONE 0 788 #define HAMMER2_COMP_AUTOZERO 1 789 #define HAMMER2_COMP_LZ4 2 790 #define HAMMER2_COMP_ZLIB 3 791 792 #define HAMMER2_COMP_NEWFS_DEFAULT HAMMER2_COMP_LZ4 793 #define HAMMER2_COMP_STRINGS { "none", "autozero", "lz4", "zlib" } 794 #define HAMMER2_COMP_STRINGS_COUNT 4 795 796 /* 797 * Passed to hammer2_chain_create(), causes methods to be inherited from 798 * parent. 799 */ 800 #define HAMMER2_METH_DEFAULT -1 801 802 /* 803 * HAMMER2 block references are collected into sets of 4 blockrefs. These 804 * sets are fully associative, meaning the elements making up a set are 805 * not sorted in any way and may contain duplicate entries, holes, or 806 * entries which shortcut multiple levels of indirection. Sets are used 807 * in various ways: 808 * 809 * (1) When redundancy is desired a set may contain several duplicate 810 * entries pointing to different copies of the same data. Up to 4 copies 811 * are supported. 812 * 813 * (2) The blockrefs in a set can shortcut multiple levels of indirections 814 * within the bounds imposed by the parent of set. 815 * 816 * When a set fills up another level of indirection is inserted, moving 817 * some or all of the set's contents into indirect blocks placed under the 818 * set. This is a top-down approach in that indirect blocks are not created 819 * until the set actually becomes full (that is, the entries in the set can 820 * shortcut the indirect blocks when the set is not full). Depending on how 821 * things are filled multiple indirect blocks will eventually be created. 822 * 823 * Indirect blocks are typically 4KB (64 entres) or 64KB (1024 entries) and 824 * are also treated as fully set-associative. 825 */ 826 struct hammer2_blockset { 827 hammer2_blockref_t blockref[HAMMER2_SET_COUNT]; 828 }; 829 830 typedef struct hammer2_blockset hammer2_blockset_t; 831 832 /* 833 * Catch programmer snafus 834 */ 835 #if (1 << HAMMER2_SET_RADIX) != HAMMER2_SET_COUNT 836 #error "hammer2 direct radix is incorrect" 837 #endif 838 #if (1 << HAMMER2_PBUFRADIX) != HAMMER2_PBUFSIZE 839 #error "HAMMER2_PBUFRADIX and HAMMER2_PBUFSIZE are inconsistent" 840 #endif 841 #if (1 << HAMMER2_RADIX_MIN) != HAMMER2_ALLOC_MIN 842 #error "HAMMER2_RADIX_MIN and HAMMER2_ALLOC_MIN are inconsistent" 843 #endif 844 845 /* 846 * hammer2_bmap_data - A freemap entry in the LEVEL1 block. 847 * 848 * Each 128-byte entry contains the bitmap and meta-data required to manage 849 * a LEVEL0 (4MB) block of storage. The storage is managed in 256 x 16KB 850 * chunks. 851 * 852 * A smaller allocation granularity is supported via a linear iterator and/or 853 * must otherwise be tracked in ram. 854 * 855 * (data structure must be 128 bytes exactly) 856 * 857 * linear - A BYTE linear allocation offset used for sub-16KB allocations 858 * only. May contain values between 0 and 4MB. Must be ignored 859 * if 16KB-aligned (i.e. force bitmap scan), otherwise may be 860 * used to sub-allocate within the 16KB block (which is already 861 * marked as allocated in the bitmap). 862 * 863 * Sub-allocations need only be 1KB-aligned and do not have to be 864 * size-aligned, and 16KB or larger allocations do not update this 865 * field, resulting in pretty good packing. 866 * 867 * Please note that file data granularity may be limited by 868 * other issues such as buffer cache direct-mapping and the 869 * desire to support sector sizes up to 16KB (so H2 only issues 870 * I/O's in multiples of 16KB anyway). 871 * 872 * class - Clustering class. Cleared to 0 only if the entire leaf becomes 873 * free. Used to cluster device buffers so all elements must have 874 * the same device block size, but may mix logical sizes. 875 * 876 * Typically integrated with the blockref type in the upper 8 bits 877 * to localize inodes and indrect blocks, improving bulk free scans 878 * and directory scans. 879 * 880 * bitmap - Two bits per 16KB allocation block arranged in arrays of 881 * 64-bit elements, 256x2 bits representing ~4MB worth of media 882 * storage. Bit patterns are as follows: 883 * 884 * 00 Unallocated 885 * 01 (reserved) 886 * 10 Possibly free 887 * 11 Allocated 888 */ 889 struct hammer2_bmap_data { 890 int32_t linear; /* 00 linear sub-granular allocation offset */ 891 uint16_t class; /* 04-05 clustering class ((type<<8)|radix) */ 892 uint8_t reserved06; /* 06 */ 893 uint8_t reserved07; /* 07 */ 894 uint32_t reserved08; /* 08 */ 895 uint32_t reserved0C; /* 0C */ 896 uint32_t reserved10; /* 10 */ 897 uint32_t reserved14; /* 14 */ 898 uint32_t reserved18; /* 18 */ 899 uint32_t avail; /* 1C */ 900 uint32_t reserved20[8]; /* 20-3F 256 bits manages 128K/1KB/2-bits */ 901 /* 40-7F 512 bits manages 4MB of storage */ 902 hammer2_bitmap_t bitmapq[HAMMER2_BMAP_ELEMENTS]; 903 } __packed; 904 905 typedef struct hammer2_bmap_data hammer2_bmap_data_t; 906 907 /* 908 * XXX "Inodes ARE directory entries" is no longer the case. Hardlinks are 909 * dirents which refer to the same inode#, which is how filesystems usually 910 * implement hardlink. The following comments need to be updated. 911 * 912 * In HAMMER2 inodes ARE directory entries, with a special exception for 913 * hardlinks. The inode number is stored in the inode rather than being 914 * based on the location of the inode (since the location moves every time 915 * the inode or anything underneath the inode is modified). 916 * 917 * The inode is 1024 bytes, made up of 256 bytes of meta-data, 256 bytes 918 * for the filename, and 512 bytes worth of direct file data OR an embedded 919 * blockset. The in-memory hammer2_inode structure contains only the mostly- 920 * node-independent meta-data portion (some flags are node-specific and will 921 * not be synchronized). The rest of the inode is node-specific and chain I/O 922 * is required to obtain it. 923 * 924 * Directories represent one inode per blockref. Inodes are not laid out 925 * as a file but instead are represented by the related blockrefs. The 926 * blockrefs, in turn, are indexed by the 64-bit directory hash key. Remember 927 * that blocksets are fully associative, so a certain degree efficiency is 928 * achieved just from that. 929 * 930 * Up to 512 bytes of direct data can be embedded in an inode, and since 931 * inodes are essentially directory entries this also means that small data 932 * files end up simply being laid out linearly in the directory, resulting 933 * in fewer seeks and highly optimal access. 934 * 935 * The compression mode can be changed at any time in the inode and is 936 * recorded on a blockref-by-blockref basis. 937 * 938 * Hardlinks are supported via the inode map. Essentially the way a hardlink 939 * works is that all individual directory entries representing the same file 940 * are special cased and specify the same inode number. The actual file 941 * is placed in the nearest parent directory that is parent to all instances 942 * of the hardlink. If all hardlinks to a file are in the same directory 943 * the actual file will also be placed in that directory. This file uses 944 * the inode number as the directory entry key and is invisible to normal 945 * directory scans. Real directory entry keys are differentiated from the 946 * inode number key via bit 63. Access to the hardlink silently looks up 947 * the real file and forwards all operations to that file. Removal of the 948 * last hardlink also removes the real file. 949 */ 950 #define HAMMER2_INODE_BYTES 1024 /* (asserted by code) */ 951 #define HAMMER2_INODE_MAXNAME 256 /* maximum name in bytes */ 952 #define HAMMER2_INODE_VERSION_ONE 1 953 954 #define HAMMER2_INODE_START 1024 /* dynamically allocated */ 955 956 struct hammer2_inode_meta { 957 uint16_t version; /* 0000 inode data version */ 958 uint8_t reserved02; /* 0002 */ 959 uint8_t pfs_subtype; /* 0003 pfs sub-type */ 960 961 /* 962 * core inode attributes, inode type, misc flags 963 */ 964 uint32_t uflags; /* 0004 chflags */ 965 uint32_t rmajor; /* 0008 available for device nodes */ 966 uint32_t rminor; /* 000C available for device nodes */ 967 uint64_t ctime; /* 0010 inode change time */ 968 uint64_t mtime; /* 0018 modified time */ 969 uint64_t atime; /* 0020 access time (unsupported) */ 970 uint64_t btime; /* 0028 birth time */ 971 uuid_t uid; /* 0030 uid / degenerate unix uid */ 972 uuid_t gid; /* 0040 gid / degenerate unix gid */ 973 974 uint8_t type; /* 0050 object type */ 975 uint8_t op_flags; /* 0051 operational flags */ 976 uint16_t cap_flags; /* 0052 capability flags */ 977 uint32_t mode; /* 0054 unix modes (typ low 16 bits) */ 978 979 /* 980 * inode size, identification, localized recursive configuration 981 * for compression and backup copies. 982 * 983 * NOTE: Nominal parent inode number (iparent) is only applicable 984 * for directories but can also help for files during 985 * catastrophic recovery. 986 */ 987 hammer2_tid_t inum; /* 0058 inode number */ 988 hammer2_off_t size; /* 0060 size of file */ 989 uint64_t nlinks; /* 0068 hard links (typ only dirs) */ 990 hammer2_tid_t iparent; /* 0070 nominal parent inum */ 991 hammer2_key_t name_key; /* 0078 full filename key */ 992 uint16_t name_len; /* 0080 filename length */ 993 uint8_t ncopies; /* 0082 ncopies to local media */ 994 uint8_t comp_algo; /* 0083 compression request & algo */ 995 996 /* 997 * These fields are currently only applicable to PFSROOTs. 998 * 999 * NOTE: We can't use {volume_data->fsid, pfs_clid} to uniquely 1000 * identify an instance of a PFS in the cluster because 1001 * a mount may contain more than one copy of the PFS as 1002 * a separate node. {pfs_clid, pfs_fsid} must be used for 1003 * registration in the cluster. 1004 */ 1005 uint8_t target_type; /* 0084 hardlink target type */ 1006 uint8_t check_algo; /* 0085 check code request & algo */ 1007 uint8_t pfs_nmasters; /* 0086 (if PFSROOT) if multi-master */ 1008 uint8_t pfs_type; /* 0087 (if PFSROOT) node type */ 1009 hammer2_tid_t pfs_inum; /* 0088 (if PFSROOT) inum allocator */ 1010 uuid_t pfs_clid; /* 0090 (if PFSROOT) cluster uuid */ 1011 uuid_t pfs_fsid; /* 00A0 (if PFSROOT) unique uuid */ 1012 1013 /* 1014 * Quotas and aggregate sub-tree inode and data counters. Note that 1015 * quotas are not replicated downward, they are explicitly set by 1016 * the sysop and in-memory structures keep track of inheritance. 1017 */ 1018 hammer2_key_t data_quota; /* 00B0 subtree quota in bytes */ 1019 hammer2_key_t unusedB8; /* 00B8 subtree byte count */ 1020 hammer2_key_t inode_quota; /* 00C0 subtree quota inode count */ 1021 hammer2_key_t unusedC8; /* 00C8 subtree inode count */ 1022 1023 /* 1024 * The last snapshot tid is tested against modify_tid to determine 1025 * when a copy must be made of a data block whos check mode has been 1026 * disabled (a disabled check mode allows data blocks to be updated 1027 * in place instead of copy-on-write). 1028 */ 1029 hammer2_tid_t pfs_lsnap_tid; /* 00D0 last snapshot tid */ 1030 hammer2_tid_t reservedD8; /* 00D8 (avail) */ 1031 1032 /* 1033 * Tracks (possibly degenerate) free areas covering all sub-tree 1034 * allocations under inode, not counting the inode itself. 1035 * 0/0 indicates empty entry. fully set-associative. 1036 * 1037 * (not yet implemented) 1038 */ 1039 uint64_t decrypt_check; /* 00E0 decryption validator */ 1040 hammer2_off_t reservedE0[3]; /* 00E8/F0/F8 */ 1041 } __packed; 1042 1043 typedef struct hammer2_inode_meta hammer2_inode_meta_t; 1044 1045 struct hammer2_inode_data { 1046 hammer2_inode_meta_t meta; /* 0000-00FF */ 1047 unsigned char filename[HAMMER2_INODE_MAXNAME]; 1048 /* 0100-01FF (256 char, unterminated) */ 1049 union { /* 0200-03FF (64x8 = 512 bytes) */ 1050 hammer2_blockset_t blockset; 1051 char data[HAMMER2_EMBEDDED_BYTES]; 1052 } u; 1053 } __packed; 1054 1055 typedef struct hammer2_inode_data hammer2_inode_data_t; 1056 1057 #define HAMMER2_OPFLAG_DIRECTDATA 0x01 1058 #define HAMMER2_OPFLAG_PFSROOT 0x02 /* (see also bref flag) */ 1059 #define HAMMER2_OPFLAG_COPYIDS 0x04 /* copyids override parent */ 1060 1061 #define HAMMER2_OBJTYPE_UNKNOWN 0 1062 #define HAMMER2_OBJTYPE_DIRECTORY 1 1063 #define HAMMER2_OBJTYPE_REGFILE 2 1064 #define HAMMER2_OBJTYPE_FIFO 4 1065 #define HAMMER2_OBJTYPE_CDEV 5 1066 #define HAMMER2_OBJTYPE_BDEV 6 1067 #define HAMMER2_OBJTYPE_SOFTLINK 7 1068 #define HAMMER2_OBJTYPE_UNUSED08 8 1069 #define HAMMER2_OBJTYPE_SOCKET 9 1070 #define HAMMER2_OBJTYPE_WHITEOUT 10 1071 1072 #define HAMMER2_COPYID_NONE 0 1073 #define HAMMER2_COPYID_LOCAL ((uint8_t)-1) 1074 1075 #define HAMMER2_COPYID_COUNT 256 1076 1077 /* 1078 * PFS types identify the role of a PFS within a cluster. The PFS types 1079 * is stored on media and in LNK_SPAN messages and used in other places. 1080 * 1081 * The low 4 bits specify the current active type while the high 4 bits 1082 * specify the transition target if the PFS is being upgraded or downgraded, 1083 * If the upper 4 bits are not zero it may effect how a PFS is used during 1084 * the transition. 1085 * 1086 * Generally speaking, downgrading a MASTER to a SLAVE cannot complete until 1087 * at least all MASTERs have updated their pfs_nmasters field. And upgrading 1088 * a SLAVE to a MASTER cannot complete until the new prospective master has 1089 * been fully synchronized (though theoretically full synchronization is 1090 * not required if a (new) quorum of other masters are fully synchronized). 1091 * 1092 * It generally does not matter which PFS element you actually mount, you 1093 * are mounting 'the cluster'. So, for example, a network mount will mount 1094 * a DUMMY PFS type on a memory filesystem. However, there are two exceptions. 1095 * In order to gain the benefits of a SOFT_MASTER or SOFT_SLAVE, those PFSs 1096 * must be directly mounted. 1097 */ 1098 #define HAMMER2_PFSTYPE_NONE 0x00 1099 #define HAMMER2_PFSTYPE_CACHE 0x01 1100 #define HAMMER2_PFSTYPE_UNUSED02 0x02 1101 #define HAMMER2_PFSTYPE_SLAVE 0x03 1102 #define HAMMER2_PFSTYPE_SOFT_SLAVE 0x04 1103 #define HAMMER2_PFSTYPE_SOFT_MASTER 0x05 1104 #define HAMMER2_PFSTYPE_MASTER 0x06 1105 #define HAMMER2_PFSTYPE_UNUSED07 0x07 1106 #define HAMMER2_PFSTYPE_SUPROOT 0x08 1107 #define HAMMER2_PFSTYPE_DUMMY 0x09 1108 #define HAMMER2_PFSTYPE_MAX 16 1109 1110 #define HAMMER2_PFSTRAN_NONE 0x00 /* no transition in progress */ 1111 #define HAMMER2_PFSTRAN_CACHE 0x10 1112 #define HAMMER2_PFSTRAN_UNMUSED20 0x20 1113 #define HAMMER2_PFSTRAN_SLAVE 0x30 1114 #define HAMMER2_PFSTRAN_SOFT_SLAVE 0x40 1115 #define HAMMER2_PFSTRAN_SOFT_MASTER 0x50 1116 #define HAMMER2_PFSTRAN_MASTER 0x60 1117 #define HAMMER2_PFSTRAN_UNUSED70 0x70 1118 #define HAMMER2_PFSTRAN_SUPROOT 0x80 1119 #define HAMMER2_PFSTRAN_DUMMY 0x90 1120 1121 #define HAMMER2_PFS_DEC(n) ((n) & 0x0F) 1122 #define HAMMER2_PFS_DEC_TRANSITION(n) (((n) >> 4) & 0x0F) 1123 #define HAMMER2_PFS_ENC_TRANSITION(n) (((n) & 0x0F) << 4) 1124 1125 #define HAMMER2_PFSSUBTYPE_NONE 0 1126 #define HAMMER2_PFSSUBTYPE_SNAPSHOT 1 /* manual/managed snapshot */ 1127 #define HAMMER2_PFSSUBTYPE_AUTOSNAP 2 /* automatic snapshot */ 1128 1129 /* 1130 * PFS mode of operation is a bitmask. This is typically not stored 1131 * on-media, but defined here because the field may be used in dmsgs. 1132 */ 1133 #define HAMMER2_PFSMODE_QUORUM 0x01 1134 #define HAMMER2_PFSMODE_RW 0x02 1135 1136 /* 1137 * Allocation Table 1138 * 1139 */ 1140 1141 1142 /* 1143 * Flags (8 bits) - blockref, for freemap only 1144 * 1145 * Note that the minimum chunk size is 1KB so we could theoretically have 1146 * 10 bits here, but we might have some future extension that allows a 1147 * chunk size down to 256 bytes and if so we will need bits 8 and 9. 1148 */ 1149 #define HAMMER2_AVF_SELMASK 0x03 /* select group */ 1150 #define HAMMER2_AVF_ALL_ALLOC 0x04 /* indicate all allocated */ 1151 #define HAMMER2_AVF_ALL_FREE 0x08 /* indicate all free */ 1152 #define HAMMER2_AVF_RESERVED10 0x10 1153 #define HAMMER2_AVF_RESERVED20 0x20 1154 #define HAMMER2_AVF_RESERVED40 0x40 1155 #define HAMMER2_AVF_RESERVED80 0x80 1156 #define HAMMER2_AVF_AVMASK32 ((uint32_t)0xFFFFFF00LU) 1157 #define HAMMER2_AVF_AVMASK64 ((uint64_t)0xFFFFFFFFFFFFFF00LLU) 1158 1159 #define HAMMER2_AV_SELECT_A 0x00 1160 #define HAMMER2_AV_SELECT_B 0x01 1161 #define HAMMER2_AV_SELECT_C 0x02 1162 #define HAMMER2_AV_SELECT_D 0x03 1163 1164 /* 1165 * The volume header eats a 64K block. There is currently an issue where 1166 * we want to try to fit all nominal filesystem updates in a 512-byte section 1167 * but it may be a lost cause due to the need for a blockset. 1168 * 1169 * All information is stored in host byte order. The volume header's magic 1170 * number may be checked to determine the byte order. If you wish to mount 1171 * between machines w/ different endian modes you'll need filesystem code 1172 * which acts on the media data consistently (either all one way or all the 1173 * other). Our code currently does not do that. 1174 * 1175 * A read-write mount may have to recover missing allocations by doing an 1176 * incremental mirror scan looking for modifications made after alloc_tid. 1177 * If alloc_tid == last_tid then no recovery operation is needed. Recovery 1178 * operations are usually very, very fast. 1179 * 1180 * Read-only mounts do not need to do any recovery, access to the filesystem 1181 * topology is always consistent after a crash (is always consistent, period). 1182 * However, there may be shortcutted blockref updates present from deep in 1183 * the tree which are stored in the volumeh eader and must be tracked on 1184 * the fly. 1185 * 1186 * NOTE: The copyinfo[] array contains the configuration for both the 1187 * cluster connections and any local media copies. The volume 1188 * header will be replicated for each local media copy. 1189 * 1190 * The mount command may specify multiple medias or just one and 1191 * allow HAMMER2 to pick up the others when it checks the copyinfo[] 1192 * array on mount. 1193 * 1194 * NOTE: root_blockref points to the super-root directory, not the root 1195 * directory. The root directory will be a subdirectory under the 1196 * super-root. 1197 * 1198 * The super-root directory contains all root directories and all 1199 * snapshots (readonly or writable). It is possible to do a 1200 * null-mount of the super-root using special path constructions 1201 * relative to your mounted root. 1202 * 1203 * NOTE: HAMMER2 allows any subdirectory tree to be managed as if it were 1204 * a PFS, including mirroring and storage quota operations, and this is 1205 * prefered over creating discrete PFSs in the super-root. Instead 1206 * the super-root is most typically used to create writable snapshots, 1207 * alternative roots, and so forth. The super-root is also used by 1208 * the automatic snapshotting mechanism. 1209 */ 1210 #define HAMMER2_VOLUME_ID_HBO 0x48414d3205172011LLU 1211 #define HAMMER2_VOLUME_ID_ABO 0x11201705324d4148LLU 1212 1213 struct hammer2_volume_data { 1214 /* 1215 * sector #0 - 512 bytes 1216 */ 1217 uint64_t magic; /* 0000 Signature */ 1218 hammer2_off_t boot_beg; /* 0008 Boot area (future) */ 1219 hammer2_off_t boot_end; /* 0010 (size = end - beg) */ 1220 hammer2_off_t aux_beg; /* 0018 Aux area (future) */ 1221 hammer2_off_t aux_end; /* 0020 (size = end - beg) */ 1222 hammer2_off_t volu_size; /* 0028 Volume size, bytes */ 1223 1224 uint32_t version; /* 0030 */ 1225 uint32_t flags; /* 0034 */ 1226 uint8_t copyid; /* 0038 copyid of phys vol */ 1227 uint8_t freemap_version; /* 0039 freemap algorithm */ 1228 uint8_t peer_type; /* 003A HAMMER2_PEER_xxx */ 1229 uint8_t reserved003B; /* 003B */ 1230 uint32_t reserved003C; /* 003C */ 1231 1232 uuid_t fsid; /* 0040 */ 1233 uuid_t fstype; /* 0050 */ 1234 1235 /* 1236 * allocator_size is precalculated at newfs time and does not include 1237 * reserved blocks, boot, or redo areas. 1238 * 1239 * Initial non-reserved-area allocations do not use the freemap 1240 * but instead adjust alloc_iterator. Dynamic allocations take 1241 * over starting at (allocator_beg). This makes newfs_hammer2's 1242 * job a lot easier and can also serve as a testing jig. 1243 */ 1244 hammer2_off_t allocator_size; /* 0060 Total data space */ 1245 hammer2_off_t allocator_free; /* 0068 Free space */ 1246 hammer2_off_t allocator_beg; /* 0070 Initial allocations */ 1247 1248 /* 1249 * mirror_tid reflects the highest committed change for this 1250 * block device regardless of whether it is to the super-root 1251 * or to a PFS or whatever. 1252 * 1253 * freemap_tid reflects the highest committed freemap change for 1254 * this block device. 1255 */ 1256 hammer2_tid_t mirror_tid; /* 0078 committed tid (vol) */ 1257 hammer2_tid_t reserved0080; /* 0080 */ 1258 hammer2_tid_t reserved0088; /* 0088 */ 1259 hammer2_tid_t freemap_tid; /* 0090 committed tid (fmap) */ 1260 hammer2_tid_t bulkfree_tid; /* 0098 bulkfree incremental */ 1261 hammer2_tid_t reserved00A0[5]; /* 00A0-00C7 */ 1262 1263 /* 1264 * Copyids are allocated dynamically from the copyexists bitmap. 1265 * An id from the active copies set (up to 8, see copyinfo later on) 1266 * may still exist after the copy set has been removed from the 1267 * volume header and its bit will remain active in the bitmap and 1268 * cannot be reused until it is 100% removed from the hierarchy. 1269 */ 1270 uint32_t copyexists[8]; /* 00C8-00E7 copy exists bmap */ 1271 char reserved0140[248]; /* 00E8-01DF */ 1272 1273 /* 1274 * 32 bit CRC array at the end of the first 512 byte sector. 1275 * 1276 * icrc_sects[7] - First 512-4 bytes of volume header (including all 1277 * the other icrc's except this one). 1278 * 1279 * icrc_sects[6] - Sector 1 (512 bytes) of volume header, which is 1280 * the blockset for the root. 1281 * 1282 * icrc_sects[5] - Sector 2 1283 * icrc_sects[4] - Sector 3 1284 * icrc_sects[3] - Sector 4 (the freemap blockset) 1285 */ 1286 hammer2_crc32_t icrc_sects[8]; /* 01E0-01FF */ 1287 1288 /* 1289 * sector #1 - 512 bytes 1290 * 1291 * The entire sector is used by a blockset. 1292 */ 1293 hammer2_blockset_t sroot_blockset; /* 0200-03FF Superroot dir */ 1294 1295 /* 1296 * sector #2-7 1297 */ 1298 char sector2[512]; /* 0400-05FF reserved */ 1299 char sector3[512]; /* 0600-07FF reserved */ 1300 hammer2_blockset_t freemap_blockset; /* 0800-09FF freemap */ 1301 char sector5[512]; /* 0A00-0BFF reserved */ 1302 char sector6[512]; /* 0C00-0DFF reserved */ 1303 char sector7[512]; /* 0E00-0FFF reserved */ 1304 1305 /* 1306 * sector #8-71 - 32768 bytes 1307 * 1308 * Contains the configuration for up to 256 copyinfo targets. These 1309 * specify local and remote copies operating as masters or slaves. 1310 * copyid's 0 and 255 are reserved (0 indicates an empty slot and 255 1311 * indicates the local media). 1312 * 1313 * Each inode contains a set of up to 8 copyids, either inherited 1314 * from its parent or explicitly specified in the inode, which 1315 * indexes into this array. 1316 */ 1317 /* 1000-8FFF copyinfo config */ 1318 hammer2_volconf_t copyinfo[HAMMER2_COPYID_COUNT]; 1319 1320 /* 1321 * Remaining sections are reserved for future use. 1322 */ 1323 char reserved0400[0x6FFC]; /* 9000-FFFB reserved */ 1324 1325 /* 1326 * icrc on entire volume header 1327 */ 1328 hammer2_crc32_t icrc_volheader; /* FFFC-FFFF full volume icrc*/ 1329 } __packed; 1330 1331 typedef struct hammer2_volume_data hammer2_volume_data_t; 1332 1333 /* 1334 * Various parts of the volume header have their own iCRCs. 1335 * 1336 * The first 512 bytes has its own iCRC stored at the end of the 512 bytes 1337 * and not included the icrc calculation. 1338 * 1339 * The second 512 bytes also has its own iCRC but it is stored in the first 1340 * 512 bytes so it covers the entire second 512 bytes. 1341 * 1342 * The whole volume block (64KB) has an iCRC covering all but the last 4 bytes, 1343 * which is where the iCRC for the whole volume is stored. This is currently 1344 * a catch-all for anything not individually iCRCd. 1345 */ 1346 #define HAMMER2_VOL_ICRC_SECT0 7 1347 #define HAMMER2_VOL_ICRC_SECT1 6 1348 1349 #define HAMMER2_VOLUME_BYTES 65536 1350 1351 #define HAMMER2_VOLUME_ICRC0_OFF 0 1352 #define HAMMER2_VOLUME_ICRC1_OFF 512 1353 #define HAMMER2_VOLUME_ICRCVH_OFF 0 1354 1355 #define HAMMER2_VOLUME_ICRC0_SIZE (512 - 4) 1356 #define HAMMER2_VOLUME_ICRC1_SIZE (512) 1357 #define HAMMER2_VOLUME_ICRCVH_SIZE (65536 - 4) 1358 1359 #define HAMMER2_VOL_VERSION_MIN 1 1360 #define HAMMER2_VOL_VERSION_DEFAULT 1 1361 #define HAMMER2_VOL_VERSION_WIP 2 1362 1363 #define HAMMER2_NUM_VOLHDRS 4 1364 1365 union hammer2_media_data { 1366 hammer2_volume_data_t voldata; 1367 hammer2_inode_data_t ipdata; 1368 hammer2_blockset_t blkset; 1369 hammer2_blockref_t npdata[HAMMER2_IND_COUNT_MAX]; 1370 hammer2_bmap_data_t bmdata[HAMMER2_FREEMAP_COUNT]; 1371 char buf[HAMMER2_PBUFSIZE]; 1372 } __packed; 1373 1374 typedef union hammer2_media_data hammer2_media_data_t; 1375 1376 #endif /* !_VFS_HAMMER2_DISK_H_ */ 1377