xref: /netbsd-src/usr.bin/make/lst.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* $NetBSD: lst.c,v 1.4 2020/08/09 20:49:15 rillig Exp $ */
2 
3 /*
4  * Copyright (c) 1988, 1989, 1990, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * Adam de Boor.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  */
34 
35 #include "lst.h"
36 #include "make_malloc.h"
37 
38 #ifndef MAKE_NATIVE
39 static char rcsid[] = "$NetBSD: lst.c,v 1.4 2020/08/09 20:49:15 rillig Exp $";
40 #else
41 #include <sys/cdefs.h>
42 #ifndef lint
43 __RCSID("$NetBSD: lst.c,v 1.4 2020/08/09 20:49:15 rillig Exp $");
44 #endif /* not lint */
45 #endif
46 
47 typedef struct ListNode {
48     struct ListNode *prevPtr;	/* previous element in list */
49     struct ListNode *nextPtr;	/* next in list */
50     unsigned int useCount: 8,	/* Count of functions using the node.
51 				 * node may not be deleted until count
52 				 * goes to 0 */
53     		 flags: 8;	/* Node status flags */
54     void *datum;		/* datum associated with this element */
55 } *ListNode;
56 /*
57  * Flags required for synchronization
58  */
59 #define LN_DELETED	0x0001	/* List node should be removed when done */
60 
61 typedef enum {
62     Head, Middle, Tail, Unknown
63 } Where;
64 
65 typedef struct List {
66     ListNode firstPtr;		/* first node in list */
67     ListNode lastPtr;		/* last node in list */
68     Boolean isCirc;		/* true if the list should be considered
69 				 * circular */
70 /*
71  * fields for sequential access
72  */
73     Where atEnd;		/* Where in the list the last access was */
74     Boolean isOpen;		/* true if list has been Lst_Open'ed */
75     ListNode curPtr;		/* current node, if open. NULL if
76 				 * *just* opened */
77     ListNode prevPtr;		/* Previous node, if open. Used by
78 				 * Lst_Remove */
79 } *List;
80 
81 /*
82  * PAlloc (var, ptype) --
83  *	Allocate a pointer-typedef structure 'ptype' into the variable 'var'
84  */
85 #define PAlloc(var, ptype) \
86     var = (ptype) bmake_malloc(sizeof *(var))
87 
88 /*
89  * LstValid --
90  *	Return TRUE if the list is valid
91  */
92 static Boolean
93 LstValid(Lst l)
94 {
95     return l != NULL;
96 }
97 
98 /*
99  * LstNodeValid --
100  *	Return TRUE if the list node is valid
101  */
102 static Boolean
103 LstNodeValid(LstNode ln)
104 {
105     return ln != NULL;
106 }
107 
108 /*
109  * LstIsEmpty (l) --
110  *	TRUE if the list l is empty.
111  */
112 static Boolean
113 LstIsEmpty(Lst l)
114 {
115     return l->firstPtr == NULL;
116 }
117 
118 /*-
119  *-----------------------------------------------------------------------
120  * Lst_Init --
121  *	Create and initialize a new list.
122  *
123  * Input:
124  *	circ		TRUE if the list should be made circular
125  *
126  * Results:
127  *	The created list.
128  *
129  * Side Effects:
130  *	A list is created, what else?
131  *
132  *-----------------------------------------------------------------------
133  */
134 Lst
135 Lst_Init(Boolean circ)
136 {
137     List nList;
138 
139     PAlloc (nList, List);
140 
141     nList->firstPtr = NULL;
142     nList->lastPtr = NULL;
143     nList->isOpen = FALSE;
144     nList->isCirc = circ;
145     nList->atEnd = Unknown;
146 
147     return nList;
148 }
149 
150 /*-
151  *-----------------------------------------------------------------------
152  * Lst_Duplicate --
153  *	Duplicate an entire list. If a function to copy a void *is
154  *	given, the individual client elements will be duplicated as well.
155  *
156  * Input:
157  *	l		the list to duplicate
158  *	copyProc	A function to duplicate each void *
159  *
160  * Results:
161  *	The new Lst structure or NULL if failure.
162  *
163  * Side Effects:
164  *	A new list is created.
165  *-----------------------------------------------------------------------
166  */
167 Lst
168 Lst_Duplicate(Lst l, DuplicateProc *copyProc)
169 {
170     Lst nl;
171     ListNode ln;
172     List list = l;
173 
174     if (!LstValid(l)) {
175 	return NULL;
176     }
177 
178     nl = Lst_Init(list->isCirc);
179     if (nl == NULL) {
180 	return NULL;
181     }
182 
183     ln = list->firstPtr;
184     while (ln != NULL) {
185 	if (copyProc != NULL) {
186 	    if (Lst_AtEnd(nl, copyProc(ln->datum)) == FAILURE) {
187 		return NULL;
188 	    }
189 	} else if (Lst_AtEnd(nl, ln->datum) == FAILURE) {
190 	    return NULL;
191 	}
192 
193 	if (list->isCirc && ln == list->lastPtr) {
194 	    ln = NULL;
195 	} else {
196 	    ln = ln->nextPtr;
197 	}
198     }
199 
200     return nl;
201 }
202 
203 /*-
204  *-----------------------------------------------------------------------
205  * Lst_Destroy --
206  *	Destroy a list and free all its resources. If the freeProc is
207  *	given, it is called with the datum from each node in turn before
208  *	the node is freed.
209  *
210  * Results:
211  *	None.
212  *
213  * Side Effects:
214  *	The given list is freed in its entirety.
215  *
216  *-----------------------------------------------------------------------
217  */
218 void
219 Lst_Destroy(Lst list, FreeProc *freeProc)
220 {
221     ListNode ln;
222     ListNode tln = NULL;
223 
224     if (list == NULL)
225 	return;
226 
227     /* To ease scanning */
228     if (list->lastPtr != NULL)
229 	list->lastPtr->nextPtr = NULL;
230     else {
231 	free(list);
232 	return;
233     }
234 
235     if (freeProc) {
236 	for (ln = list->firstPtr; ln != NULL; ln = tln) {
237 	    tln = ln->nextPtr;
238 	    freeProc(ln->datum);
239 	    free(ln);
240 	}
241     } else {
242 	for (ln = list->firstPtr; ln != NULL; ln = tln) {
243 	    tln = ln->nextPtr;
244 	    free(ln);
245 	}
246     }
247 
248     free(list);
249 }
250 
251 /*
252  * Functions to modify a list
253  */
254 
255 /*-
256  *-----------------------------------------------------------------------
257  * Lst_InsertBefore --
258  *	Insert a new node with the given piece of data before the given
259  *	node in the given list.
260  *
261  * Input:
262  *	l		list to manipulate
263  *	ln		node before which to insert d
264  *	d		datum to be inserted
265  *
266  * Results:
267  *	SUCCESS or FAILURE.
268  *
269  * Side Effects:
270  *	the firstPtr field will be changed if ln is the first node in the
271  *	list.
272  *
273  *-----------------------------------------------------------------------
274  */
275 ReturnStatus
276 Lst_InsertBefore(Lst l, LstNode ln, void *d)
277 {
278     ListNode nLNode;		/* new lnode for d */
279     ListNode lNode = ln;
280     List list = l;
281 
282 
283     /*
284      * check validity of arguments
285      */
286     if (LstValid(l) && (LstIsEmpty(l) && ln == NULL))
287 	goto ok;
288 
289     if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
290 	return FAILURE;
291     }
292 
293     ok:
294     PAlloc (nLNode, ListNode);
295 
296     nLNode->datum = d;
297     nLNode->useCount = nLNode->flags = 0;
298 
299     if (ln == NULL) {
300 	if (list->isCirc) {
301 	    nLNode->prevPtr = nLNode->nextPtr = nLNode;
302 	} else {
303 	    nLNode->prevPtr = nLNode->nextPtr = NULL;
304 	}
305 	list->firstPtr = list->lastPtr = nLNode;
306     } else {
307 	nLNode->prevPtr = lNode->prevPtr;
308 	nLNode->nextPtr = lNode;
309 
310 	if (nLNode->prevPtr != NULL) {
311 	    nLNode->prevPtr->nextPtr = nLNode;
312 	}
313 	lNode->prevPtr = nLNode;
314 
315 	if (lNode == list->firstPtr) {
316 	    list->firstPtr = nLNode;
317 	}
318     }
319 
320     return SUCCESS;
321 }
322 
323 /*-
324  *-----------------------------------------------------------------------
325  * Lst_InsertAfter --
326  *	Create a new node and add it to the given list after the given node.
327  *
328  * Input:
329  *	l		affected list
330  *	ln		node after which to append the datum
331  *	d		said datum
332  *
333  * Results:
334  *	SUCCESS if all went well.
335  *
336  * Side Effects:
337  *	A new ListNode is created and linked in to the List. The lastPtr
338  *	field of the List will be altered if ln is the last node in the
339  *	list. lastPtr and firstPtr will alter if the list was empty and
340  *	ln was NULL.
341  *
342  *-----------------------------------------------------------------------
343  */
344 ReturnStatus
345 Lst_InsertAfter(Lst l, LstNode ln, void *d)
346 {
347     List list;
348     ListNode lNode;
349     ListNode nLNode;
350 
351     if (LstValid(l) && (ln == NULL && LstIsEmpty(l))) {
352 	goto ok;
353     }
354 
355     if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
356 	return FAILURE;
357     }
358     ok:
359 
360     list = l;
361     lNode = ln;
362 
363     PAlloc (nLNode, ListNode);
364     nLNode->datum = d;
365     nLNode->useCount = nLNode->flags = 0;
366 
367     if (lNode == NULL) {
368 	if (list->isCirc) {
369 	    nLNode->nextPtr = nLNode->prevPtr = nLNode;
370 	} else {
371 	    nLNode->nextPtr = nLNode->prevPtr = NULL;
372 	}
373 	list->firstPtr = list->lastPtr = nLNode;
374     } else {
375 	nLNode->prevPtr = lNode;
376 	nLNode->nextPtr = lNode->nextPtr;
377 
378 	lNode->nextPtr = nLNode;
379 	if (nLNode->nextPtr != NULL) {
380 	    nLNode->nextPtr->prevPtr = nLNode;
381 	}
382 
383 	if (lNode == list->lastPtr) {
384 	    list->lastPtr = nLNode;
385 	}
386     }
387 
388     return SUCCESS;
389 }
390 
391 /*-
392  *-----------------------------------------------------------------------
393  * Lst_AtFront --
394  *	Place a piece of data at the front of a list
395  *
396  * Results:
397  *	SUCCESS or FAILURE
398  *
399  * Side Effects:
400  *	A new ListNode is created and stuck at the front of the list.
401  *	hence, firstPtr (and possible lastPtr) in the list are altered.
402  *
403  *-----------------------------------------------------------------------
404  */
405 ReturnStatus
406 Lst_AtFront(Lst l, void *d)
407 {
408     LstNode front;
409 
410     front = Lst_First(l);
411     return Lst_InsertBefore(l, front, d);
412 }
413 
414 /*-
415  *-----------------------------------------------------------------------
416  * Lst_AtEnd --
417  *	Add a node to the end of the given list
418  *
419  * Input:
420  *	l		List to which to add the datum
421  *	d		Datum to add
422  *
423  * Results:
424  *	SUCCESS if life is good.
425  *
426  * Side Effects:
427  *	A new ListNode is created and added to the list.
428  *
429  *-----------------------------------------------------------------------
430  */
431 ReturnStatus
432 Lst_AtEnd(Lst l, void *d)
433 {
434     LstNode end;
435 
436     end = Lst_Last(l);
437     return Lst_InsertAfter(l, end, d);
438 }
439 
440 /*-
441  *-----------------------------------------------------------------------
442  * Lst_Remove --
443  *	Remove the given node from the given list.
444  *
445  * Results:
446  *	SUCCESS or FAILURE.
447  *
448  * Side Effects:
449  *	The list's firstPtr will be set to NULL if ln is the last
450  *	node on the list. firsPtr and lastPtr will be altered if ln is
451  *	either the first or last node, respectively, on the list.
452  *
453  *-----------------------------------------------------------------------
454  */
455 ReturnStatus
456 Lst_Remove(Lst l, LstNode ln)
457 {
458     List list = l;
459     ListNode lNode = ln;
460 
461     if (!LstValid(l) || !LstNodeValid(ln)) {
462 	return FAILURE;
463     }
464 
465     /*
466      * unlink it from the list
467      */
468     if (lNode->nextPtr != NULL) {
469 	lNode->nextPtr->prevPtr = lNode->prevPtr;
470     }
471     if (lNode->prevPtr != NULL) {
472 	lNode->prevPtr->nextPtr = lNode->nextPtr;
473     }
474 
475     /*
476      * if either the firstPtr or lastPtr of the list point to this node,
477      * adjust them accordingly
478      */
479     if (list->firstPtr == lNode) {
480 	list->firstPtr = lNode->nextPtr;
481     }
482     if (list->lastPtr == lNode) {
483 	list->lastPtr = lNode->prevPtr;
484     }
485 
486     /*
487      * Sequential access stuff. If the node we're removing is the current
488      * node in the list, reset the current node to the previous one. If the
489      * previous one was non-existent (prevPtr == NULL), we set the
490      * end to be Unknown, since it is.
491      */
492     if (list->isOpen && (list->curPtr == lNode)) {
493 	list->curPtr = list->prevPtr;
494 	if (list->curPtr == NULL) {
495 	    list->atEnd = Unknown;
496 	}
497     }
498 
499     /*
500      * the only way firstPtr can still point to ln is if ln is the last
501      * node on the list (the list is circular, so lNode->nextptr == lNode in
502      * this case). The list is, therefore, empty and is marked as such
503      */
504     if (list->firstPtr == lNode) {
505 	list->firstPtr = NULL;
506     }
507 
508     /*
509      * note that the datum is unmolested. The caller must free it as
510      * necessary and as expected.
511      */
512     if (lNode->useCount == 0) {
513 	free(ln);
514     } else {
515 	lNode->flags |= LN_DELETED;
516     }
517 
518     return SUCCESS;
519 }
520 
521 /*-
522  *-----------------------------------------------------------------------
523  * Lst_Replace --
524  *	Replace the datum in the given node with the new datum
525  *
526  * Results:
527  *	SUCCESS or FAILURE.
528  *
529  * Side Effects:
530  *	The datum field fo the node is altered.
531  *
532  *-----------------------------------------------------------------------
533  */
534 ReturnStatus
535 Lst_Replace(LstNode ln, void *d)
536 {
537     if (ln == NULL) {
538 	return FAILURE;
539     } else {
540 	(ln)->datum = d;
541 	return SUCCESS;
542     }
543 }
544 
545 
546 /*
547  * Node-specific functions
548  */
549 
550 /*-
551  *-----------------------------------------------------------------------
552  * Lst_First --
553  *	Return the first node on the given list.
554  *
555  * Results:
556  *	The first node or NULL if the list is empty.
557  *
558  * Side Effects:
559  *	None.
560  *
561  *-----------------------------------------------------------------------
562  */
563 LstNode
564 Lst_First(Lst l)
565 {
566     if (!LstValid(l) || LstIsEmpty(l)) {
567 	return NULL;
568     } else {
569 	return l->firstPtr;
570     }
571 }
572 
573 /*-
574  *-----------------------------------------------------------------------
575  * Lst_Last --
576  *	Return the last node on the list l.
577  *
578  * Results:
579  *	The requested node or NULL if the list is empty.
580  *
581  * Side Effects:
582  *	None.
583  *
584  *-----------------------------------------------------------------------
585  */
586 LstNode
587 Lst_Last(Lst l)
588 {
589     if (!LstValid(l) || LstIsEmpty(l)) {
590 	return NULL;
591     } else {
592 	return l->lastPtr;
593     }
594 }
595 
596 /*-
597  *-----------------------------------------------------------------------
598  * Lst_Succ --
599  *	Return the successor to the given node on its list.
600  *
601  * Results:
602  *	The successor of the node, if it exists (note that on a circular
603  *	list, if the node is the only one in the list, it is its own
604  *	successor).
605  *
606  * Side Effects:
607  *	None.
608  *
609  *-----------------------------------------------------------------------
610  */
611 LstNode
612 Lst_Succ(LstNode ln)
613 {
614     if (ln == NULL) {
615 	return NULL;
616     } else {
617 	return ln->nextPtr;
618     }
619 }
620 
621 /*-
622  *-----------------------------------------------------------------------
623  * Lst_Prev --
624  *	Return the predecessor to the given node on its list.
625  *
626  * Results:
627  *	The predecessor of the node, if it exists (note that on a circular
628  *	list, if the node is the only one in the list, it is its own
629  *	predecessor).
630  *
631  * Side Effects:
632  *	None.
633  *
634  *-----------------------------------------------------------------------
635  */
636 LstNode
637 Lst_Prev(LstNode ln)
638 {
639     if (ln == NULL) {
640 	return NULL;
641     } else {
642 	return ln->prevPtr;
643     }
644 }
645 
646 /*-
647  *-----------------------------------------------------------------------
648  * Lst_Datum --
649  *	Return the datum stored in the given node.
650  *
651  * Results:
652  *	The datum or NULL if the node is invalid.
653  *
654  * Side Effects:
655  *	None.
656  *
657  *-----------------------------------------------------------------------
658  */
659 void *
660 Lst_Datum(LstNode ln)
661 {
662     if (ln != NULL) {
663 	return ln->datum;
664     } else {
665 	return NULL;
666     }
667 }
668 
669 
670 /*
671  * Functions for entire lists
672  */
673 
674 /*-
675  *-----------------------------------------------------------------------
676  * Lst_IsEmpty --
677  *	Return TRUE if the given list is empty.
678  *
679  * Results:
680  *	TRUE if the list is empty, FALSE otherwise.
681  *
682  * Side Effects:
683  *	None.
684  *
685  *	A list is considered empty if its firstPtr == NULL (or if
686  *	the list itself is NULL).
687  *-----------------------------------------------------------------------
688  */
689 Boolean
690 Lst_IsEmpty(Lst l)
691 {
692     return !LstValid(l) || LstIsEmpty(l);
693 }
694 
695 /*-
696  *-----------------------------------------------------------------------
697  * Lst_Find --
698  *	Find a node on the given list using the given comparison function
699  *	and the given datum.
700  *
701  * Results:
702  *	The found node or NULL if none matches.
703  *
704  * Side Effects:
705  *	None.
706  *
707  *-----------------------------------------------------------------------
708  */
709 LstNode
710 Lst_Find(Lst l, const void *d, int (*cProc)(const void *, const void *))
711 {
712     return Lst_FindFrom(l, Lst_First(l), d, cProc);
713 }
714 
715 /*-
716  *-----------------------------------------------------------------------
717  * Lst_FindFrom --
718  *	Search for a node starting and ending with the given one on the
719  *	given list using the passed datum and comparison function to
720  *	determine when it has been found.
721  *
722  * Results:
723  *	The found node or NULL
724  *
725  * Side Effects:
726  *	None.
727  *
728  *-----------------------------------------------------------------------
729  */
730 LstNode
731 Lst_FindFrom(Lst l, LstNode ln, const void *d,
732 	     int (*cProc)(const void *, const void *))
733 {
734     ListNode tln;
735 
736     if (!LstValid(l) || LstIsEmpty(l) || !LstNodeValid(ln)) {
737 	return NULL;
738     }
739 
740     tln = ln;
741 
742     do {
743 	if ((*cProc)(tln->datum, d) == 0)
744 	    return tln;
745 	tln = tln->nextPtr;
746     } while (tln != ln && tln != NULL);
747 
748     return NULL;
749 }
750 
751 /*-
752  * See if a given datum is on a given list.
753  */
754 LstNode
755 Lst_Member(Lst l, void *d)
756 {
757     List list = l;
758     ListNode lNode;
759 
760     if (list == NULL) {
761 	return NULL;
762     }
763     lNode = list->firstPtr;
764     if (lNode == NULL) {
765 	return NULL;
766     }
767 
768     do {
769 	if (lNode->datum == d) {
770 	    return lNode;
771 	}
772 	lNode = lNode->nextPtr;
773     } while (lNode != NULL && lNode != list->firstPtr);
774 
775     return NULL;
776 }
777 
778 /*-
779  *-----------------------------------------------------------------------
780  * Lst_ForEach --
781  *	Apply the given function to each element of the given list. The
782  *	function should return 0 if Lst_ForEach should continue and non-
783  *	zero if it should abort.
784  *
785  * Results:
786  *	None.
787  *
788  * Side Effects:
789  *	Only those created by the passed-in function.
790  *
791  *-----------------------------------------------------------------------
792  */
793 /*VARARGS2*/
794 int
795 Lst_ForEach(Lst l, int (*proc)(void *, void *), void *d)
796 {
797     return Lst_ForEachFrom(l, Lst_First(l), proc, d);
798 }
799 
800 /*-
801  *-----------------------------------------------------------------------
802  * Lst_ForEachFrom --
803  *	Apply the given function to each element of the given list,
804  *	starting from a given point.
805  *
806  *	If the list is circular, the application will wrap around to the
807  *	beginning of the list again.
808  *
809  *	The function should return 0 if traversal should continue, and
810  *	non-zero if it should abort.
811  *
812  * Results:
813  *	None.
814  *
815  * Side Effects:
816  *	Only those created by the passed-in function.
817  *
818  *-----------------------------------------------------------------------
819  */
820 /*VARARGS2*/
821 int
822 Lst_ForEachFrom(Lst l, LstNode ln, int (*proc)(void *, void *),
823 		void *d)
824 {
825     ListNode tln = ln;
826     List list = l;
827     ListNode next;
828     Boolean done;
829     int result;
830 
831     if (!LstValid(list) || LstIsEmpty(list)) {
832 	return 0;
833     }
834 
835     do {
836 	/*
837 	 * Take care of having the current element deleted out from under
838 	 * us.
839 	 */
840 
841 	next = tln->nextPtr;
842 
843 	/*
844 	 * We're done with the traversal if
845 	 *  - the next node to examine is the first in the queue or
846 	 *    doesn't exist and
847 	 *  - nothing's been added after the current node (check this
848 	 *    after proc() has been called).
849 	 */
850 	done = (next == NULL || next == list->firstPtr);
851 
852 	(void)tln->useCount++;
853 	result = (*proc)(tln->datum, d);
854 	(void)tln->useCount--;
855 
856 	/*
857 	 * Now check whether a node has been added.
858 	 * Note: this doesn't work if this node was deleted before
859 	 *       the new node was added.
860 	 */
861 	if (next != tln->nextPtr) {
862 	    next = tln->nextPtr;
863 	    done = 0;
864 	}
865 
866 	if (tln->flags & LN_DELETED) {
867 	    free((char *)tln);
868 	}
869 	tln = next;
870     } while (!result && !LstIsEmpty(list) && !done);
871 
872     return result;
873 }
874 
875 /*-
876  *-----------------------------------------------------------------------
877  * Lst_Concat --
878  *	Concatenate two lists. New elements are created to hold the data
879  *	elements, if specified, but the elements themselves are not copied.
880  *	If the elements should be duplicated to avoid confusion with another
881  *	list, the Lst_Duplicate function should be called first.
882  *	If LST_CONCLINK is specified, the second list is destroyed since
883  *	its pointers have been corrupted and the list is no longer useable.
884  *
885  * Input:
886  *	l1		The list to which l2 is to be appended
887  *	l2		The list to append to l1
888  *	flags		LST_CONCNEW if LstNode's should be duplicated
889  *			LST_CONCLINK if should just be relinked
890  *
891  * Results:
892  *	SUCCESS if all went well. FAILURE otherwise.
893  *
894  * Side Effects:
895  *	New elements are created and appended the first list.
896  *-----------------------------------------------------------------------
897  */
898 ReturnStatus
899 Lst_Concat(Lst l1, Lst l2, int flags)
900 {
901     ListNode ln;     /* original LstNode */
902     ListNode nln;    /* new LstNode */
903     ListNode last;   /* the last element in the list. Keeps
904 				 * bookkeeping until the end */
905     List list1 = l1;
906     List list2 = l2;
907 
908     if (!LstValid(l1) || !LstValid(l2)) {
909 	return FAILURE;
910     }
911 
912     if (flags == LST_CONCLINK) {
913 	if (list2->firstPtr != NULL) {
914 	    /*
915 	     * We set the nextPtr of the
916 	     * last element of list two to be NIL to make the loop easier and
917 	     * so we don't need an extra case should the first list turn
918 	     * out to be non-circular -- the final element will already point
919 	     * to NIL space and the first element will be untouched if it
920 	     * existed before and will also point to NIL space if it didn't.
921 	     */
922 	    list2->lastPtr->nextPtr = NULL;
923 	    /*
924 	     * So long as the second list isn't empty, we just link the
925 	     * first element of the second list to the last element of the
926 	     * first list. If the first list isn't empty, we then link the
927 	     * last element of the list to the first element of the second list
928 	     * The last element of the second list, if it exists, then becomes
929 	     * the last element of the first list.
930 	     */
931 	    list2->firstPtr->prevPtr = list1->lastPtr;
932 	    if (list1->lastPtr != NULL) {
933 		list1->lastPtr->nextPtr = list2->firstPtr;
934 	    } else {
935 		list1->firstPtr = list2->firstPtr;
936 	    }
937 	    list1->lastPtr = list2->lastPtr;
938 	}
939 	if (list1->isCirc && list1->firstPtr != NULL) {
940 	    /*
941 	     * If the first list is supposed to be circular and it is (now)
942 	     * non-empty, we must make sure it's circular by linking the
943 	     * first element to the last and vice versa
944 	     */
945 	    list1->firstPtr->prevPtr = list1->lastPtr;
946 	    list1->lastPtr->nextPtr = list1->firstPtr;
947 	}
948 	free(l2);
949     } else if (list2->firstPtr != NULL) {
950 	/*
951 	 * We set the nextPtr of the last element of list 2 to be nil to make
952 	 * the loop less difficult. The loop simply goes through the entire
953 	 * second list creating new LstNodes and filling in the nextPtr, and
954 	 * prevPtr to fit into l1 and its datum field from the
955 	 * datum field of the corresponding element in l2. The 'last' node
956 	 * follows the last of the new nodes along until the entire l2 has
957 	 * been appended. Only then does the bookkeeping catch up with the
958 	 * changes. During the first iteration of the loop, if 'last' is nil,
959 	 * the first list must have been empty so the newly-created node is
960 	 * made the first node of the list.
961 	 */
962 	list2->lastPtr->nextPtr = NULL;
963 	for (last = list1->lastPtr, ln = list2->firstPtr;
964 	     ln != NULL;
965 	     ln = ln->nextPtr)
966 	{
967 	    PAlloc (nln, ListNode);
968 	    nln->datum = ln->datum;
969 	    if (last != NULL) {
970 		last->nextPtr = nln;
971 	    } else {
972 		list1->firstPtr = nln;
973 	    }
974 	    nln->prevPtr = last;
975 	    nln->flags = nln->useCount = 0;
976 	    last = nln;
977 	}
978 
979 	/*
980 	 * Finish bookkeeping. The last new element becomes the last element
981 	 * of list one.
982 	 */
983 	list1->lastPtr = last;
984 
985 	/*
986 	 * The circularity of both list one and list two must be corrected
987 	 * for -- list one because of the new nodes added to it; list two
988 	 * because of the alteration of list2->lastPtr's nextPtr to ease the
989 	 * above for loop.
990 	 */
991 	if (list1->isCirc) {
992 	    list1->lastPtr->nextPtr = list1->firstPtr;
993 	    list1->firstPtr->prevPtr = list1->lastPtr;
994 	} else {
995 	    last->nextPtr = NULL;
996 	}
997 
998 	if (list2->isCirc) {
999 	    list2->lastPtr->nextPtr = list2->firstPtr;
1000 	}
1001     }
1002 
1003     return SUCCESS;
1004 }
1005 
1006 
1007 /*
1008  * these functions are for dealing with a list as a table, of sorts.
1009  * An idea of the "current element" is kept and used by all the functions
1010  * between Lst_Open() and Lst_Close().
1011  *
1012  * The sequential functions access the list in a slightly different way.
1013  * CurPtr points to their idea of the current node in the list and they
1014  * access the list based on it.
1015  *
1016  * If the list is circular, Lst_Next and Lst_Prev will go around the list
1017  * forever. Lst_IsAtEnd must be used to determine when to stop.
1018  */
1019 
1020 /*-
1021  *-----------------------------------------------------------------------
1022  * Lst_Open --
1023  *	Open a list for sequential access. A list can still be searched,
1024  *	etc., without confusing these functions.
1025  *
1026  * Results:
1027  *	SUCCESS or FAILURE.
1028  *
1029  * Side Effects:
1030  *	isOpen is set TRUE and curPtr is set to NULL so the
1031  *	other sequential functions know it was just opened and can choose
1032  *	the first element accessed based on this.
1033  *
1034  *-----------------------------------------------------------------------
1035  */
1036 ReturnStatus
1037 Lst_Open(Lst l)
1038 {
1039     if (LstValid(l) == FALSE) {
1040 	return FAILURE;
1041     }
1042     l->isOpen = TRUE;
1043     l->atEnd = LstIsEmpty(l) ? Head : Unknown;
1044     l->curPtr = NULL;
1045 
1046     return SUCCESS;
1047 }
1048 
1049 /*-
1050  *-----------------------------------------------------------------------
1051  * Lst_Next --
1052  *	Return the next node for the given list.
1053  *
1054  * Results:
1055  *	The next node or NULL if the list has yet to be opened. Also
1056  *	if the list is non-circular and the end has been reached, NULL
1057  *	is returned.
1058  *
1059  * Side Effects:
1060  *	the curPtr field is updated.
1061  *
1062  *-----------------------------------------------------------------------
1063  */
1064 LstNode
1065 Lst_Next(Lst l)
1066 {
1067     ListNode tln;
1068     List list = l;
1069 
1070     if ((LstValid(l) == FALSE) ||
1071 	(list->isOpen == FALSE)) {
1072 	return NULL;
1073     }
1074 
1075     list->prevPtr = list->curPtr;
1076 
1077     if (list->curPtr == NULL) {
1078 	if (list->atEnd == Unknown) {
1079 	    /*
1080 	     * If we're just starting out, atEnd will be Unknown.
1081 	     * Then we want to start this thing off in the right
1082 	     * direction -- at the start with atEnd being Middle.
1083 	     */
1084 	    list->curPtr = tln = list->firstPtr;
1085 	    list->atEnd = Middle;
1086 	} else {
1087 	    tln = NULL;
1088 	    list->atEnd = Tail;
1089 	}
1090     } else {
1091 	tln = list->curPtr->nextPtr;
1092 	list->curPtr = tln;
1093 
1094 	if (tln == list->firstPtr || tln == NULL) {
1095 	    /*
1096 	     * If back at the front, then we've hit the end...
1097 	     */
1098 	    list->atEnd = Tail;
1099 	} else {
1100 	    /*
1101 	     * Reset to Middle if gone past first.
1102 	     */
1103 	    list->atEnd = Middle;
1104 	}
1105     }
1106 
1107     return tln;
1108 }
1109 
1110 /*-
1111  *-----------------------------------------------------------------------
1112  * Lst_IsAtEnd --
1113  *	Return true if have reached the end of the given list.
1114  *
1115  * Results:
1116  *	TRUE if at the end of the list (this includes the list not being
1117  *	open or being invalid) or FALSE if not. We return TRUE if the list
1118  *	is invalid or unopend so as to cause the caller to exit its loop
1119  *	asap, the assumption being that the loop is of the form
1120  *	    while (!Lst_IsAtEnd (l)) {
1121  *	    	  ...
1122  *	    }
1123  *
1124  * Side Effects:
1125  *	None.
1126  *
1127  *-----------------------------------------------------------------------
1128  */
1129 Boolean
1130 Lst_IsAtEnd(Lst l)
1131 {
1132     List list = l;
1133 
1134     return !LstValid(l) || !list->isOpen ||
1135 	   list->atEnd == Head || list->atEnd == Tail;
1136 }
1137 
1138 /*-
1139  *-----------------------------------------------------------------------
1140  * Lst_Close --
1141  *	Close a list which was opened for sequential access.
1142  *
1143  * Input:
1144  *	l		The list to close
1145  *
1146  * Results:
1147  *	None.
1148  *
1149  * Side Effects:
1150  *	The list is closed.
1151  *
1152  *-----------------------------------------------------------------------
1153  */
1154 void
1155 Lst_Close(Lst l)
1156 {
1157     List list = l;
1158 
1159     if (LstValid(l) == TRUE) {
1160 	list->isOpen = FALSE;
1161 	list->atEnd = Unknown;
1162     }
1163 }
1164 
1165 
1166 /*
1167  * for using the list as a queue
1168  */
1169 
1170 /*-
1171  *-----------------------------------------------------------------------
1172  * Lst_EnQueue --
1173  *	Add the datum to the tail of the given list.
1174  *
1175  * Results:
1176  *	SUCCESS or FAILURE as returned by Lst_InsertAfter.
1177  *
1178  * Side Effects:
1179  *	the lastPtr field is altered all the time and the firstPtr field
1180  *	will be altered if the list used to be empty.
1181  *
1182  *-----------------------------------------------------------------------
1183  */
1184 ReturnStatus
1185 Lst_EnQueue(Lst l, void *d)
1186 {
1187     if (LstValid(l) == FALSE) {
1188 	return FAILURE;
1189     }
1190 
1191     return Lst_InsertAfter(l, Lst_Last(l), d);
1192 }
1193 
1194 /*-
1195  *-----------------------------------------------------------------------
1196  * Lst_DeQueue --
1197  *	Remove and return the datum at the head of the given list.
1198  *
1199  * Results:
1200  *	The datum in the node at the head or NULL if the list
1201  *	is empty.
1202  *
1203  * Side Effects:
1204  *	The head node is removed from the list.
1205  *
1206  *-----------------------------------------------------------------------
1207  */
1208 void *
1209 Lst_DeQueue(Lst l)
1210 {
1211     void *rd;
1212     ListNode tln;
1213 
1214     tln = Lst_First(l);
1215     if (tln == NULL) {
1216 	return NULL;
1217     }
1218 
1219     rd = tln->datum;
1220     if (Lst_Remove(l, tln) == FAILURE) {
1221 	return NULL;
1222     } else {
1223 	return rd;
1224     }
1225 }
1226