1 /* $NetBSD: thread.c,v 1.7 2009/01/18 01:29:57 lukem Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Anon Ymous. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 32 /* 33 * This module contains the threading and sorting routines. 34 */ 35 36 #ifdef THREAD_SUPPORT 37 38 #include <sys/cdefs.h> 39 #ifndef __lint__ 40 __RCSID("$NetBSD: thread.c,v 1.7 2009/01/18 01:29:57 lukem Exp $"); 41 #endif /* not __lint__ */ 42 43 #include <assert.h> 44 #include <ctype.h> 45 #include <stdio.h> 46 #include <stdlib.h> 47 #include <util.h> 48 49 #include "def.h" 50 #include "glob.h" 51 #include "extern.h" 52 #include "format.h" 53 #include "thread.h" 54 55 56 struct thread_s { 57 struct message *t_head; /* head of the thread */ 58 struct message **t_msgtbl; /* message array indexed by msgnum */ 59 int t_msgCount; /* count of messages in thread */ 60 }; 61 #define THREAD_INIT {NULL, NULL, 0} 62 63 typedef int state_t; 64 #define S_STATE_INIT 0 65 #define S_EXPOSE 1 /* flag to expose the thread */ 66 #define S_RESTRICT 2 /* flag to restrict to tagged messages */ 67 #define S_IS_EXPOSE(a) ((a) & S_EXPOSE) 68 #define S_IS_RESTRICT(a) ((a) & S_RESTRICT) 69 70 /* XXX - this isn't really a thread */ 71 static struct thread_s message_array = THREAD_INIT; /* the basic message array */ 72 static struct thread_s current_thread = THREAD_INIT; /* the current thread */ 73 74 static state_t state = S_STATE_INIT; /* the current state */ 75 76 /* 77 * A state hook used by the format module. 78 */ 79 PUBLIC int 80 thread_hidden(void) 81 { 82 return !S_IS_EXPOSE(state); 83 } 84 85 /************************************************************************ 86 * Debugging stuff that should evaporate eventually. 87 */ 88 #ifdef THREAD_DEBUG 89 static void 90 show_msg(struct message *mp) 91 { 92 if (mp == NULL) 93 return; 94 /* 95 * Arg! '%p' doesn't like the '0' modifier. 96 */ 97 (void)printf("%3d (%p):" 98 " flink=%p blink=%p clink=%p plink=%p" 99 " depth=%d flags=0x%03x\n", 100 mp->m_index, mp, 101 mp->m_flink, mp->m_blink, mp->m_clink, mp->m_plink, 102 mp->m_depth, mp->m_flag); 103 } 104 105 #ifndef __lint__ 106 __unused 107 static void 108 show_thread(struct message *mp) 109 { 110 (void)printf("current_thread.t_head=%p\n", current_thread.t_head); 111 for (/*EMPTY*/; mp; mp = next_message(mp)) 112 show_msg(mp); 113 } 114 #endif 115 116 PUBLIC int 117 thread_showcmd(void *v) 118 { 119 int *ip; 120 121 (void)printf("current_thread.t_head=%p\n", current_thread.t_head); 122 for (ip = v; *ip; ip++) 123 show_msg(get_message(*ip)); 124 125 return 0; 126 } 127 #endif /* THREAD_DEBUG */ 128 129 /************************************************************************* 130 * tag/restrict routines 131 */ 132 133 /* 134 * Return TRUE iff all messages forward or below this one are tagged. 135 */ 136 static int 137 is_tagged_core(struct message *mp) 138 { 139 if (S_IS_EXPOSE(state)) 140 return 1; 141 142 for (/*EMPTY*/; mp; mp = mp->m_flink) 143 if ((mp->m_flag & MTAGGED) == 0 || 144 is_tagged_core(mp->m_clink) == 0) 145 return 0; 146 return 1; 147 } 148 149 static int 150 is_tagged(struct message *mp) 151 { 152 return mp->m_flag & MTAGGED && is_tagged_core(mp->m_clink); 153 } 154 155 /************************************************************************ 156 * These are the core routines to access messages via the links used 157 * everywhere outside this module and fio.c. 158 */ 159 160 static int 161 has_parent(struct message *mp) 162 { 163 return mp->m_plink != NULL && 164 mp->m_plink->m_clink != current_thread.t_head; 165 } 166 167 static struct message * 168 next_message1(struct message *mp) 169 { 170 if (mp == NULL) 171 return NULL; 172 173 if (S_IS_EXPOSE(state) == 0) 174 return mp->m_flink; 175 176 if (mp->m_clink) 177 return mp->m_clink; 178 179 while (mp->m_flink == NULL && has_parent(mp)) 180 mp = mp->m_plink; 181 182 return mp->m_flink; 183 } 184 185 static struct message * 186 prev_message1(struct message *mp) 187 { 188 if (mp == NULL) 189 return NULL; 190 191 if (S_IS_EXPOSE(state) && mp->m_blink == NULL && has_parent(mp)) 192 return mp->m_plink; 193 194 return mp->m_blink; 195 } 196 197 PUBLIC struct message * 198 next_message(struct message *mp) 199 { 200 if (S_IS_RESTRICT(state) == 0) 201 return next_message1(mp); 202 203 while ((mp = next_message1(mp)) != NULL && is_tagged(mp)) 204 continue; 205 206 return mp; 207 } 208 209 PUBLIC struct message * 210 prev_message(struct message *mp) 211 { 212 if (S_IS_RESTRICT(state) == 0) 213 return prev_message1(mp); 214 215 while ((mp = prev_message1(mp)) != NULL && is_tagged(mp)) 216 continue; 217 218 return mp; 219 } 220 221 static struct message * 222 first_message(struct message *mp) 223 { 224 if (S_IS_RESTRICT(state) && is_tagged(mp)) 225 mp = next_message(mp); 226 return mp; 227 } 228 229 PUBLIC struct message * 230 get_message(int msgnum) 231 { 232 struct message *mp; 233 234 if (msgnum < 1 || msgnum > current_thread.t_msgCount) 235 return NULL; 236 mp = current_thread.t_msgtbl[msgnum - 1]; 237 assert(mp->m_index == msgnum); 238 return mp; 239 } 240 241 PUBLIC int 242 get_msgnum(struct message *mp) 243 { 244 return mp ? mp->m_index : 0; 245 } 246 247 PUBLIC int 248 get_msgCount(void) 249 { 250 return current_thread.t_msgCount; 251 } 252 253 PUBLIC int 254 get_abs_msgCount(void) 255 { 256 return message_array.t_msgCount; 257 } 258 259 PUBLIC struct message * 260 get_abs_message(int msgnum) 261 { 262 if (msgnum < 1 || msgnum > message_array.t_msgCount) 263 return NULL; 264 265 return &message_array.t_head[msgnum - 1]; 266 } 267 268 PUBLIC struct message * 269 next_abs_message(struct message *mp) 270 { 271 int i; 272 273 i = (int)(mp - message_array.t_head); 274 275 if (i < 0 || i + 1 >= message_array.t_msgCount) 276 return NULL; 277 278 return &message_array.t_head[i + 1]; 279 } 280 281 /************************************************************************/ 282 /* 283 * routines to handle the recursion of commands. 284 */ 285 PUBLIC int 286 do_recursion(void) 287 { 288 return S_IS_EXPOSE(state) == 0 && value(ENAME_RECURSIVE_CMDS) != NULL; 289 } 290 291 static int 292 thread_recursion_flist(struct message *mp, int (*fn)(struct message *, void *), void *args) 293 { 294 int retval; 295 for (/*EMPTY*/; mp; mp = mp->m_flink) { 296 if (S_IS_RESTRICT(state) && is_tagged(mp)) 297 continue; 298 if ((retval = fn(mp, args)) != 0 || 299 (retval = thread_recursion_flist(mp->m_clink, fn, args)) != 0) 300 return retval; 301 } 302 303 return 0; 304 } 305 306 PUBLIC int 307 thread_recursion(struct message *mp, int (*fn)(struct message *, void *), void *args) 308 { 309 int retval; 310 311 assert(mp != NULL); 312 313 if ((retval = fn(mp, args)) != 0) 314 return retval; 315 316 if (do_recursion() && 317 (retval = thread_recursion_flist(mp->m_clink, fn, args)) != 0) 318 return retval; 319 320 return 0; 321 } 322 323 /************************************************************************ 324 * A hook for sfmtfield() in format.c. It is the only place outside 325 * this module that the m_depth is known. 326 */ 327 PUBLIC int 328 thread_depth(void) 329 { 330 return current_thread.t_head ? current_thread.t_head->m_depth : 0; 331 } 332 333 /************************************************************************/ 334 335 static int 336 reindex_core(struct message *mp) 337 { 338 int i; 339 assert(mp->m_blink == NULL); 340 341 i = 0; 342 for (mp = first_message(mp); mp; mp = mp->m_flink) { 343 assert(mp->m_flink == NULL || mp == mp->m_flink->m_blink); 344 assert(mp->m_blink == NULL || mp == mp->m_blink->m_flink); 345 346 assert(mp->m_size != 0); 347 348 if (S_IS_RESTRICT(state) == 0 || !is_tagged(mp)) 349 mp->m_index = ++i; 350 351 if (mp->m_clink) 352 (void)reindex_core(mp->m_clink); 353 } 354 return i; 355 } 356 357 358 static void 359 reindex(struct thread_s *tp) 360 { 361 struct message *mp; 362 int i; 363 364 assert(tp != NULL); 365 366 if ((mp = tp->t_head) == NULL || mp->m_size == 0) 367 return; 368 369 assert(mp->m_blink == NULL); 370 371 if (S_IS_EXPOSE(state) == 0) { 372 /* 373 * We special case this so that all the hidden 374 * sub-threads get indexed, not just the current one. 375 */ 376 i = reindex_core(tp->t_head); 377 } 378 else { 379 i = 0; 380 for (mp = first_message(tp->t_head); mp; mp = next_message(mp)) 381 mp->m_index = ++i; 382 } 383 384 assert(i <= message_array.t_msgCount); 385 386 tp->t_msgCount = i; 387 i = 0; 388 for (mp = first_message(tp->t_head); mp; mp = next_message(mp)) 389 tp->t_msgtbl[i++] = mp; 390 } 391 392 static void 393 redepth_core(struct message *mp, int depth, struct message *parent) 394 { 395 assert(mp->m_blink == NULL); 396 assert((parent == NULL && depth == 0) || 397 (parent != NULL && depth != 0 && depth == parent->m_depth + 1)); 398 399 for (/*EMPTY*/; mp; mp = mp->m_flink) { 400 assert(mp->m_plink == parent); 401 assert(mp->m_flink == NULL || mp == mp->m_flink->m_blink); 402 assert(mp->m_blink == NULL || mp == mp->m_blink->m_flink); 403 assert(mp->m_size != 0); 404 405 mp->m_depth = depth; 406 if (mp->m_clink) 407 redepth_core(mp->m_clink, depth + 1, mp); 408 } 409 } 410 411 static void 412 redepth(struct thread_s *thread) 413 { 414 int depth; 415 struct message *mp; 416 417 assert(thread != NULL); 418 419 if ((mp = thread->t_head) == NULL || mp->m_size == 0) 420 return; 421 422 depth = mp->m_plink ? mp->m_plink->m_depth + 1 : 0; 423 424 #ifndef NDEBUG /* a sanity check if asserts are active */ 425 { 426 struct message *tp; 427 int i; 428 i = 0; 429 for (tp = mp->m_plink; tp; tp = tp->m_plink) 430 i++; 431 assert(i == depth); 432 } 433 #endif 434 435 redepth_core(mp, depth, mp->m_plink); 436 } 437 438 /************************************************************************ 439 * To be called after reallocating the main message list. It is here 440 * as it needs access to current_thread.t_head. 441 */ 442 PUBLIC void 443 thread_fix_old_links(struct message *nmessage, struct message *message, int omsgCount) 444 { 445 int i; 446 if (nmessage == message) 447 return; 448 449 #ifndef NDEBUG 450 message_array.t_head = nmessage; /* for assert check in thread_fix_new_links */ 451 #endif 452 453 # define FIX_LINK(p) do { if (p) p = nmessage + (p - message); } while(/*CONSTCOND*/0) 454 FIX_LINK(current_thread.t_head); 455 for (i = 0; i < omsgCount; i++) { 456 FIX_LINK(nmessage[i].m_blink); 457 FIX_LINK(nmessage[i].m_flink); 458 FIX_LINK(nmessage[i].m_clink); 459 FIX_LINK(nmessage[i].m_plink); 460 } 461 for (i = 0; i < current_thread.t_msgCount; i++ ) 462 FIX_LINK(current_thread.t_msgtbl[i]); 463 464 # undef FIX_LINK 465 } 466 467 static void 468 thread_init(struct thread_s *tp, struct message *mp, int msgCount) 469 { 470 int i; 471 472 if (tp->t_msgtbl == NULL || msgCount > tp->t_msgCount) { 473 if (tp->t_msgtbl) 474 free(tp->t_msgtbl); 475 tp->t_msgtbl = ecalloc((size_t)msgCount, sizeof(tp->t_msgtbl[0])); 476 } 477 tp->t_head = mp; 478 tp->t_msgCount = msgCount; 479 for (i = 0; i < msgCount; i++) 480 tp->t_msgtbl[i] = &mp[i]; 481 } 482 483 /* 484 * To be called after reading in the new message structures. 485 * It is here as it needs access to current_thread.t_head. 486 */ 487 PUBLIC void 488 thread_fix_new_links(struct message *message, int omsgCount, int msgCount) 489 { 490 int i; 491 struct message *lastmp; 492 493 /* This should only be called at the top level if omsgCount != 0! */ 494 assert(omsgCount == 0 || message->m_plink == NULL); 495 assert(omsgCount == 0 || message_array.t_msgCount == omsgCount); 496 assert(message_array.t_head == message); 497 498 message_array.t_head = message; 499 message_array.t_msgCount = msgCount; 500 assert(message_array.t_msgtbl == NULL); /* never used */ 501 502 lastmp = NULL; 503 if (omsgCount) { 504 /* 505 * Find the end of the toplevel thread. 506 */ 507 for (i = 0; i < omsgCount; i++) { 508 if (message_array.t_head[i].m_depth == 0 && 509 message_array.t_head[i].m_flink == NULL) { 510 lastmp = &message_array.t_head[i]; 511 break; 512 } 513 } 514 #ifndef NDEBUG 515 /* 516 * lastmp better be unique!!! 517 */ 518 for (i++; i < omsgCount; i++) 519 assert(message_array.t_head[i].m_depth != 0 || 520 message_array.t_head[i].m_flink != NULL); 521 assert(lastmp != NULL); 522 #endif /* NDEBUG */ 523 } 524 /* 525 * Link and index the new messages linearly at depth 0. 526 */ 527 for (i = omsgCount; i < msgCount; i++) { 528 message[i].m_index = i + 1; 529 message[i].m_depth = 0; 530 message[i].m_blink = lastmp; 531 message[i].m_flink = NULL; 532 message[i].m_clink = NULL; 533 message[i].m_plink = NULL; 534 if (lastmp) 535 lastmp->m_flink = &message[i]; 536 lastmp = &message[i]; 537 } 538 539 /* 540 * Make sure the current thread is setup correctly. 541 */ 542 if (omsgCount == 0) { 543 thread_init(¤t_thread, message, msgCount); 544 } 545 else { 546 /* 547 * Make sure current_thread.t_msgtbl is always large 548 * enough. 549 */ 550 current_thread.t_msgtbl = 551 erealloc(current_thread.t_msgtbl, 552 msgCount * sizeof(*current_thread.t_msgtbl)); 553 554 assert(current_thread.t_head != NULL); 555 if (current_thread.t_head->m_depth == 0) 556 reindex(¤t_thread); 557 } 558 } 559 560 /************************************************************************/ 561 /* 562 * All state changes should go through here!!! 563 */ 564 565 /* 566 * NOTE: It is the caller's responsibility to ensure that the "dot" 567 * will be valid after a state change. For example, when changing 568 * from exposed to hidden threads, it is necessary to move the dot to 569 * the head of the thread or it will not be seen. Use thread_top() 570 * for this. Likewise, use first_visible_message() to locate the 571 * first visible message after a state change. 572 */ 573 574 static state_t 575 set_state(int and_bits, int xor_bits) 576 { 577 state_t old_state; 578 old_state = state; 579 state &= and_bits; 580 state ^= xor_bits; 581 reindex(¤t_thread); 582 redepth(¤t_thread); 583 return old_state; 584 } 585 586 static struct message * 587 first_visible_message(struct message *mp) 588 { 589 struct message *oldmp; 590 591 if (mp == NULL) 592 mp = current_thread.t_head; 593 594 oldmp = mp; 595 if ((S_IS_RESTRICT(state) && is_tagged(mp)) || mp->m_flag & MDELETED) 596 mp = next_message(mp); 597 598 if (mp == NULL) { 599 mp = oldmp; 600 if ((S_IS_RESTRICT(state) && is_tagged(mp)) || mp->m_flag & MDELETED) 601 mp = prev_message(mp); 602 } 603 if (mp == NULL) 604 mp = current_thread.t_head; 605 606 return mp; 607 } 608 609 static void 610 restore_state(state_t new_state) 611 { 612 state = new_state; 613 reindex(¤t_thread); 614 redepth(¤t_thread); 615 dot = first_visible_message(dot); 616 } 617 618 static struct message * 619 thread_top(struct message *mp) 620 { 621 while (mp && mp->m_plink) { 622 if (mp->m_plink->m_clink == current_thread.t_head) 623 break; 624 mp = mp->m_plink; 625 } 626 return mp; 627 } 628 629 /************************************************************************/ 630 /* 631 * Possibly show the message list. 632 */ 633 static void 634 thread_announce(void *v) 635 { 636 int vec[2]; 637 638 if (v == NULL) /* check this here to avoid it before each call */ 639 return; 640 641 if (dot == NULL) { 642 (void)printf("No applicable messages\n"); 643 return; 644 } 645 vec[0] = get_msgnum(dot); 646 vec[1] = 0; 647 if (get_msgCount() > 0 && value(ENAME_NOHEADER) == NULL) 648 (void)headers(vec); 649 sawcom = 0; /* so next will print the first message */ 650 } 651 652 /************************************************************************/ 653 654 /* 655 * Flatten out the portion of the thread starting with the given 656 * message. 657 */ 658 static void 659 flattencmd_core(struct message *mp) 660 { 661 struct message **marray; 662 size_t mcount; 663 struct message *tp; 664 struct message *nextmp; 665 size_t i; 666 667 if (mp == NULL) 668 return; 669 670 mcount = 1; 671 for (tp = next_message(mp); tp && tp->m_depth > mp->m_depth; tp = next_message(tp)) 672 mcount++; 673 674 if (tp && tp->m_depth < mp->m_depth) 675 nextmp = NULL; 676 else 677 nextmp = tp; 678 679 if (mcount == 1) 680 return; 681 682 marray = csalloc(mcount, sizeof(*marray)); 683 tp = mp; 684 for (i = 0; i < mcount; i++) { 685 marray[i] = tp; 686 tp = next_message(tp); 687 } 688 mp->m_clink = NULL; 689 for (i = 1; i < mcount; i++) { 690 marray[i]->m_depth = mp->m_depth; 691 marray[i]->m_plink = mp->m_plink; 692 marray[i]->m_clink = NULL; 693 marray[i]->m_blink = marray[i - 1]; 694 marray[i - 1]->m_flink = marray[i]; 695 } 696 marray[i - 1]->m_flink = nextmp; 697 if (nextmp) 698 nextmp->m_blink = marray[i - 1]; 699 } 700 701 /* 702 * Flatten out all thread parts given in the message list, or the 703 * current thread, if none given. 704 */ 705 PUBLIC int 706 flattencmd(void *v) 707 { 708 int *msgvec; 709 int *ip; 710 711 msgvec = v; 712 713 if (*msgvec) { /* a message was supplied */ 714 for (ip = msgvec; *ip; ip++) { 715 struct message *mp; 716 mp = get_message(*ip); 717 if (mp != NULL) 718 flattencmd_core(mp); 719 } 720 } 721 else { /* no message given - flatten current thread */ 722 struct message *mp; 723 for (mp = first_message(current_thread.t_head); 724 mp; mp = next_message(mp)) 725 flattencmd_core(mp); 726 } 727 redepth(¤t_thread); 728 thread_announce(v); 729 return 0; 730 } 731 732 733 /************************************************************************/ 734 /* 735 * The basic sort structure. For each message the index and key 736 * fields are set. The key field is used for the basic sort and the 737 * index is used to ensure that the order from the current thread is 738 * maintained when the key compare is equal. 739 */ 740 struct key_sort_s { 741 struct message *mp; /* the message the following refer to */ 742 union { 743 char *str; /* string sort key (typically a field or address) */ 744 long lines; /* a long sort key (typically a message line count) */ 745 off_t size; /* a size sort key (typically the message size) */ 746 time_t time; /* a time sort key (typically from date or headline) */ 747 } key; 748 int index; /* index from of the current thread before sorting */ 749 /* XXX - do we really want index? It is always set to mp->m_index */ 750 }; 751 752 /* 753 * This is the compare function obtained from the key_tbl[]. It is 754 * used by thread_array() to identify the end of the thread and by 755 * qsort_cmpfn() to do the basic sort. 756 */ 757 static struct { 758 int inv; 759 int (*fn)(const void *, const void *); 760 } cmp; 761 762 /* 763 * The routine passed to qsort. Note that cmpfn must be set first! 764 */ 765 static int 766 qsort_cmpfn(const void *left, const void *right) 767 { 768 int delta; 769 const struct key_sort_s *lp = left; 770 const struct key_sort_s *rp = right; 771 772 delta = cmp.fn(left, right); 773 return delta ? cmp.inv ? - delta : delta : lp->index - rp->index; 774 } 775 776 static void 777 link_array(struct key_sort_s *marray, size_t mcount) 778 { 779 size_t i; 780 struct message *lastmp; 781 lastmp = NULL; 782 for (i = 0; i < mcount; i++) { 783 marray[i].mp->m_index = i + 1; 784 marray[i].mp->m_blink = lastmp; 785 marray[i].mp->m_flink = NULL; 786 if (lastmp) 787 lastmp->m_flink = marray[i].mp; 788 lastmp = marray[i].mp; 789 } 790 if (current_thread.t_head->m_plink) 791 current_thread.t_head->m_plink->m_clink = marray[0].mp; 792 793 current_thread.t_head = marray[0].mp; 794 } 795 796 static void 797 cut_array(struct key_sort_s *marray, size_t beg, size_t end) 798 { 799 size_t i; 800 801 if (beg + 1 < end) { 802 assert(marray[beg].mp->m_clink == NULL); 803 804 marray[beg].mp->m_clink = marray[beg + 1].mp; 805 marray[beg + 1].mp->m_blink = NULL; 806 807 marray[beg].mp->m_flink = marray[end].mp; 808 if (marray[end].mp) 809 marray[end].mp->m_blink = marray[beg].mp; 810 811 marray[end - 1].mp->m_flink = NULL; 812 813 for (i = beg + 1; i < end; i++) 814 marray[i].mp->m_plink = marray[beg].mp; 815 } 816 } 817 818 static void 819 thread_array(struct key_sort_s *marray, size_t mcount, int cutit) 820 { 821 struct message *parent; 822 823 parent = marray[0].mp->m_plink; 824 qsort(marray, mcount, sizeof(*marray), qsort_cmpfn); 825 link_array(marray, mcount); 826 827 if (cutit) { 828 size_t i, j; 829 /* 830 * Flatten out the array. 831 */ 832 for (i = 0; i < mcount; i++) { 833 marray[i].mp->m_plink = parent; 834 marray[i].mp->m_clink = NULL; 835 } 836 837 /* 838 * Now chop it up. There is really only one level here. 839 */ 840 i = 0; 841 for (j = 1; j < mcount; j++) { 842 if (cmp.fn(&marray[i], &marray[j]) != 0) { 843 cut_array(marray, i, j); 844 i = j; 845 } 846 } 847 cut_array(marray, i, j); 848 } 849 } 850 851 /************************************************************************/ 852 /* 853 * thread_on_reference() is the core reference threading routine. It 854 * is not a command itself by called by threadcmd(). 855 */ 856 857 static void 858 adopt_child(struct message *parent, struct message *child) 859 { 860 /* 861 * Unhook the child from its current location. 862 */ 863 if (child->m_blink != NULL) { 864 child->m_blink->m_flink = child->m_flink; 865 } 866 if (child->m_flink != NULL) { 867 child->m_flink->m_blink = child->m_blink; 868 } 869 870 /* 871 * Link the child to the parent. 872 */ 873 if (parent->m_clink == NULL) { /* parent has no child */ 874 parent->m_clink = child; 875 child->m_blink = NULL; 876 } 877 else { /* add message to end of parent's child's flist */ 878 struct message *t; 879 for (t = parent->m_clink; t && t->m_flink; t = t->m_flink) 880 continue; 881 t->m_flink = child; 882 child->m_blink = t; 883 } 884 child->m_flink = NULL; 885 child->m_plink = parent; 886 } 887 888 /* 889 * Get the parent ID for a message (if there is one). 890 * 891 * See RFC 2822, sec 3.6.4. 892 * 893 * Many mailers seem to screw up the In-Reply-To: and/or 894 * References: fields, generally by omitting one or both. 895 * 896 * We give preference to the "References" field. If it does 897 * not exist, try the "In-Reply-To" field. If neither exist, 898 * then the message is either not a reply or someone isn't 899 * adding the necessary fields, so skip it. 900 */ 901 static char * 902 get_parent_id(struct message *mp) 903 { 904 struct name *refs; 905 906 if ((refs = extract(hfield("references", mp), 0)) != NULL) { 907 char *id; 908 while (refs->n_flink) 909 refs = refs->n_flink; 910 911 id = skin(refs->n_name); 912 if (*id != '\0') 913 return id; 914 } 915 916 return skin(hfield("in-reply-to", mp)); 917 } 918 919 /* 920 * Thread on the "In-Reply-To" and "Reference" fields. This is the 921 * normal way to thread. 922 */ 923 static void 924 thread_on_reference(struct message *mp) 925 { 926 struct { 927 struct message *mp; 928 char *message_id; 929 char *parent_id; 930 } *marray; 931 struct message *parent; 932 state_t oldstate; 933 size_t mcount, i; 934 935 assert(mp == current_thread.t_head); 936 937 oldstate = set_state(~(S_RESTRICT | S_EXPOSE), S_EXPOSE); /* restrict off, expose on */ 938 939 mcount = get_msgCount(); 940 941 if (mcount < 2) /* it's hard to thread so few messages! */ 942 goto done; 943 944 marray = csalloc(mcount + 1, sizeof(*marray)); 945 946 /* 947 * Load up the array (skin where necessary). 948 * 949 * With a 40K message file, most of the time is spent here, 950 * not in the search loop below. 951 */ 952 for (i = 0; i < mcount; i++) { 953 marray[i].mp = mp; 954 marray[i].message_id = skin(hfield("message-id", mp)); 955 marray[i].parent_id = get_parent_id(mp); 956 mp = next_message(mp); 957 } 958 959 /* 960 * Save the old parent. 961 */ 962 parent = marray[0].mp->m_plink; 963 964 /* 965 * flatten the array. 966 */ 967 marray[0].mp->m_clink = NULL; 968 for (i = 1; i < mcount; i++) { 969 marray[i].mp->m_depth = marray[0].mp->m_depth; 970 marray[i].mp->m_plink = marray[0].mp->m_plink; 971 marray[i].mp->m_clink = NULL; 972 marray[i].mp->m_blink = marray[i - 1].mp; 973 marray[i - 1].mp->m_flink = marray[i].mp; 974 } 975 marray[i - 1].mp->m_flink = NULL; 976 977 /* 978 * Walk the array hooking up the replies with their parents. 979 */ 980 for (i = 0; i < mcount; i++) { 981 struct message *child; 982 char *parent_id; 983 size_t j; 984 985 if ((parent_id = marray[i].parent_id) == NULL) 986 continue; 987 988 child = marray[i].mp; 989 990 /* 991 * Look for the parent message and link this one in 992 * appropriately. 993 * 994 * XXX - This will not scale nicely, though it does 995 * not appear to be the dominant loop even with 40K 996 * messages. If this becomes a problem, implement a 997 * binary search. 998 */ 999 for (j = 0; j < mcount; j++) { 1000 /* message_id will be NULL on mbox files */ 1001 if (marray[i].message_id == NULL) 1002 continue; 1003 1004 if (equal(marray[j].message_id, parent_id)) { 1005 /* 1006 * The child is at the top level. If 1007 * it is being adopted and it was top 1008 * left (current_thread.t_head), then 1009 * its right sibling is the new top 1010 * left (current_thread.t_head). 1011 */ 1012 if (current_thread.t_head == child) { 1013 current_thread.t_head = child->m_flink; 1014 assert(current_thread.t_head != NULL); 1015 } 1016 adopt_child(marray[j].mp, child); 1017 break; 1018 } 1019 } 1020 } 1021 1022 if (parent) 1023 parent->m_clink = current_thread.t_head; 1024 /* 1025 * If the old state is not exposed, reset the dot to the head 1026 * of the thread it lived in, so it will be in a valid spot 1027 * when things are re-hidden. 1028 */ 1029 if (!S_IS_EXPOSE(oldstate)) 1030 dot = thread_top(dot); 1031 done: 1032 restore_state(oldstate); 1033 } 1034 1035 /************************************************************************/ 1036 /* 1037 * Tagging commands. 1038 */ 1039 static int 1040 tag1(int *msgvec, int and_bits, int xor_bits) 1041 { 1042 int *ip; 1043 1044 for (ip = msgvec; *ip != 0; ip++) 1045 (void)set_m_flag(*ip, and_bits, xor_bits); 1046 1047 reindex(¤t_thread); 1048 /* thread_announce(v); */ 1049 return 0; 1050 } 1051 1052 /* 1053 * Tag the current message dot or a message list. 1054 */ 1055 PUBLIC int 1056 tagcmd(void *v) 1057 { 1058 return tag1(v, ~MTAGGED, MTAGGED); 1059 } 1060 1061 /* 1062 * Untag the current message dot or a message list. 1063 */ 1064 PUBLIC int 1065 untagcmd(void *v) 1066 { 1067 return tag1(v, ~MTAGGED, 0); 1068 } 1069 1070 /* 1071 * Invert all tags in the message list. 1072 */ 1073 PUBLIC int 1074 invtagscmd(void *v) 1075 { 1076 return tag1(v, ~0, MTAGGED); 1077 } 1078 1079 /* 1080 * Tag all messages below the current dot or below a specified 1081 * message. 1082 */ 1083 PUBLIC int 1084 tagbelowcmd(void *v) 1085 { 1086 int *msgvec; 1087 struct message *mp; 1088 state_t oldstate; 1089 int depth; 1090 1091 msgvec = v; 1092 1093 oldstate = set_state(~(S_RESTRICT | S_EXPOSE), S_EXPOSE); /* restrict off, expose on */ 1094 mp = get_message(*msgvec); 1095 if (mp) { 1096 depth = mp->m_depth; 1097 for (mp = first_message(current_thread.t_head); mp; mp = next_message(mp)) 1098 if (mp->m_depth > depth ) { 1099 mp->m_flag |= MTAGGED; 1100 touch(mp); 1101 } 1102 } 1103 /* dot is OK */ 1104 restore_state(oldstate); 1105 /* thread_announce(v); */ 1106 return 0; 1107 } 1108 1109 /* 1110 * Do not display the tagged messages. 1111 */ 1112 PUBLIC int 1113 hidetagscmd(void *v) 1114 { 1115 (void)set_state(~S_RESTRICT, S_RESTRICT); /* restrict on */ 1116 dot = first_visible_message(dot); 1117 thread_announce(v); 1118 return 0; 1119 } 1120 1121 /* 1122 * Display the tagged messages. 1123 */ 1124 PUBLIC int 1125 showtagscmd(void *v) 1126 { 1127 (void)set_state(~S_RESTRICT, 0); /* restrict off */ 1128 dot = first_visible_message(dot); 1129 thread_announce(v); 1130 return 0; 1131 } 1132 1133 /************************************************************************/ 1134 /* 1135 * Basic threading commands. 1136 */ 1137 /* 1138 * Show the threads. 1139 */ 1140 PUBLIC int 1141 exposecmd(void *v) 1142 { 1143 (void)set_state(~S_EXPOSE, S_EXPOSE); /* expose on */ 1144 dot = first_visible_message(dot); 1145 thread_announce(v); 1146 return 0; 1147 } 1148 1149 /* 1150 * Hide the threads. 1151 */ 1152 PUBLIC int 1153 hidecmd(void *v) 1154 { 1155 dot = thread_top(dot); 1156 (void)set_state(~S_EXPOSE, 0); /* expose off */ 1157 dot = first_visible_message(dot); 1158 thread_announce(v); 1159 return 0; 1160 } 1161 1162 /* 1163 * Up one level in the thread tree. Go up multiple levels if given an 1164 * argument. 1165 */ 1166 PUBLIC int 1167 upcmd(void *v) 1168 { 1169 char *str; 1170 int upcnt; 1171 int upone; 1172 1173 str = v; 1174 str = skip_WSP(str); 1175 if (*str == '\0') 1176 upcnt = 1; 1177 else 1178 upcnt = atoi(str); 1179 1180 if (upcnt < 1) { 1181 (void)printf("Sorry, argument must be > 0.\n"); 1182 return 0; 1183 } 1184 if (dot == NULL) { 1185 (void)printf("No applicable messages\n"); 1186 return 0; 1187 } 1188 if (dot->m_plink == NULL) { 1189 (void)printf("top thread\n"); 1190 return 0; 1191 } 1192 upone = 0; 1193 while (upcnt-- > 0) { 1194 struct message *parent; 1195 parent = current_thread.t_head->m_plink; 1196 if (parent == NULL) { 1197 (void)printf("top thread\n"); 1198 break; 1199 } 1200 else { 1201 struct message *mp; 1202 assert(current_thread.t_head->m_depth > 0); 1203 for (mp = parent; mp && mp->m_blink; mp = mp->m_blink) 1204 continue; 1205 current_thread.t_head = mp; 1206 dot = parent; 1207 upone = 1; 1208 } 1209 } 1210 if (upone) { 1211 reindex(¤t_thread); 1212 thread_announce(v); 1213 } 1214 return 0; 1215 } 1216 1217 /* 1218 * Go down one level in the thread tree from the current dot or a 1219 * given message number if given. 1220 */ 1221 PUBLIC int 1222 downcmd(void *v) 1223 { 1224 struct message *child; 1225 struct message *mp; 1226 int *msgvec = v; 1227 1228 if ((mp = get_message(*msgvec)) == NULL || 1229 (child = mp->m_clink) == NULL) 1230 (void)printf("no sub-thread\n"); 1231 else { 1232 current_thread.t_head = child; 1233 dot = child; 1234 reindex(¤t_thread); 1235 thread_announce(v); 1236 } 1237 return 0; 1238 } 1239 1240 /* 1241 * Set the current thread level to the current dot or to the message 1242 * if given. 1243 */ 1244 PUBLIC int 1245 tsetcmd(void *v) 1246 { 1247 struct message *mp; 1248 int *msgvec = v; 1249 1250 if ((mp = get_message(*msgvec)) == NULL) 1251 (void)printf("invalid message\n"); 1252 else { 1253 for (/*EMPTY*/; mp->m_blink; mp = mp->m_blink) 1254 continue; 1255 current_thread.t_head = mp; 1256 reindex(¤t_thread); 1257 thread_announce(v); 1258 } 1259 return 0; 1260 } 1261 1262 /* 1263 * Reverse the current thread order. If threaded, it only operates on 1264 * the heads. 1265 */ 1266 static void 1267 reversecmd_core(struct thread_s *tp) 1268 { 1269 struct message *thread_start; 1270 struct message *mp; 1271 struct message *lastmp; 1272 struct message *old_flink; 1273 1274 thread_start = tp->t_head; 1275 1276 assert(thread_start->m_blink == NULL); 1277 1278 lastmp = NULL; 1279 for (mp = thread_start; mp; mp = old_flink) { 1280 old_flink = mp->m_flink; 1281 mp->m_flink = mp->m_blink; 1282 mp->m_blink = old_flink; 1283 lastmp = mp; 1284 } 1285 if (thread_start->m_plink) 1286 thread_start->m_plink->m_clink = lastmp; 1287 1288 current_thread.t_head = lastmp; 1289 reindex(tp); 1290 } 1291 1292 PUBLIC int 1293 reversecmd(void *v) 1294 { 1295 reversecmd_core(¤t_thread); 1296 thread_announce(v); 1297 return 0; 1298 } 1299 1300 1301 /* 1302 * Get threading and sorting modifiers. 1303 */ 1304 #define MF_IGNCASE 1 /* ignore case when sorting */ 1305 #define MF_REVERSE 2 /* reverse sort direction */ 1306 #define MF_SKIN 4 /* "skin" the field to remove comments */ 1307 static int 1308 get_modifiers(char **str) 1309 { 1310 int modflags; 1311 char *p; 1312 1313 modflags = 0; 1314 for (p = *str; p && *p; p++) { 1315 switch (*p) { 1316 case '!': 1317 modflags |= MF_REVERSE; 1318 break; 1319 case '^': 1320 modflags |= MF_IGNCASE; 1321 break; 1322 case '-': 1323 modflags |= MF_SKIN; 1324 break; 1325 case ' ': 1326 case '\t': 1327 break; 1328 default: 1329 goto done; 1330 } 1331 } 1332 done: 1333 *str = p; 1334 return modflags; 1335 } 1336 1337 /************************************************************************/ 1338 /* 1339 * The key_sort_s compare routines. 1340 */ 1341 1342 static int 1343 keystrcmp(const void *left, const void *right) 1344 { 1345 const struct key_sort_s *lp = left; 1346 const struct key_sort_s *rp = right; 1347 1348 lp = left; 1349 rp = right; 1350 1351 if (rp->key.str == NULL && lp->key.str == NULL) 1352 return 0; 1353 else if (rp->key.str == NULL) 1354 return -1; 1355 else if (lp->key.str == NULL) 1356 return 1; 1357 else 1358 return strcmp(lp->key.str, rp->key.str); 1359 } 1360 1361 static int 1362 keystrcasecmp(const void *left, const void *right) 1363 { 1364 const struct key_sort_s *lp = left; 1365 const struct key_sort_s *rp = right; 1366 1367 if (rp->key.str == NULL && lp->key.str == NULL) 1368 return 0; 1369 else if (rp->key.str == NULL) 1370 return -1; 1371 else if (lp->key.str == NULL) 1372 return 1; 1373 else 1374 return strcasecmp(lp->key.str, rp->key.str); 1375 } 1376 1377 static int 1378 keylongcmp(const void *left, const void *right) 1379 { 1380 const struct key_sort_s *lp = left; 1381 const struct key_sort_s *rp = right; 1382 1383 if (lp->key.lines > rp->key.lines) 1384 return 1; 1385 1386 if (lp->key.lines < rp->key.lines) 1387 return -1; 1388 1389 return 0; 1390 } 1391 1392 static int 1393 keyoffcmp(const void *left, const void *right) 1394 { 1395 const struct key_sort_s *lp = left; 1396 const struct key_sort_s *rp = right; 1397 1398 if (lp->key.size > rp->key.size) 1399 return 1; 1400 1401 if (lp->key.size < rp->key.size) 1402 return -1; 1403 1404 return 0; 1405 } 1406 1407 static int 1408 keytimecmp(const void *left, const void *right) 1409 { 1410 double delta; 1411 const struct key_sort_s *lp = left; 1412 const struct key_sort_s *rp = right; 1413 1414 delta = difftime(lp->key.time, rp->key.time); 1415 if (delta > 0) 1416 return 1; 1417 1418 if (delta < 0) 1419 return -1; 1420 1421 return 0; 1422 } 1423 1424 /************************************************************************ 1425 * key_sort_s loading routines. 1426 */ 1427 static void 1428 field_load(struct key_sort_s *marray, size_t mcount, struct message *mp, 1429 const char *key, int skin_it) 1430 { 1431 size_t i; 1432 for (i = 0; i < mcount; i++) { 1433 marray[i].mp = mp; 1434 marray[i].key.str = 1435 skin_it ? skin(hfield(key, mp)) : hfield(key, mp); 1436 marray[i].index = mp->m_index; 1437 mp = next_message(mp); 1438 } 1439 } 1440 1441 static void 1442 subj_load(struct key_sort_s *marray, size_t mcount, struct message *mp, 1443 const char *key __unused, int flags __unused) 1444 { 1445 size_t i; 1446 #ifdef __lint__ 1447 flags = flags; 1448 key = key; 1449 #endif 1450 for (i = 0; i < mcount; i++) { 1451 char *subj = hfield(key, mp); 1452 while( strncasecmp(subj, "Re:", 3) == 0 ) 1453 subj = skip_WSP(subj + 3); 1454 marray[i].mp = mp; 1455 marray[i].key.str = subj; 1456 marray[i].index = mp->m_index; 1457 mp = next_message(mp); 1458 } 1459 } 1460 1461 1462 static void 1463 lines_load(struct key_sort_s *marray, size_t mcount, struct message *mp, 1464 const char *key __unused, int flags) 1465 { 1466 size_t i; 1467 int use_blines; 1468 int use_hlines; 1469 #ifdef __lint__ 1470 key = key; 1471 #endif 1472 #define HLINES 1 1473 #define BLINES 2 1474 #define TLINES 3 1475 use_hlines = flags == HLINES; 1476 use_blines = flags == BLINES; 1477 1478 for (i = 0; i < mcount; i++) { 1479 marray[i].mp = mp; 1480 marray[i].key.lines = use_hlines ? mp->m_lines - mp->m_blines : 1481 use_blines ? mp->m_blines : mp->m_lines; 1482 marray[i].index = mp->m_index; 1483 mp = next_message(mp); 1484 } 1485 } 1486 1487 static void 1488 size_load(struct key_sort_s *marray, size_t mcount, struct message *mp, 1489 const char *key __unused, int flags __unused) 1490 { 1491 size_t i; 1492 #ifdef __lint__ 1493 flags = flags; 1494 key = key; 1495 #endif 1496 for (i = 0; i < mcount; i++) { 1497 marray[i].mp = mp; 1498 marray[i].key.size = mp->m_size; 1499 marray[i].index = mp->m_index; 1500 mp = next_message(mp); 1501 } 1502 } 1503 1504 static void __unused 1505 date_load(struct key_sort_s *marray, size_t mcount, struct message *mp, 1506 const char *key __unused, int flags) 1507 { 1508 size_t i; 1509 int use_hl_date; 1510 int zero_hour_min_sec; 1511 #ifdef __lint__ 1512 key = key; 1513 #endif 1514 #define RDAY 1 1515 #define SDAY 2 1516 #define RDATE 3 1517 #define SDATE 4 1518 use_hl_date = (flags == RDAY || flags == RDATE); 1519 zero_hour_min_sec = (flags == RDAY || flags == SDAY); 1520 1521 for (i = 0; i < mcount; i++) { 1522 struct tm tm; 1523 (void)dateof(&tm, mp, use_hl_date); 1524 if (zero_hour_min_sec) { 1525 tm.tm_sec = 0; 1526 tm.tm_min = 0; 1527 tm.tm_hour = 0; 1528 } 1529 marray[i].mp = mp; 1530 marray[i].key.time = mktime(&tm); 1531 marray[i].index = mp->m_index; 1532 mp = next_message(mp); 1533 } 1534 } 1535 1536 static void 1537 from_load(struct key_sort_s *marray, size_t mcount, struct message *mp, 1538 const char *key __unused, int flags __unused) 1539 { 1540 size_t i; 1541 #ifdef __lint__ 1542 flags = flags; 1543 key = key; 1544 #endif 1545 for (i = 0; i < mcount; i++) { 1546 marray[i].mp = mp; 1547 marray[i].key.str = nameof(mp, 0); 1548 marray[i].index = mp->m_index; 1549 mp = next_message(mp); 1550 } 1551 } 1552 1553 /************************************************************************ 1554 * The master table that controls all sorting and threading. 1555 */ 1556 static const struct key_tbl_s { 1557 const char *key; 1558 void (*loadfn)(struct key_sort_s *, size_t, struct message *, const char *, int); 1559 int flags; 1560 int (*cmpfn)(const void*, const void*); 1561 int (*casecmpfn)(const void*, const void*); 1562 } key_tbl[] = { 1563 {"blines", lines_load, BLINES, keylongcmp, keylongcmp}, 1564 {"hlines", lines_load, HLINES, keylongcmp, keylongcmp}, 1565 {"tlines", lines_load, TLINES, keylongcmp, keylongcmp}, 1566 {"size", size_load, 0, keyoffcmp, keyoffcmp}, 1567 {"sday", date_load, SDAY, keytimecmp, keytimecmp}, 1568 {"rday", date_load, RDAY, keytimecmp, keytimecmp}, 1569 {"sdate", date_load, SDATE, keytimecmp, keytimecmp}, 1570 {"rdate", date_load, RDATE, keytimecmp, keytimecmp}, 1571 {"from", from_load, 0, keystrcasecmp, keystrcasecmp}, 1572 {"subject", subj_load, 0, keystrcmp, keystrcasecmp}, 1573 {NULL, field_load, 0, keystrcmp, keystrcasecmp}, 1574 }; 1575 1576 #ifdef USE_EDITLINE 1577 /* 1578 * This is for use in complete.c to get the list of threading key 1579 * names without exposing the key_tbl[]. The first name is returned 1580 * if called with a pointer to a NULL pointer. Subsequent calls with 1581 * the same cookie give successive names. A NULL return indicates the 1582 * end of the list. 1583 */ 1584 PUBLIC const char * 1585 thread_next_key_name(const void **cookie) 1586 { 1587 const struct key_tbl_s *kp; 1588 1589 kp = *cookie; 1590 if (kp == NULL) 1591 kp = key_tbl; 1592 1593 *cookie = kp->key ? &kp[1] : NULL; 1594 1595 return kp->key; 1596 } 1597 #endif /* USE_EDITLINE */ 1598 1599 static const struct key_tbl_s * 1600 get_key(const char *key) 1601 { 1602 const struct key_tbl_s *kp; 1603 for (kp = key_tbl; kp->key != NULL; kp++) 1604 if (strcmp(kp->key, key) == 0) 1605 return kp; 1606 return kp; 1607 } 1608 1609 static int (* 1610 get_cmpfn(const struct key_tbl_s *kp, int ignorecase) 1611 )(const void*, const void*) 1612 { 1613 if (ignorecase) 1614 return kp->casecmpfn; 1615 else 1616 return kp->cmpfn; 1617 } 1618 1619 static void 1620 thread_current_on(char *str, int modflags, int cutit) 1621 { 1622 const struct key_tbl_s *kp; 1623 struct key_sort_s *marray; 1624 size_t mcount; 1625 state_t oldstate; 1626 1627 oldstate = set_state(~(S_RESTRICT | S_EXPOSE), cutit ? S_EXPOSE : 0); 1628 1629 kp = get_key(str); 1630 mcount = get_msgCount(); 1631 marray = csalloc(mcount + 1, sizeof(*marray)); 1632 kp->loadfn(marray, mcount, current_thread.t_head, str, 1633 kp->flags ? kp->flags : modflags & MF_SKIN); 1634 cmp.fn = get_cmpfn(kp, modflags & MF_IGNCASE); 1635 cmp.inv = modflags & MF_REVERSE; 1636 thread_array(marray, mcount, cutit); 1637 1638 if (!S_IS_EXPOSE(oldstate)) 1639 dot = thread_top(dot); 1640 restore_state(oldstate); 1641 } 1642 1643 /* 1644 * The thread command. Thread the current thread on its references or 1645 * on a specified field. 1646 */ 1647 PUBLIC int 1648 threadcmd(void *v) 1649 { 1650 char *str; 1651 1652 str = v; 1653 if (*str == '\0') 1654 thread_on_reference(current_thread.t_head); 1655 else { 1656 int modflags; 1657 modflags = get_modifiers(&str); 1658 thread_current_on(str, modflags, 1); 1659 } 1660 thread_announce(v); 1661 return 0; 1662 } 1663 1664 /* 1665 * Remove all threading information, reverting to the startup state. 1666 */ 1667 PUBLIC int 1668 unthreadcmd(void *v) 1669 { 1670 thread_fix_new_links(message_array.t_head, 0, message_array.t_msgCount); 1671 thread_announce(v); 1672 return 0; 1673 } 1674 1675 /* 1676 * The sort command. 1677 */ 1678 PUBLIC int 1679 sortcmd(void *v) 1680 { 1681 int modflags; 1682 char *str; 1683 1684 str = v; 1685 modflags = get_modifiers(&str); 1686 if (*str != '\0') 1687 thread_current_on(str, modflags, 0); 1688 else { 1689 if (modflags & MF_REVERSE) 1690 reversecmd_core(¤t_thread); 1691 else { 1692 (void)printf("sort on what?\n"); 1693 return 0; 1694 } 1695 } 1696 thread_announce(v); 1697 return 0; 1698 } 1699 1700 1701 /* 1702 * Delete duplicate messages (based on their "Message-Id" field). 1703 */ 1704 /*ARGSUSED*/ 1705 PUBLIC int 1706 deldupscmd(void *v __unused) 1707 { 1708 struct message *mp; 1709 int depth; 1710 state_t oldstate; 1711 1712 oldstate = set_state(~(S_RESTRICT | S_EXPOSE), S_EXPOSE); /* restrict off, expose on */ 1713 1714 thread_current_on(__UNCONST("Message-Id"), 0, 1); 1715 reindex(¤t_thread); 1716 redepth(¤t_thread); 1717 depth = current_thread.t_head->m_depth; 1718 for (mp = first_message(current_thread.t_head); mp; mp = next_message(mp)) { 1719 if (mp->m_depth > depth ) { 1720 mp->m_flag &= ~(MPRESERVE | MSAVED | MBOX); 1721 mp->m_flag |= MDELETED | MTOUCH; 1722 touch(mp); 1723 } 1724 } 1725 dot = thread_top(dot); /* do this irrespective of the oldstate */ 1726 restore_state(oldstate); 1727 /* thread_announce(v); */ 1728 return 0; 1729 } 1730 1731 #endif /* THREAD_SUPPORT */ 1732