xref: /netbsd-src/usr.bin/find/operator.c (revision ce0bb6e8d2e560ecacbe865a848624f94498063b)
1 /*-
2  * Copyright (c) 1990, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Cimarron D. Taylor of the University of California, Berkeley.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #ifndef lint
38 /*static char sccsid[] = "from: @(#)operator.c	8.1 (Berkeley) 6/6/93";*/
39 static char rcsid[] = "$Id: operator.c,v 1.3 1993/12/30 21:15:31 jtc Exp $";
40 #endif /* not lint */
41 
42 #include <sys/types.h>
43 
44 #include <err.h>
45 #include <fts.h>
46 #include <stdio.h>
47 
48 #include "find.h"
49 
50 /*
51  * yanknode --
52  *	destructively removes the top from the plan
53  */
54 static PLAN *
55 yanknode(planp)
56 	PLAN **planp;		/* pointer to top of plan (modified) */
57 {
58 	PLAN *node;		/* top node removed from the plan */
59 
60 	if ((node = (*planp)) == NULL)
61 		return (NULL);
62 	(*planp) = (*planp)->next;
63 	node->next = NULL;
64 	return (node);
65 }
66 
67 /*
68  * yankexpr --
69  *	Removes one expression from the plan.  This is used mainly by
70  *	paren_squish.  In comments below, an expression is either a
71  *	simple node or a N_EXPR node containing a list of simple nodes.
72  */
73 static PLAN *
74 yankexpr(planp)
75 	PLAN **planp;		/* pointer to top of plan (modified) */
76 {
77 	register PLAN *next;	/* temp node holding subexpression results */
78 	PLAN *node;		/* pointer to returned node or expression */
79 	PLAN *tail;		/* pointer to tail of subplan */
80 	PLAN *subplan;		/* pointer to head of ( ) expression */
81 	int f_expr();
82 
83 	/* first pull the top node from the plan */
84 	if ((node = yanknode(planp)) == NULL)
85 		return (NULL);
86 
87 	/*
88 	 * If the node is an '(' then we recursively slurp up expressions
89 	 * until we find its associated ')'.  If it's a closing paren we
90 	 * just return it and unwind our recursion; all other nodes are
91 	 * complete expressions, so just return them.
92 	 */
93 	if (node->type == N_OPENPAREN)
94 		for (tail = subplan = NULL;;) {
95 			if ((next = yankexpr(planp)) == NULL)
96 				err(1, "(: missing closing ')'");
97 			/*
98 			 * If we find a closing ')' we store the collected
99 			 * subplan in our '(' node and convert the node to
100 			 * a N_EXPR.  The ')' we found is ignored.  Otherwise,
101 			 * we just continue to add whatever we get to our
102 			 * subplan.
103 			 */
104 			if (next->type == N_CLOSEPAREN) {
105 				if (subplan == NULL)
106 					errx(1, "(): empty inner expression");
107 				node->p_data[0] = subplan;
108 				node->type = N_EXPR;
109 				node->eval = f_expr;
110 				break;
111 			} else {
112 				if (subplan == NULL)
113 					tail = subplan = next;
114 				else {
115 					tail->next = next;
116 					tail = next;
117 				}
118 				tail->next = NULL;
119 			}
120 		}
121 	return (node);
122 }
123 
124 /*
125  * paren_squish --
126  *	replaces "parentheisized" plans in our search plan with "expr" nodes.
127  */
128 PLAN *
129 paren_squish(plan)
130 	PLAN *plan;		/* plan with ( ) nodes */
131 {
132 	register PLAN *expr;	/* pointer to next expression */
133 	register PLAN *tail;	/* pointer to tail of result plan */
134 	PLAN *result;		/* pointer to head of result plan */
135 
136 	result = tail = NULL;
137 
138 	/*
139 	 * the basic idea is to have yankexpr do all our work and just
140 	 * collect it's results together.
141 	 */
142 	while ((expr = yankexpr(&plan)) != NULL) {
143 		/*
144 		 * if we find an unclaimed ')' it means there is a missing
145 		 * '(' someplace.
146 		 */
147 		if (expr->type == N_CLOSEPAREN)
148 			errx(1, "): no beginning '('");
149 
150 		/* add the expression to our result plan */
151 		if (result == NULL)
152 			tail = result = expr;
153 		else {
154 			tail->next = expr;
155 			tail = expr;
156 		}
157 		tail->next = NULL;
158 	}
159 	return (result);
160 }
161 
162 /*
163  * not_squish --
164  *	compresses "!" expressions in our search plan.
165  */
166 PLAN *
167 not_squish(plan)
168 	PLAN *plan;		/* plan to process */
169 {
170 	register PLAN *next;	/* next node being processed */
171 	register PLAN *node;	/* temporary node used in N_NOT processing */
172 	register PLAN *tail;	/* pointer to tail of result plan */
173 	PLAN *result;		/* pointer to head of result plan */
174 
175 	tail = result = next = NULL;
176 
177 	while ((next = yanknode(&plan)) != NULL) {
178 		/*
179 		 * if we encounter a ( expression ) then look for nots in
180 		 * the expr subplan.
181 		 */
182 		if (next->type == N_EXPR)
183 			next->p_data[0] = not_squish(next->p_data[0]);
184 
185 		/*
186 		 * if we encounter a not, then snag the next node and place
187 		 * it in the not's subplan.  As an optimization we compress
188 		 * several not's to zero or one not.
189 		 */
190 		if (next->type == N_NOT) {
191 			int notlevel = 1;
192 
193 			node = yanknode(&plan);
194 			while (node->type == N_NOT) {
195 				++notlevel;
196 				node = yanknode(&plan);
197 			}
198 			if (node == NULL)
199 				errx(1, "!: no following expression");
200 			if (node->type == N_OR)
201 				errx(1, "!: nothing between ! and -o");
202 			if (notlevel % 2 != 1)
203 				next = node;
204 			else
205 				next->p_data[0] = node;
206 		}
207 
208 		/* add the node to our result plan */
209 		if (result == NULL)
210 			tail = result = next;
211 		else {
212 			tail->next = next;
213 			tail = next;
214 		}
215 		tail->next = NULL;
216 	}
217 	return (result);
218 }
219 
220 /*
221  * or_squish --
222  *	compresses -o expressions in our search plan.
223  */
224 PLAN *
225 or_squish(plan)
226 	PLAN *plan;		/* plan with ors to be squished */
227 {
228 	register PLAN *next;	/* next node being processed */
229 	register PLAN *tail;	/* pointer to tail of result plan */
230 	PLAN *result;		/* pointer to head of result plan */
231 
232 	tail = result = next = NULL;
233 
234 	while ((next = yanknode(&plan)) != NULL) {
235 		/*
236 		 * if we encounter a ( expression ) then look for or's in
237 		 * the expr subplan.
238 		 */
239 		if (next->type == N_EXPR)
240 			next->p_data[0] = or_squish(next->p_data[0]);
241 
242 		/* if we encounter a not then look for not's in the subplan */
243 		if (next->type == N_NOT)
244 			next->p_data[0] = or_squish(next->p_data[0]);
245 
246 		/*
247 		 * if we encounter an or, then place our collected plan in the
248 		 * or's first subplan and then recursively collect the
249 		 * remaining stuff into the second subplan and return the or.
250 		 */
251 		if (next->type == N_OR) {
252 			if (result == NULL)
253 				errx(1, "-o: no expression before -o");
254 			next->p_data[0] = result;
255 			next->p_data[1] = or_squish(plan);
256 			if (next->p_data[1] == NULL)
257 				errx(1, "-o: no expression after -o");
258 			return (next);
259 		}
260 
261 		/* add the node to our result plan */
262 		if (result == NULL)
263 			tail = result = next;
264 		else {
265 			tail->next = next;
266 			tail = next;
267 		}
268 		tail->next = NULL;
269 	}
270 	return (result);
271 }
272