xref: /netbsd-src/tests/lib/libc/gen/t_sleep.c (revision c34236556bea94afcaca1782d7d228301edc3ea0)
1 /* $NetBSD: t_sleep.c,v 1.9 2016/08/11 21:34:11 kre Exp $ */
2 
3 /*-
4  * Copyright (c) 2006 Frank Kardel
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
26  * POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 #include <atf-c.h>
30 #include <errno.h>
31 #include <poll.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <string.h>
35 #include <time.h>
36 #include <unistd.h>
37 
38 #include <sys/cdefs.h>
39 #include <sys/event.h>
40 #include <sys/signal.h>
41 
42 #include "isqemu.h"
43 
44 #define BILLION		1000000000LL	/* nano-seconds per second */
45 #define MILLION		1000000LL	/* nano-seconds per milli-second */
46 
47 #define ALARM		6		/* SIGALRM after this many seconds */
48 #define MAXSLEEP	22		/* Maximum delay in seconds */
49 #define KEVNT_TIMEOUT	10300		/* measured in milli-seconds */
50 #define FUZZ		(40 * MILLION)	/* scheduling fuzz accepted - 40 ms */
51 
52 /*
53  * Timer notes
54  *
55  * Most tests use FUZZ as their initial delay value, but 'sleep'
56  * starts at 1sec (since it cannot handle sub-second intervals).
57  * Subsequent passes double the previous interval, up to MAXSLEEP.
58  *
59  * The current values result in 5 passes for the 'sleep' test (at 1,
60  * 2, 4, 8, and 16 seconds) and 10 passes for the other tests (at
61  * 0.04, 0.08, 0.16, 0.32, 0.64, 1.28, 2.56, 5.12, 10.24, and 20.48
62  * seconds).
63  *
64  * The ALARM is only set if the current pass's delay is longer, and
65  * only if the ALARM has not already been triggered.
66  *
67  * The 'kevent' test needs the ALARM to be set on a different pass
68  * from when the KEVNT_TIMEOUT fires.  So set ALARM to fire on the
69  * penultimate pass, and the KEVNT_TIMEOUT on the final pass.  We
70  * set KEVNT_TIMEOUT just barely long enough to put it into the
71  * last test pass, and set MAXSLEEP a couple seconds longer than
72  * necessary, in order to avoid a QEMU bug which nearly doubles
73  * some timers.
74  */
75 
76 static volatile int sig;
77 
78 int sleeptest(int (*)(struct timespec *, struct timespec *), bool, bool);
79 int do_nanosleep(struct timespec *, struct timespec *);
80 int do_select(struct timespec *, struct timespec *);
81 int do_poll(struct timespec *, struct timespec *);
82 int do_sleep(struct timespec *, struct timespec *);
83 int do_kevent(struct timespec *, struct timespec *);
84 void sigalrm(int);
85 
86 void
87 sigalrm(int s)
88 {
89 
90 	sig++;
91 }
92 
93 int
94 do_nanosleep(struct timespec *delay, struct timespec *remain)
95 {
96 	int ret;
97 
98 	if (nanosleep(delay, remain) == -1)
99 		ret = (errno == EINTR ? 0 : errno);
100 	else
101 		ret = 0;
102 	return ret;
103 }
104 
105 int
106 do_select(struct timespec *delay, struct timespec *remain)
107 {
108 	int ret;
109 	struct timeval tv;
110 
111 	TIMESPEC_TO_TIMEVAL(&tv, delay);
112 	if (select(0, NULL, NULL, NULL, &tv) == -1)
113 		ret = (errno == EINTR ? 0 : errno);
114 	else
115 		ret = 0;
116 	return ret;
117 }
118 
119 int
120 do_poll(struct timespec *delay, struct timespec *remain)
121 {
122 	int ret;
123 	struct timeval tv;
124 
125 	TIMESPEC_TO_TIMEVAL(&tv, delay);
126 	if (pollts(NULL, 0, delay, NULL) == -1)
127 		ret = (errno == EINTR ? 0 : errno);
128 	else
129 		ret = 0;
130 	return ret;
131 }
132 
133 int
134 do_sleep(struct timespec *delay, struct timespec *remain)
135 {
136 	struct timeval tv;
137 
138 	TIMESPEC_TO_TIMEVAL(&tv, delay);
139 	remain->tv_sec = sleep(delay->tv_sec);
140 	remain->tv_nsec = 0;
141 
142 	return 0;
143 }
144 
145 int
146 do_kevent(struct timespec *delay, struct timespec *remain)
147 {
148 	struct kevent ktimer;
149 	struct kevent kresult;
150 	int rtc, kq, kerrno;
151 	int tmo;
152 
153 	ATF_REQUIRE_MSG((kq = kqueue()) != -1, "kqueue: %s", strerror(errno));
154 
155 	tmo = KEVNT_TIMEOUT;
156 
157 	/*
158 	 * If we expect the KEVNT_TIMEOUT to fire, and we're running
159 	 * under QEMU, make sure the delay is long enough to account
160 	 * for the effects of PR kern/43997 !
161 	 */
162 	if (isQEMU() &&
163 	    tmo/1000 < delay->tv_sec && tmo/500 > delay->tv_sec)
164 		delay->tv_sec = MAXSLEEP;
165 
166 	EV_SET(&ktimer, 1, EVFILT_TIMER, EV_ADD, 0, tmo, 0);
167 
168 	rtc = kevent(kq, &ktimer, 1, &kresult, 1, delay);
169 	kerrno = errno;
170 
171 	(void)close(kq);
172 
173 	if (rtc == -1) {
174 		ATF_REQUIRE_MSG(kerrno == EINTR, "kevent: %s",
175 		    strerror(kerrno));
176 		return 0;
177 	}
178 
179 	if (delay->tv_sec * BILLION + delay->tv_nsec > tmo * MILLION)
180 		ATF_REQUIRE_MSG(rtc > 0,
181 		    "kevent: KEVNT_TIMEOUT did not cause EVFILT_TIMER event");
182 
183 	return 0;
184 }
185 
186 ATF_TC(nanosleep);
187 ATF_TC_HEAD(nanosleep, tc)
188 {
189 
190 	atf_tc_set_md_var(tc, "descr", "Test nanosleep(2) timing");
191 	atf_tc_set_md_var(tc, "timeout", "65");
192 }
193 
194 ATF_TC_BODY(nanosleep, tc)
195 {
196 
197 	sleeptest(do_nanosleep, true, false);
198 }
199 
200 ATF_TC(select);
201 ATF_TC_HEAD(select, tc)
202 {
203 
204 	atf_tc_set_md_var(tc, "descr", "Test select(2) timing");
205 	atf_tc_set_md_var(tc, "timeout", "65");
206 }
207 
208 ATF_TC_BODY(select, tc)
209 {
210 
211 	sleeptest(do_select, true, true);
212 }
213 
214 ATF_TC(poll);
215 ATF_TC_HEAD(poll, tc)
216 {
217 
218 	atf_tc_set_md_var(tc, "descr", "Test poll(2) timing");
219 	atf_tc_set_md_var(tc, "timeout", "65");
220 }
221 
222 ATF_TC_BODY(poll, tc)
223 {
224 
225 	sleeptest(do_poll, true, true);
226 }
227 
228 ATF_TC(sleep);
229 ATF_TC_HEAD(sleep, tc)
230 {
231 
232 	atf_tc_set_md_var(tc, "descr", "Test sleep(3) timing");
233 	atf_tc_set_md_var(tc, "timeout", "65");
234 }
235 
236 ATF_TC_BODY(sleep, tc)
237 {
238 
239 	sleeptest(do_sleep, false, false);
240 }
241 
242 ATF_TC(kevent);
243 ATF_TC_HEAD(kevent, tc)
244 {
245 
246 	atf_tc_set_md_var(tc, "descr", "Test kevent(2) timing");
247 	atf_tc_set_md_var(tc, "timeout", "65");
248 }
249 
250 ATF_TC_BODY(kevent, tc)
251 {
252 
253 	sleeptest(do_kevent, true, true);
254 }
255 
256 int
257 sleeptest(int (*test)(struct timespec *, struct timespec *),
258 	   bool subsec, bool sim_remain)
259 {
260 	struct timespec tsa, tsb, tslp, tremain;
261 	int64_t delta1, delta2, delta3, round;
262 
263 	sig = 0;
264 	signal(SIGALRM, sigalrm);
265 
266 	if (subsec) {
267 		round = 1;
268 		delta3 = FUZZ;
269 	} else {
270 		round = 1000000000;
271 		delta3 = round;
272 	}
273 
274 	tslp.tv_sec = delta3 / 1000000000;
275 	tslp.tv_nsec = delta3 % 1000000000;
276 
277 	while (tslp.tv_sec <= MAXSLEEP) {
278 		/*
279 		 * disturb sleep by signal on purpose
280 		 */
281 		if (tslp.tv_sec > ALARM && sig == 0)
282 			alarm(ALARM);
283 
284 		clock_gettime(CLOCK_REALTIME, &tsa);
285 		(*test)(&tslp, &tremain);
286 		clock_gettime(CLOCK_REALTIME, &tsb);
287 
288 		if (sim_remain) {
289 			timespecsub(&tsb, &tsa, &tremain);
290 			timespecsub(&tslp, &tremain, &tremain);
291 		}
292 
293 		delta1 = (int64_t)tsb.tv_sec - (int64_t)tsa.tv_sec;
294 		delta1 *= BILLION;
295 		delta1 += (int64_t)tsb.tv_nsec - (int64_t)tsa.tv_nsec;
296 
297 		delta2 = (int64_t)tremain.tv_sec * BILLION;
298 		delta2 += (int64_t)tremain.tv_nsec;
299 
300 		delta3 = (int64_t)tslp.tv_sec * BILLION;
301 		delta3 += (int64_t)tslp.tv_nsec - delta1 - delta2;
302 
303 		delta3 /= round;
304 		delta3 *= round;
305 
306 		if (delta3 > FUZZ || delta3 < -FUZZ) {
307 			if (!sim_remain)
308 				atf_tc_expect_fail("Long reschedule latency "
309 				    "due to PR kern/43997");
310 
311 			atf_tc_fail("Reschedule latency %"PRId64" exceeds "
312 			    "allowable fuzz %lld", delta3, FUZZ);
313 		}
314 		delta3 = (int64_t)tslp.tv_sec * 2 * BILLION;
315 		delta3 += (int64_t)tslp.tv_nsec * 2;
316 
317 		delta3 /= round;
318 		delta3 *= round;
319 		if (delta3 < FUZZ)
320 			break;
321 		tslp.tv_sec = delta3 / BILLION;
322 		tslp.tv_nsec = delta3 % BILLION;
323 	}
324 	ATF_REQUIRE_MSG(sig == 1, "Alarm did not fire!");
325 
326 	atf_tc_pass();
327 }
328 
329 ATF_TP_ADD_TCS(tp)
330 {
331 	ATF_TP_ADD_TC(tp, nanosleep);
332 	ATF_TP_ADD_TC(tp, select);
333 	ATF_TP_ADD_TC(tp, poll);
334 	ATF_TP_ADD_TC(tp, sleep);
335 	ATF_TP_ADD_TC(tp, kevent);
336 
337 	return atf_no_error();
338 }
339