xref: /netbsd-src/sys/uvm/uvm_swap.c (revision f3cfa6f6ce31685c6c4a758bc430e69eb99f50a4)
1 /*	$NetBSD: uvm_swap.c,v 1.180 2019/01/27 05:22:19 kre Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.180 2019/01/27 05:22:19 kre Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * TAILQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats() function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* tailq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * We keep a of pool vndbuf's and vndxfer structures.
180  */
181 static struct pool vndxfer_pool, vndbuf_pool;
182 
183 /*
184  * local variables
185  */
186 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
187 
188 /* list of all active swap devices [by priority] */
189 LIST_HEAD(swap_priority, swappri);
190 static struct swap_priority swap_priority;
191 
192 /* locks */
193 static krwlock_t swap_syscall_lock;
194 
195 /* workqueue and use counter for swap to regular files */
196 static int sw_reg_count = 0;
197 static struct workqueue *sw_reg_workqueue;
198 
199 /* tuneables */
200 u_int uvm_swapisfull_factor = 99;
201 
202 /*
203  * prototypes
204  */
205 static struct swapdev	*swapdrum_getsdp(int);
206 
207 static struct swapdev	*swaplist_find(struct vnode *, bool);
208 static void		 swaplist_insert(struct swapdev *,
209 					 struct swappri *, int);
210 static void		 swaplist_trim(void);
211 
212 static int swap_on(struct lwp *, struct swapdev *);
213 static int swap_off(struct lwp *, struct swapdev *);
214 
215 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
216 static void sw_reg_biodone(struct buf *);
217 static void sw_reg_iodone(struct work *wk, void *dummy);
218 static void sw_reg_start(struct swapdev *);
219 
220 static int uvm_swap_io(struct vm_page **, int, int, int);
221 
222 /*
223  * uvm_swap_init: init the swap system data structures and locks
224  *
225  * => called at boot time from init_main.c after the filesystems
226  *	are brought up (which happens after uvm_init())
227  */
228 void
229 uvm_swap_init(void)
230 {
231 	UVMHIST_FUNC("uvm_swap_init");
232 
233 	UVMHIST_CALLED(pdhist);
234 	/*
235 	 * first, init the swap list, its counter, and its lock.
236 	 * then get a handle on the vnode for /dev/drum by using
237 	 * the its dev_t number ("swapdev", from MD conf.c).
238 	 */
239 
240 	LIST_INIT(&swap_priority);
241 	uvmexp.nswapdev = 0;
242 	rw_init(&swap_syscall_lock);
243 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
244 
245 	if (bdevvp(swapdev, &swapdev_vp))
246 		panic("%s: can't get vnode for swap device", __func__);
247 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
248 		panic("%s: can't lock swap device", __func__);
249 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
250 		panic("%s: can't open swap device", __func__);
251 	VOP_UNLOCK(swapdev_vp);
252 
253 	/*
254 	 * create swap block resource map to map /dev/drum.   the range
255 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
256 	 * that block 0 is reserved (used to indicate an allocation
257 	 * failure, or no allocation).
258 	 */
259 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
260 	    VM_NOSLEEP, IPL_NONE);
261 	if (swapmap == 0) {
262 		panic("%s: vmem_create failed", __func__);
263 	}
264 
265 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
266 	    NULL, IPL_BIO);
267 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
268 	    NULL, IPL_BIO);
269 
270 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
271 }
272 
273 /*
274  * swaplist functions: functions that operate on the list of swap
275  * devices on the system.
276  */
277 
278 /*
279  * swaplist_insert: insert swap device "sdp" into the global list
280  *
281  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
282  * => caller must provide a newly allocated swappri structure (we will
283  *	FREE it if we don't need it... this it to prevent allocation
284  *	blocking here while adding swap)
285  */
286 static void
287 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
288 {
289 	struct swappri *spp, *pspp;
290 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
291 
292 	/*
293 	 * find entry at or after which to insert the new device.
294 	 */
295 	pspp = NULL;
296 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
297 		if (priority <= spp->spi_priority)
298 			break;
299 		pspp = spp;
300 	}
301 
302 	/*
303 	 * new priority?
304 	 */
305 	if (spp == NULL || spp->spi_priority != priority) {
306 		spp = newspp;  /* use newspp! */
307 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
308 			    priority, 0, 0, 0);
309 
310 		spp->spi_priority = priority;
311 		TAILQ_INIT(&spp->spi_swapdev);
312 
313 		if (pspp)
314 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
315 		else
316 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
317 	} else {
318 	  	/* we don't need a new priority structure, free it */
319 		kmem_free(newspp, sizeof(*newspp));
320 	}
321 
322 	/*
323 	 * priority found (or created).   now insert on the priority's
324 	 * tailq list and bump the total number of swapdevs.
325 	 */
326 	sdp->swd_priority = priority;
327 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
328 	uvmexp.nswapdev++;
329 }
330 
331 /*
332  * swaplist_find: find and optionally remove a swap device from the
333  *	global list.
334  *
335  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
336  * => we return the swapdev we found (and removed)
337  */
338 static struct swapdev *
339 swaplist_find(struct vnode *vp, bool remove)
340 {
341 	struct swapdev *sdp;
342 	struct swappri *spp;
343 
344 	/*
345 	 * search the lists for the requested vp
346 	 */
347 
348 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
349 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
350 			if (sdp->swd_vp == vp) {
351 				if (remove) {
352 					TAILQ_REMOVE(&spp->spi_swapdev,
353 					    sdp, swd_next);
354 					uvmexp.nswapdev--;
355 				}
356 				return(sdp);
357 			}
358 		}
359 	}
360 	return (NULL);
361 }
362 
363 /*
364  * swaplist_trim: scan priority list for empty priority entries and kill
365  *	them.
366  *
367  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
368  */
369 static void
370 swaplist_trim(void)
371 {
372 	struct swappri *spp, *nextspp;
373 
374 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
375 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
376 			continue;
377 		LIST_REMOVE(spp, spi_swappri);
378 		kmem_free(spp, sizeof(*spp));
379 	}
380 }
381 
382 /*
383  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
384  *	to the "swapdev" that maps that section of the drum.
385  *
386  * => each swapdev takes one big contig chunk of the drum
387  * => caller must hold uvm_swap_data_lock
388  */
389 static struct swapdev *
390 swapdrum_getsdp(int pgno)
391 {
392 	struct swapdev *sdp;
393 	struct swappri *spp;
394 
395 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
396 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
397 			if (sdp->swd_flags & SWF_FAKE)
398 				continue;
399 			if (pgno >= sdp->swd_drumoffset &&
400 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
401 				return sdp;
402 			}
403 		}
404 	}
405 	return NULL;
406 }
407 
408 void swapsys_lock(krw_t op)
409 {
410 	rw_enter(&swap_syscall_lock, op);
411 }
412 
413 void swapsys_unlock(void)
414 {
415 	rw_exit(&swap_syscall_lock);
416 }
417 
418 static void
419 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
420 {
421 	se->se_dev = sdp->swd_dev;
422 	se->se_flags = sdp->swd_flags;
423 	se->se_nblks = sdp->swd_nblks;
424 	se->se_inuse = inuse;
425 	se->se_priority = sdp->swd_priority;
426 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
427 	strcpy(se->se_path, sdp->swd_path);
428 }
429 
430 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
431     (void *)enosys;
432 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
433     (void *)enosys;
434 
435 /*
436  * sys_swapctl: main entry point for swapctl(2) system call
437  * 	[with two helper functions: swap_on and swap_off]
438  */
439 int
440 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
441 {
442 	/* {
443 		syscallarg(int) cmd;
444 		syscallarg(void *) arg;
445 		syscallarg(int) misc;
446 	} */
447 	struct vnode *vp;
448 	struct nameidata nd;
449 	struct swappri *spp;
450 	struct swapdev *sdp;
451 #define SWAP_PATH_MAX (PATH_MAX + 1)
452 	char	*userpath;
453 	size_t	len = 0;
454 	int	error;
455 	int	priority;
456 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
457 
458 	/*
459 	 * we handle the non-priv NSWAP and STATS request first.
460 	 *
461 	 * SWAP_NSWAP: return number of config'd swap devices
462 	 * [can also be obtained with uvmexp sysctl]
463 	 */
464 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 		const int nswapdev = uvmexp.nswapdev;
466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
467 		    0, 0, 0);
468 		*retval = nswapdev;
469 		return 0;
470 	}
471 
472 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
473 
474 	/*
475 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
476 	 */
477 	rw_enter(&swap_syscall_lock, RW_WRITER);
478 
479 	/*
480 	 * SWAP_STATS: get stats on current # of configured swap devs
481 	 *
482 	 * note that the swap_priority list can't change as long
483 	 * as we are holding the swap_syscall_lock.  we don't want
484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
485 	 * copyout() and we don't want to be holding that lock then!
486 	 */
487 	switch (SCARG(uap, cmd)) {
488 	case SWAP_STATS13:
489 		error = (*uvm_swap_stats13)(uap, retval);
490 		goto out;
491 	case SWAP_STATS50:
492 		error = (*uvm_swap_stats50)(uap, retval);
493 		goto out;
494 	case SWAP_STATS:
495 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
496 		    NULL, sizeof(struct swapent), retval);
497 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
498 		goto out;
499 
500 	case SWAP_GETDUMPDEV:
501 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
502 		goto out;
503 	default:
504 		break;
505 	}
506 
507 	/*
508 	 * all other requests require superuser privs.   verify.
509 	 */
510 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
511 	    0, NULL, NULL, NULL)))
512 		goto out;
513 
514 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
515 		/* drop the current dump device */
516 		dumpdev = NODEV;
517 		dumpcdev = NODEV;
518 		cpu_dumpconf();
519 		goto out;
520 	}
521 
522 	/*
523 	 * at this point we expect a path name in arg.   we will
524 	 * use namei() to gain a vnode reference (vref), and lock
525 	 * the vnode (VOP_LOCK).
526 	 *
527 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
528 	 * miniroot)
529 	 */
530 	if (SCARG(uap, arg) == NULL) {
531 		vp = rootvp;		/* miniroot */
532 		vref(vp);
533 		if (vn_lock(vp, LK_EXCLUSIVE)) {
534 			vrele(vp);
535 			error = EBUSY;
536 			goto out;
537 		}
538 		if (SCARG(uap, cmd) == SWAP_ON &&
539 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
540 			panic("swapctl: miniroot copy failed");
541 	} else {
542 		struct pathbuf *pb;
543 
544 		/*
545 		 * This used to allow copying in one extra byte
546 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
547 		 * This was completely pointless because if anyone
548 		 * used that extra byte namei would fail with
549 		 * ENAMETOOLONG anyway, so I've removed the excess
550 		 * logic. - dholland 20100215
551 		 */
552 
553 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
554 		if (error) {
555 			goto out;
556 		}
557 		if (SCARG(uap, cmd) == SWAP_ON) {
558 			/* get a copy of the string */
559 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
560 			len = strlen(userpath) + 1;
561 		}
562 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
563 		if ((error = namei(&nd))) {
564 			pathbuf_destroy(pb);
565 			goto out;
566 		}
567 		vp = nd.ni_vp;
568 		pathbuf_destroy(pb);
569 	}
570 	/* note: "vp" is referenced and locked */
571 
572 	error = 0;		/* assume no error */
573 	switch(SCARG(uap, cmd)) {
574 
575 	case SWAP_DUMPDEV:
576 		if (vp->v_type != VBLK) {
577 			error = ENOTBLK;
578 			break;
579 		}
580 		if (bdevsw_lookup(vp->v_rdev)) {
581 			dumpdev = vp->v_rdev;
582 			dumpcdev = devsw_blk2chr(dumpdev);
583 		} else
584 			dumpdev = NODEV;
585 		cpu_dumpconf();
586 		break;
587 
588 	case SWAP_CTL:
589 		/*
590 		 * get new priority, remove old entry (if any) and then
591 		 * reinsert it in the correct place.  finally, prune out
592 		 * any empty priority structures.
593 		 */
594 		priority = SCARG(uap, misc);
595 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
596 		mutex_enter(&uvm_swap_data_lock);
597 		if ((sdp = swaplist_find(vp, true)) == NULL) {
598 			error = ENOENT;
599 		} else {
600 			swaplist_insert(sdp, spp, priority);
601 			swaplist_trim();
602 		}
603 		mutex_exit(&uvm_swap_data_lock);
604 		if (error)
605 			kmem_free(spp, sizeof(*spp));
606 		break;
607 
608 	case SWAP_ON:
609 
610 		/*
611 		 * check for duplicates.   if none found, then insert a
612 		 * dummy entry on the list to prevent someone else from
613 		 * trying to enable this device while we are working on
614 		 * it.
615 		 */
616 
617 		priority = SCARG(uap, misc);
618 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
619 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
620 		sdp->swd_flags = SWF_FAKE;
621 		sdp->swd_vp = vp;
622 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
623 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
624 		mutex_enter(&uvm_swap_data_lock);
625 		if (swaplist_find(vp, false) != NULL) {
626 			error = EBUSY;
627 			mutex_exit(&uvm_swap_data_lock);
628 			bufq_free(sdp->swd_tab);
629 			kmem_free(sdp, sizeof(*sdp));
630 			kmem_free(spp, sizeof(*spp));
631 			break;
632 		}
633 		swaplist_insert(sdp, spp, priority);
634 		mutex_exit(&uvm_swap_data_lock);
635 
636 		KASSERT(len > 0);
637 		sdp->swd_pathlen = len;
638 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
639 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
640 			panic("swapctl: copystr");
641 
642 		/*
643 		 * we've now got a FAKE placeholder in the swap list.
644 		 * now attempt to enable swap on it.  if we fail, undo
645 		 * what we've done and kill the fake entry we just inserted.
646 		 * if swap_on is a success, it will clear the SWF_FAKE flag
647 		 */
648 
649 		if ((error = swap_on(l, sdp)) != 0) {
650 			mutex_enter(&uvm_swap_data_lock);
651 			(void) swaplist_find(vp, true);  /* kill fake entry */
652 			swaplist_trim();
653 			mutex_exit(&uvm_swap_data_lock);
654 			bufq_free(sdp->swd_tab);
655 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
656 			kmem_free(sdp, sizeof(*sdp));
657 			break;
658 		}
659 		break;
660 
661 	case SWAP_OFF:
662 		mutex_enter(&uvm_swap_data_lock);
663 		if ((sdp = swaplist_find(vp, false)) == NULL) {
664 			mutex_exit(&uvm_swap_data_lock);
665 			error = ENXIO;
666 			break;
667 		}
668 
669 		/*
670 		 * If a device isn't in use or enabled, we
671 		 * can't stop swapping from it (again).
672 		 */
673 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
674 			mutex_exit(&uvm_swap_data_lock);
675 			error = EBUSY;
676 			break;
677 		}
678 
679 		/*
680 		 * do the real work.
681 		 */
682 		error = swap_off(l, sdp);
683 		break;
684 
685 	default:
686 		error = EINVAL;
687 	}
688 
689 	/*
690 	 * done!  release the ref gained by namei() and unlock.
691 	 */
692 	vput(vp);
693 out:
694 	rw_exit(&swap_syscall_lock);
695 	kmem_free(userpath, SWAP_PATH_MAX);
696 
697 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
698 	return (error);
699 }
700 
701 /*
702  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
703  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
704  * emulation to use it directly without going through sys_swapctl().
705  * The problem with using sys_swapctl() there is that it involves
706  * copying the swapent array to the stackgap, and this array's size
707  * is not known at build time. Hence it would not be possible to
708  * ensure it would fit in the stackgap in any case.
709  */
710 int
711 uvm_swap_stats(char *ptr, int misc,
712     void (*f)(void *, const struct swapent *), size_t len,
713     register_t *retval)
714 {
715 	struct swappri *spp;
716 	struct swapdev *sdp;
717 	struct swapent sep;
718 	int count = 0;
719 	int error;
720 
721 	KASSERT(len <= sizeof(sep));
722 	if (len == 0)
723 		return ENOSYS;
724 
725 	if (misc < 0)
726 		return EINVAL;
727 
728 	if (misc == 0 || uvmexp.nswapdev == 0)
729 		return 0;
730 
731 	/* Make sure userland cannot exhaust kernel memory */
732 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
733 		misc = uvmexp.nswapdev;
734 
735 	KASSERT(rw_lock_held(&swap_syscall_lock));
736 
737 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
738 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
739 			int inuse;
740 
741 			if (misc-- <= 0)
742 				break;
743 
744 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
745 			    PAGE_SHIFT);
746 
747 			memset(&sep, 0, sizeof(sep));
748 			swapent_cvt(&sep, sdp, inuse);
749 			if (f)
750 				(*f)(&sep, &sep);
751 			if ((error = copyout(&sep, ptr, len)) != 0)
752 				return error;
753 			ptr += len;
754 			count++;
755 		}
756 	}
757 	*retval = count;
758 	return 0;
759 }
760 
761 /*
762  * swap_on: attempt to enable a swapdev for swapping.   note that the
763  *	swapdev is already on the global list, but disabled (marked
764  *	SWF_FAKE).
765  *
766  * => we avoid the start of the disk (to protect disk labels)
767  * => we also avoid the miniroot, if we are swapping to root.
768  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
769  *	if needed.
770  */
771 static int
772 swap_on(struct lwp *l, struct swapdev *sdp)
773 {
774 	struct vnode *vp;
775 	int error, npages, nblocks, size;
776 	long addr;
777 	vmem_addr_t result;
778 	struct vattr va;
779 	dev_t dev;
780 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
781 
782 	/*
783 	 * we want to enable swapping on sdp.   the swd_vp contains
784 	 * the vnode we want (locked and ref'd), and the swd_dev
785 	 * contains the dev_t of the file, if it a block device.
786 	 */
787 
788 	vp = sdp->swd_vp;
789 	dev = sdp->swd_dev;
790 
791 	/*
792 	 * open the swap file (mostly useful for block device files to
793 	 * let device driver know what is up).
794 	 *
795 	 * we skip the open/close for root on swap because the root
796 	 * has already been opened when root was mounted (mountroot).
797 	 */
798 	if (vp != rootvp) {
799 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
800 			return (error);
801 	}
802 
803 	/* XXX this only works for block devices */
804 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
805 
806 	/*
807 	 * we now need to determine the size of the swap area.   for
808 	 * block specials we can call the d_psize function.
809 	 * for normal files, we must stat [get attrs].
810 	 *
811 	 * we put the result in nblks.
812 	 * for normal files, we also want the filesystem block size
813 	 * (which we get with statfs).
814 	 */
815 	switch (vp->v_type) {
816 	case VBLK:
817 		if ((nblocks = bdev_size(dev)) == -1) {
818 			error = ENXIO;
819 			goto bad;
820 		}
821 		break;
822 
823 	case VREG:
824 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
825 			goto bad;
826 		nblocks = (int)btodb(va.va_size);
827 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
828 		/*
829 		 * limit the max # of outstanding I/O requests we issue
830 		 * at any one time.   take it easy on NFS servers.
831 		 */
832 		if (vp->v_tag == VT_NFS)
833 			sdp->swd_maxactive = 2; /* XXX */
834 		else
835 			sdp->swd_maxactive = 8; /* XXX */
836 		break;
837 
838 	default:
839 		error = ENXIO;
840 		goto bad;
841 	}
842 
843 	/*
844 	 * save nblocks in a safe place and convert to pages.
845 	 */
846 
847 	sdp->swd_nblks = nblocks;
848 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
849 
850 	/*
851 	 * for block special files, we want to make sure that leave
852 	 * the disklabel and bootblocks alone, so we arrange to skip
853 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
854 	 * note that because of this the "size" can be less than the
855 	 * actual number of blocks on the device.
856 	 */
857 	if (vp->v_type == VBLK) {
858 		/* we use pages 1 to (size - 1) [inclusive] */
859 		size = npages - 1;
860 		addr = 1;
861 	} else {
862 		/* we use pages 0 to (size - 1) [inclusive] */
863 		size = npages;
864 		addr = 0;
865 	}
866 
867 	/*
868 	 * make sure we have enough blocks for a reasonable sized swap
869 	 * area.   we want at least one page.
870 	 */
871 
872 	if (size < 1) {
873 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
874 		error = EINVAL;
875 		goto bad;
876 	}
877 
878 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
879 
880 	/*
881 	 * now we need to allocate an extent to manage this swap device
882 	 */
883 
884 	sdp->swd_blist = blist_create(npages);
885 	/* mark all expect the `saved' region free. */
886 	blist_free(sdp->swd_blist, addr, size);
887 
888 	/*
889 	 * if the vnode we are swapping to is the root vnode
890 	 * (i.e. we are swapping to the miniroot) then we want
891 	 * to make sure we don't overwrite it.   do a statfs to
892 	 * find its size and skip over it.
893 	 */
894 	if (vp == rootvp) {
895 		struct mount *mp;
896 		struct statvfs *sp;
897 		int rootblocks, rootpages;
898 
899 		mp = rootvnode->v_mount;
900 		sp = &mp->mnt_stat;
901 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
902 		/*
903 		 * XXX: sp->f_blocks isn't the total number of
904 		 * blocks in the filesystem, it's the number of
905 		 * data blocks.  so, our rootblocks almost
906 		 * definitely underestimates the total size
907 		 * of the filesystem - how badly depends on the
908 		 * details of the filesystem type.  there isn't
909 		 * an obvious way to deal with this cleanly
910 		 * and perfectly, so for now we just pad our
911 		 * rootblocks estimate with an extra 5 percent.
912 		 */
913 		rootblocks += (rootblocks >> 5) +
914 			(rootblocks >> 6) +
915 			(rootblocks >> 7);
916 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
917 		if (rootpages > size)
918 			panic("swap_on: miniroot larger than swap?");
919 
920 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
921 			panic("swap_on: unable to preserve miniroot");
922 		}
923 
924 		size -= rootpages;
925 		printf("Preserved %d pages of miniroot ", rootpages);
926 		printf("leaving %d pages of swap\n", size);
927 	}
928 
929 	/*
930 	 * add a ref to vp to reflect usage as a swap device.
931 	 */
932 	vref(vp);
933 
934 	/*
935 	 * now add the new swapdev to the drum and enable.
936 	 */
937 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
938 	if (error != 0)
939 		panic("swapdrum_add");
940 	/*
941 	 * If this is the first regular swap create the workqueue.
942 	 * => Protected by swap_syscall_lock.
943 	 */
944 	if (vp->v_type != VBLK) {
945 		if (sw_reg_count++ == 0) {
946 			KASSERT(sw_reg_workqueue == NULL);
947 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
948 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
949 				panic("%s: workqueue_create failed", __func__);
950 		}
951 	}
952 
953 	sdp->swd_drumoffset = (int)result;
954 	sdp->swd_drumsize = npages;
955 	sdp->swd_npages = size;
956 	mutex_enter(&uvm_swap_data_lock);
957 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
958 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
959 	uvmexp.swpages += size;
960 	uvmexp.swpgavail += size;
961 	mutex_exit(&uvm_swap_data_lock);
962 	return (0);
963 
964 	/*
965 	 * failure: clean up and return error.
966 	 */
967 
968 bad:
969 	if (sdp->swd_blist) {
970 		blist_destroy(sdp->swd_blist);
971 	}
972 	if (vp != rootvp) {
973 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
974 	}
975 	return (error);
976 }
977 
978 /*
979  * swap_off: stop swapping on swapdev
980  *
981  * => swap data should be locked, we will unlock.
982  */
983 static int
984 swap_off(struct lwp *l, struct swapdev *sdp)
985 {
986 	int npages = sdp->swd_npages;
987 	int error = 0;
988 
989 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
990 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
991 
992 	/* disable the swap area being removed */
993 	sdp->swd_flags &= ~SWF_ENABLE;
994 	uvmexp.swpgavail -= npages;
995 	mutex_exit(&uvm_swap_data_lock);
996 
997 	/*
998 	 * the idea is to find all the pages that are paged out to this
999 	 * device, and page them all in.  in uvm, swap-backed pageable
1000 	 * memory can take two forms: aobjs and anons.  call the
1001 	 * swapoff hook for each subsystem to bring in pages.
1002 	 */
1003 
1004 	if (uao_swap_off(sdp->swd_drumoffset,
1005 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1006 	    amap_swap_off(sdp->swd_drumoffset,
1007 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1008 		error = ENOMEM;
1009 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1010 		error = EBUSY;
1011 	}
1012 
1013 	if (error) {
1014 		mutex_enter(&uvm_swap_data_lock);
1015 		sdp->swd_flags |= SWF_ENABLE;
1016 		uvmexp.swpgavail += npages;
1017 		mutex_exit(&uvm_swap_data_lock);
1018 
1019 		return error;
1020 	}
1021 
1022 	/*
1023 	 * If this is the last regular swap destroy the workqueue.
1024 	 * => Protected by swap_syscall_lock.
1025 	 */
1026 	if (sdp->swd_vp->v_type != VBLK) {
1027 		KASSERT(sw_reg_count > 0);
1028 		KASSERT(sw_reg_workqueue != NULL);
1029 		if (--sw_reg_count == 0) {
1030 			workqueue_destroy(sw_reg_workqueue);
1031 			sw_reg_workqueue = NULL;
1032 		}
1033 	}
1034 
1035 	/*
1036 	 * done with the vnode.
1037 	 * drop our ref on the vnode before calling VOP_CLOSE()
1038 	 * so that spec_close() can tell if this is the last close.
1039 	 */
1040 	vrele(sdp->swd_vp);
1041 	if (sdp->swd_vp != rootvp) {
1042 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1043 	}
1044 
1045 	mutex_enter(&uvm_swap_data_lock);
1046 	uvmexp.swpages -= npages;
1047 	uvmexp.swpginuse -= sdp->swd_npgbad;
1048 
1049 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1050 		panic("%s: swapdev not in list", __func__);
1051 	swaplist_trim();
1052 	mutex_exit(&uvm_swap_data_lock);
1053 
1054 	/*
1055 	 * free all resources!
1056 	 */
1057 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1058 	blist_destroy(sdp->swd_blist);
1059 	bufq_free(sdp->swd_tab);
1060 	kmem_free(sdp, sizeof(*sdp));
1061 	return (0);
1062 }
1063 
1064 void
1065 uvm_swap_shutdown(struct lwp *l)
1066 {
1067 	struct swapdev *sdp;
1068 	struct swappri *spp;
1069 	struct vnode *vp;
1070 	int error;
1071 
1072 	printf("turning of swap...");
1073 	rw_enter(&swap_syscall_lock, RW_WRITER);
1074 	mutex_enter(&uvm_swap_data_lock);
1075 again:
1076 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1077 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1078 			if (sdp->swd_flags & SWF_FAKE)
1079 				continue;
1080 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1081 				continue;
1082 #ifdef DEBUG
1083 			printf("\nturning off swap on %s...",
1084 			    sdp->swd_path);
1085 #endif
1086 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1087 				error = EBUSY;
1088 				vp = NULL;
1089 			} else
1090 				error = 0;
1091 			if (!error) {
1092 				error = swap_off(l, sdp);
1093 				mutex_enter(&uvm_swap_data_lock);
1094 			}
1095 			if (error) {
1096 				printf("stopping swap on %s failed "
1097 				    "with error %d\n", sdp->swd_path, error);
1098 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1099 				    swd_next);
1100 				uvmexp.nswapdev--;
1101 				swaplist_trim();
1102 				if (vp)
1103 					vput(vp);
1104 			}
1105 			goto again;
1106 		}
1107 	printf(" done\n");
1108 	mutex_exit(&uvm_swap_data_lock);
1109 	rw_exit(&swap_syscall_lock);
1110 }
1111 
1112 
1113 /*
1114  * /dev/drum interface and i/o functions
1115  */
1116 
1117 /*
1118  * swstrategy: perform I/O on the drum
1119  *
1120  * => we must map the i/o request from the drum to the correct swapdev.
1121  */
1122 static void
1123 swstrategy(struct buf *bp)
1124 {
1125 	struct swapdev *sdp;
1126 	struct vnode *vp;
1127 	int pageno, bn;
1128 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1129 
1130 	/*
1131 	 * convert block number to swapdev.   note that swapdev can't
1132 	 * be yanked out from under us because we are holding resources
1133 	 * in it (i.e. the blocks we are doing I/O on).
1134 	 */
1135 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1136 	mutex_enter(&uvm_swap_data_lock);
1137 	sdp = swapdrum_getsdp(pageno);
1138 	mutex_exit(&uvm_swap_data_lock);
1139 	if (sdp == NULL) {
1140 		bp->b_error = EINVAL;
1141 		bp->b_resid = bp->b_bcount;
1142 		biodone(bp);
1143 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1144 		return;
1145 	}
1146 
1147 	/*
1148 	 * convert drum page number to block number on this swapdev.
1149 	 */
1150 
1151 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1152 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1153 
1154 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1155 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
1156 		sdp->swd_drumoffset, bn, bp->b_bcount);
1157 
1158 	/*
1159 	 * for block devices we finish up here.
1160 	 * for regular files we have to do more work which we delegate
1161 	 * to sw_reg_strategy().
1162 	 */
1163 
1164 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1165 	switch (vp->v_type) {
1166 	default:
1167 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1168 
1169 	case VBLK:
1170 
1171 		/*
1172 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1173 		 * on the swapdev (sdp).
1174 		 */
1175 		bp->b_blkno = bn;		/* swapdev block number */
1176 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1177 
1178 		/*
1179 		 * if we are doing a write, we have to redirect the i/o on
1180 		 * drum's v_numoutput counter to the swapdevs.
1181 		 */
1182 		if ((bp->b_flags & B_READ) == 0) {
1183 			mutex_enter(bp->b_objlock);
1184 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1185 			mutex_exit(bp->b_objlock);
1186 			mutex_enter(vp->v_interlock);
1187 			vp->v_numoutput++;	/* put it on swapdev */
1188 			mutex_exit(vp->v_interlock);
1189 		}
1190 
1191 		/*
1192 		 * finally plug in swapdev vnode and start I/O
1193 		 */
1194 		bp->b_vp = vp;
1195 		bp->b_objlock = vp->v_interlock;
1196 		VOP_STRATEGY(vp, bp);
1197 		return;
1198 
1199 	case VREG:
1200 		/*
1201 		 * delegate to sw_reg_strategy function.
1202 		 */
1203 		sw_reg_strategy(sdp, bp, bn);
1204 		return;
1205 	}
1206 	/* NOTREACHED */
1207 }
1208 
1209 /*
1210  * swread: the read function for the drum (just a call to physio)
1211  */
1212 /*ARGSUSED*/
1213 static int
1214 swread(dev_t dev, struct uio *uio, int ioflag)
1215 {
1216 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1217 
1218 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1219 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1220 }
1221 
1222 /*
1223  * swwrite: the write function for the drum (just a call to physio)
1224  */
1225 /*ARGSUSED*/
1226 static int
1227 swwrite(dev_t dev, struct uio *uio, int ioflag)
1228 {
1229 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1230 
1231 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1232 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1233 }
1234 
1235 const struct bdevsw swap_bdevsw = {
1236 	.d_open = nullopen,
1237 	.d_close = nullclose,
1238 	.d_strategy = swstrategy,
1239 	.d_ioctl = noioctl,
1240 	.d_dump = nodump,
1241 	.d_psize = nosize,
1242 	.d_discard = nodiscard,
1243 	.d_flag = D_OTHER
1244 };
1245 
1246 const struct cdevsw swap_cdevsw = {
1247 	.d_open = nullopen,
1248 	.d_close = nullclose,
1249 	.d_read = swread,
1250 	.d_write = swwrite,
1251 	.d_ioctl = noioctl,
1252 	.d_stop = nostop,
1253 	.d_tty = notty,
1254 	.d_poll = nopoll,
1255 	.d_mmap = nommap,
1256 	.d_kqfilter = nokqfilter,
1257 	.d_discard = nodiscard,
1258 	.d_flag = D_OTHER,
1259 };
1260 
1261 /*
1262  * sw_reg_strategy: handle swap i/o to regular files
1263  */
1264 static void
1265 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1266 {
1267 	struct vnode	*vp;
1268 	struct vndxfer	*vnx;
1269 	daddr_t		nbn;
1270 	char 		*addr;
1271 	off_t		byteoff;
1272 	int		s, off, nra, error, sz, resid;
1273 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1274 
1275 	/*
1276 	 * allocate a vndxfer head for this transfer and point it to
1277 	 * our buffer.
1278 	 */
1279 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1280 	vnx->vx_flags = VX_BUSY;
1281 	vnx->vx_error = 0;
1282 	vnx->vx_pending = 0;
1283 	vnx->vx_bp = bp;
1284 	vnx->vx_sdp = sdp;
1285 
1286 	/*
1287 	 * setup for main loop where we read filesystem blocks into
1288 	 * our buffer.
1289 	 */
1290 	error = 0;
1291 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1292 	addr = bp->b_data;		/* current position in buffer */
1293 	byteoff = dbtob((uint64_t)bn);
1294 
1295 	for (resid = bp->b_resid; resid; resid -= sz) {
1296 		struct vndbuf	*nbp;
1297 
1298 		/*
1299 		 * translate byteoffset into block number.  return values:
1300 		 *   vp = vnode of underlying device
1301 		 *  nbn = new block number (on underlying vnode dev)
1302 		 *  nra = num blocks we can read-ahead (excludes requested
1303 		 *	block)
1304 		 */
1305 		nra = 0;
1306 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1307 				 	&vp, &nbn, &nra);
1308 
1309 		if (error == 0 && nbn == (daddr_t)-1) {
1310 			/*
1311 			 * this used to just set error, but that doesn't
1312 			 * do the right thing.  Instead, it causes random
1313 			 * memory errors.  The panic() should remain until
1314 			 * this condition doesn't destabilize the system.
1315 			 */
1316 #if 1
1317 			panic("%s: swap to sparse file", __func__);
1318 #else
1319 			error = EIO;	/* failure */
1320 #endif
1321 		}
1322 
1323 		/*
1324 		 * punt if there was an error or a hole in the file.
1325 		 * we must wait for any i/o ops we have already started
1326 		 * to finish before returning.
1327 		 *
1328 		 * XXX we could deal with holes here but it would be
1329 		 * a hassle (in the write case).
1330 		 */
1331 		if (error) {
1332 			s = splbio();
1333 			vnx->vx_error = error;	/* pass error up */
1334 			goto out;
1335 		}
1336 
1337 		/*
1338 		 * compute the size ("sz") of this transfer (in bytes).
1339 		 */
1340 		off = byteoff % sdp->swd_bsize;
1341 		sz = (1 + nra) * sdp->swd_bsize - off;
1342 		if (sz > resid)
1343 			sz = resid;
1344 
1345 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1346 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
1347 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1348 
1349 		/*
1350 		 * now get a buf structure.   note that the vb_buf is
1351 		 * at the front of the nbp structure so that you can
1352 		 * cast pointers between the two structure easily.
1353 		 */
1354 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1355 		buf_init(&nbp->vb_buf);
1356 		nbp->vb_buf.b_flags    = bp->b_flags;
1357 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1358 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1359 		nbp->vb_buf.b_bcount   = sz;
1360 		nbp->vb_buf.b_bufsize  = sz;
1361 		nbp->vb_buf.b_error    = 0;
1362 		nbp->vb_buf.b_data     = addr;
1363 		nbp->vb_buf.b_lblkno   = 0;
1364 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1365 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1366 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1367 		nbp->vb_buf.b_vp       = vp;
1368 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1369 		if (vp->v_type == VBLK) {
1370 			nbp->vb_buf.b_dev = vp->v_rdev;
1371 		}
1372 
1373 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1374 
1375 		/*
1376 		 * Just sort by block number
1377 		 */
1378 		s = splbio();
1379 		if (vnx->vx_error != 0) {
1380 			buf_destroy(&nbp->vb_buf);
1381 			pool_put(&vndbuf_pool, nbp);
1382 			goto out;
1383 		}
1384 		vnx->vx_pending++;
1385 
1386 		/* sort it in and start I/O if we are not over our limit */
1387 		/* XXXAD locking */
1388 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1389 		sw_reg_start(sdp);
1390 		splx(s);
1391 
1392 		/*
1393 		 * advance to the next I/O
1394 		 */
1395 		byteoff += sz;
1396 		addr += sz;
1397 	}
1398 
1399 	s = splbio();
1400 
1401 out: /* Arrive here at splbio */
1402 	vnx->vx_flags &= ~VX_BUSY;
1403 	if (vnx->vx_pending == 0) {
1404 		error = vnx->vx_error;
1405 		pool_put(&vndxfer_pool, vnx);
1406 		bp->b_error = error;
1407 		biodone(bp);
1408 	}
1409 	splx(s);
1410 }
1411 
1412 /*
1413  * sw_reg_start: start an I/O request on the requested swapdev
1414  *
1415  * => reqs are sorted by b_rawblkno (above)
1416  */
1417 static void
1418 sw_reg_start(struct swapdev *sdp)
1419 {
1420 	struct buf	*bp;
1421 	struct vnode	*vp;
1422 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1423 
1424 	/* recursion control */
1425 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1426 		return;
1427 
1428 	sdp->swd_flags |= SWF_BUSY;
1429 
1430 	while (sdp->swd_active < sdp->swd_maxactive) {
1431 		bp = bufq_get(sdp->swd_tab);
1432 		if (bp == NULL)
1433 			break;
1434 		sdp->swd_active++;
1435 
1436 		UVMHIST_LOG(pdhist,
1437 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
1438 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1439 		    bp->b_bcount);
1440 		vp = bp->b_vp;
1441 		KASSERT(bp->b_objlock == vp->v_interlock);
1442 		if ((bp->b_flags & B_READ) == 0) {
1443 			mutex_enter(vp->v_interlock);
1444 			vp->v_numoutput++;
1445 			mutex_exit(vp->v_interlock);
1446 		}
1447 		VOP_STRATEGY(vp, bp);
1448 	}
1449 	sdp->swd_flags &= ~SWF_BUSY;
1450 }
1451 
1452 /*
1453  * sw_reg_biodone: one of our i/o's has completed
1454  */
1455 static void
1456 sw_reg_biodone(struct buf *bp)
1457 {
1458 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1459 }
1460 
1461 /*
1462  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1463  *
1464  * => note that we can recover the vndbuf struct by casting the buf ptr
1465  */
1466 static void
1467 sw_reg_iodone(struct work *wk, void *dummy)
1468 {
1469 	struct vndbuf *vbp = (void *)wk;
1470 	struct vndxfer *vnx = vbp->vb_xfer;
1471 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1472 	struct swapdev	*sdp = vnx->vx_sdp;
1473 	int s, resid, error;
1474 	KASSERT(&vbp->vb_buf.b_work == wk);
1475 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1476 
1477 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1478 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1479 	    (uintptr_t)vbp->vb_buf.b_data);
1480 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
1481 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1482 
1483 	/*
1484 	 * protect vbp at splbio and update.
1485 	 */
1486 
1487 	s = splbio();
1488 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1489 	pbp->b_resid -= resid;
1490 	vnx->vx_pending--;
1491 
1492 	if (vbp->vb_buf.b_error != 0) {
1493 		/* pass error upward */
1494 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1495 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
1496 		vnx->vx_error = error;
1497 	}
1498 
1499 	/*
1500 	 * kill vbp structure
1501 	 */
1502 	buf_destroy(&vbp->vb_buf);
1503 	pool_put(&vndbuf_pool, vbp);
1504 
1505 	/*
1506 	 * wrap up this transaction if it has run to completion or, in
1507 	 * case of an error, when all auxiliary buffers have returned.
1508 	 */
1509 	if (vnx->vx_error != 0) {
1510 		/* pass error upward */
1511 		error = vnx->vx_error;
1512 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1513 			pbp->b_error = error;
1514 			biodone(pbp);
1515 			pool_put(&vndxfer_pool, vnx);
1516 		}
1517 	} else if (pbp->b_resid == 0) {
1518 		KASSERT(vnx->vx_pending == 0);
1519 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1520 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
1521 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
1522 			biodone(pbp);
1523 			pool_put(&vndxfer_pool, vnx);
1524 		}
1525 	}
1526 
1527 	/*
1528 	 * done!   start next swapdev I/O if one is pending
1529 	 */
1530 	sdp->swd_active--;
1531 	sw_reg_start(sdp);
1532 	splx(s);
1533 }
1534 
1535 
1536 /*
1537  * uvm_swap_alloc: allocate space on swap
1538  *
1539  * => allocation is done "round robin" down the priority list, as we
1540  *	allocate in a priority we "rotate" the circle queue.
1541  * => space can be freed with uvm_swap_free
1542  * => we return the page slot number in /dev/drum (0 == invalid slot)
1543  * => we lock uvm_swap_data_lock
1544  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1545  */
1546 int
1547 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1548 {
1549 	struct swapdev *sdp;
1550 	struct swappri *spp;
1551 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1552 
1553 	/*
1554 	 * no swap devices configured yet?   definite failure.
1555 	 */
1556 	if (uvmexp.nswapdev < 1)
1557 		return 0;
1558 
1559 	/*
1560 	 * XXXJAK: BEGIN HACK
1561 	 *
1562 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1563 	 * too many slots.
1564 	 */
1565 	if (*nslots > BLIST_MAX_ALLOC) {
1566 		if (__predict_false(lessok == false))
1567 			return 0;
1568 		*nslots = BLIST_MAX_ALLOC;
1569 	}
1570 	/* XXXJAK: END HACK */
1571 
1572 	/*
1573 	 * lock data lock, convert slots into blocks, and enter loop
1574 	 */
1575 	mutex_enter(&uvm_swap_data_lock);
1576 
1577 ReTry:	/* XXXMRG */
1578 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1579 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1580 			uint64_t result;
1581 
1582 			/* if it's not enabled, then we can't swap from it */
1583 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1584 				continue;
1585 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1586 				continue;
1587 			result = blist_alloc(sdp->swd_blist, *nslots);
1588 			if (result == BLIST_NONE) {
1589 				continue;
1590 			}
1591 			KASSERT(result < sdp->swd_drumsize);
1592 
1593 			/*
1594 			 * successful allocation!  now rotate the tailq.
1595 			 */
1596 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1597 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1598 			sdp->swd_npginuse += *nslots;
1599 			uvmexp.swpginuse += *nslots;
1600 			mutex_exit(&uvm_swap_data_lock);
1601 			/* done!  return drum slot number */
1602 			UVMHIST_LOG(pdhist,
1603 			    "success!  returning %jd slots starting at %jd",
1604 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1605 			return (result + sdp->swd_drumoffset);
1606 		}
1607 	}
1608 
1609 	/* XXXMRG: BEGIN HACK */
1610 	if (*nslots > 1 && lessok) {
1611 		*nslots = 1;
1612 		/* XXXMRG: ugh!  blist should support this for us */
1613 		goto ReTry;
1614 	}
1615 	/* XXXMRG: END HACK */
1616 
1617 	mutex_exit(&uvm_swap_data_lock);
1618 	return 0;
1619 }
1620 
1621 /*
1622  * uvm_swapisfull: return true if most of available swap is allocated
1623  * and in use.  we don't count some small portion as it may be inaccessible
1624  * to us at any given moment, for example if there is lock contention or if
1625  * pages are busy.
1626  */
1627 bool
1628 uvm_swapisfull(void)
1629 {
1630 	int swpgonly;
1631 	bool rv;
1632 
1633 	mutex_enter(&uvm_swap_data_lock);
1634 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1635 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1636 	    uvm_swapisfull_factor);
1637 	rv = (swpgonly >= uvmexp.swpgavail);
1638 	mutex_exit(&uvm_swap_data_lock);
1639 
1640 	return (rv);
1641 }
1642 
1643 /*
1644  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1645  *
1646  * => we lock uvm_swap_data_lock
1647  */
1648 void
1649 uvm_swap_markbad(int startslot, int nslots)
1650 {
1651 	struct swapdev *sdp;
1652 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1653 
1654 	mutex_enter(&uvm_swap_data_lock);
1655 	sdp = swapdrum_getsdp(startslot);
1656 	KASSERT(sdp != NULL);
1657 
1658 	/*
1659 	 * we just keep track of how many pages have been marked bad
1660 	 * in this device, to make everything add up in swap_off().
1661 	 * we assume here that the range of slots will all be within
1662 	 * one swap device.
1663 	 */
1664 
1665 	KASSERT(uvmexp.swpgonly >= nslots);
1666 	uvmexp.swpgonly -= nslots;
1667 	sdp->swd_npgbad += nslots;
1668 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1669 	mutex_exit(&uvm_swap_data_lock);
1670 }
1671 
1672 /*
1673  * uvm_swap_free: free swap slots
1674  *
1675  * => this can be all or part of an allocation made by uvm_swap_alloc
1676  * => we lock uvm_swap_data_lock
1677  */
1678 void
1679 uvm_swap_free(int startslot, int nslots)
1680 {
1681 	struct swapdev *sdp;
1682 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1683 
1684 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1685 	    startslot, 0, 0);
1686 
1687 	/*
1688 	 * ignore attempts to free the "bad" slot.
1689 	 */
1690 
1691 	if (startslot == SWSLOT_BAD) {
1692 		return;
1693 	}
1694 
1695 	/*
1696 	 * convert drum slot offset back to sdp, free the blocks
1697 	 * in the extent, and return.   must hold pri lock to do
1698 	 * lookup and access the extent.
1699 	 */
1700 
1701 	mutex_enter(&uvm_swap_data_lock);
1702 	sdp = swapdrum_getsdp(startslot);
1703 	KASSERT(uvmexp.nswapdev >= 1);
1704 	KASSERT(sdp != NULL);
1705 	KASSERT(sdp->swd_npginuse >= nslots);
1706 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1707 	sdp->swd_npginuse -= nslots;
1708 	uvmexp.swpginuse -= nslots;
1709 	mutex_exit(&uvm_swap_data_lock);
1710 }
1711 
1712 /*
1713  * uvm_swap_put: put any number of pages into a contig place on swap
1714  *
1715  * => can be sync or async
1716  */
1717 
1718 int
1719 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1720 {
1721 	int error;
1722 
1723 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1724 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1725 	return error;
1726 }
1727 
1728 /*
1729  * uvm_swap_get: get a single page from swap
1730  *
1731  * => usually a sync op (from fault)
1732  */
1733 
1734 int
1735 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1736 {
1737 	int error;
1738 
1739 	uvmexp.nswget++;
1740 	KASSERT(flags & PGO_SYNCIO);
1741 	if (swslot == SWSLOT_BAD) {
1742 		return EIO;
1743 	}
1744 
1745 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1746 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1747 	if (error == 0) {
1748 
1749 		/*
1750 		 * this page is no longer only in swap.
1751 		 */
1752 
1753 		mutex_enter(&uvm_swap_data_lock);
1754 		KASSERT(uvmexp.swpgonly > 0);
1755 		uvmexp.swpgonly--;
1756 		mutex_exit(&uvm_swap_data_lock);
1757 	}
1758 	return error;
1759 }
1760 
1761 /*
1762  * uvm_swap_io: do an i/o operation to swap
1763  */
1764 
1765 static int
1766 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1767 {
1768 	daddr_t startblk;
1769 	struct	buf *bp;
1770 	vaddr_t kva;
1771 	int	error, mapinflags;
1772 	bool write, async;
1773 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1774 
1775 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1776 	    startslot, npages, flags, 0);
1777 
1778 	write = (flags & B_READ) == 0;
1779 	async = (flags & B_ASYNC) != 0;
1780 
1781 	/*
1782 	 * allocate a buf for the i/o.
1783 	 */
1784 
1785 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1786 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1787 	if (bp == NULL) {
1788 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1789 		return ENOMEM;
1790 	}
1791 
1792 	/*
1793 	 * convert starting drum slot to block number
1794 	 */
1795 
1796 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1797 
1798 	/*
1799 	 * first, map the pages into the kernel.
1800 	 */
1801 
1802 	mapinflags = !write ?
1803 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1804 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1805 	kva = uvm_pagermapin(pps, npages, mapinflags);
1806 
1807 	/*
1808 	 * fill in the bp/sbp.   we currently route our i/o through
1809 	 * /dev/drum's vnode [swapdev_vp].
1810 	 */
1811 
1812 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1813 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1814 	bp->b_proc = &proc0;	/* XXX */
1815 	bp->b_vnbufs.le_next = NOLIST;
1816 	bp->b_data = (void *)kva;
1817 	bp->b_blkno = startblk;
1818 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1819 
1820 	/*
1821 	 * bump v_numoutput (counter of number of active outputs).
1822 	 */
1823 
1824 	if (write) {
1825 		mutex_enter(swapdev_vp->v_interlock);
1826 		swapdev_vp->v_numoutput++;
1827 		mutex_exit(swapdev_vp->v_interlock);
1828 	}
1829 
1830 	/*
1831 	 * for async ops we must set up the iodone handler.
1832 	 */
1833 
1834 	if (async) {
1835 		bp->b_iodone = uvm_aio_biodone;
1836 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1837 		if (curlwp == uvm.pagedaemon_lwp)
1838 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1839 		else
1840 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1841 	} else {
1842 		bp->b_iodone = NULL;
1843 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1844 	}
1845 	UVMHIST_LOG(pdhist,
1846 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1847 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1848 
1849 	/*
1850 	 * now we start the I/O, and if async, return.
1851 	 */
1852 
1853 	VOP_STRATEGY(swapdev_vp, bp);
1854 	if (async)
1855 		return 0;
1856 
1857 	/*
1858 	 * must be sync i/o.   wait for it to finish
1859 	 */
1860 
1861 	error = biowait(bp);
1862 
1863 	/*
1864 	 * kill the pager mapping
1865 	 */
1866 
1867 	uvm_pagermapout(kva, npages);
1868 
1869 	/*
1870 	 * now dispose of the buf and we're done.
1871 	 */
1872 
1873 	if (write) {
1874 		mutex_enter(swapdev_vp->v_interlock);
1875 		vwakeup(bp);
1876 		mutex_exit(swapdev_vp->v_interlock);
1877 	}
1878 	putiobuf(bp);
1879 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
1880 
1881 	return (error);
1882 }
1883