xref: /netbsd-src/sys/uvm/uvm_swap.c (revision f3b496ec9be495acbb17756f05d342b6b7b495e9)
1 /*	$NetBSD: uvm_swap.c,v 1.106 2006/09/08 20:58:58 elad Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.106 2006/09/08 20:58:58 elad Exp $");
36 
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 #include <sys/kauth.h>
63 
64 #include <uvm/uvm.h>
65 
66 #include <miscfs/specfs/specdev.h>
67 
68 /*
69  * uvm_swap.c: manage configuration and i/o to swap space.
70  */
71 
72 /*
73  * swap space is managed in the following way:
74  *
75  * each swap partition or file is described by a "swapdev" structure.
76  * each "swapdev" structure contains a "swapent" structure which contains
77  * information that is passed up to the user (via system calls).
78  *
79  * each swap partition is assigned a "priority" (int) which controls
80  * swap parition usage.
81  *
82  * the system maintains a global data structure describing all swap
83  * partitions/files.   there is a sorted LIST of "swappri" structures
84  * which describe "swapdev"'s at that priority.   this LIST is headed
85  * by the "swap_priority" global var.    each "swappri" contains a
86  * CIRCLEQ of "swapdev" structures at that priority.
87  *
88  * locking:
89  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90  *    system call and prevents the swap priority list from changing
91  *    while we are in the middle of a system call (e.g. SWAP_STATS).
92  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93  *    structures including the priority list, the swapdev structures,
94  *    and the swapmap extent.
95  *
96  * each swap device has the following info:
97  *  - swap device in use (could be disabled, preventing future use)
98  *  - swap enabled (allows new allocations on swap)
99  *  - map info in /dev/drum
100  *  - vnode pointer
101  * for swap files only:
102  *  - block size
103  *  - max byte count in buffer
104  *  - buffer
105  *
106  * userland controls and configures swap with the swapctl(2) system call.
107  * the sys_swapctl performs the following operations:
108  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
109  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
110  *	(passed in via "arg") of a size passed in via "misc" ... we load
111  *	the current swap config into the array. The actual work is done
112  *	in the uvm_swap_stats(9) function.
113  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114  *	priority in "misc", start swapping on it.
115  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
117  *	"misc")
118  */
119 
120 /*
121  * swapdev: describes a single swap partition/file
122  *
123  * note the following should be true:
124  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
125  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126  */
127 struct swapdev {
128 	struct oswapent swd_ose;
129 #define	swd_dev		swd_ose.ose_dev		/* device id */
130 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
131 #define	swd_priority	swd_ose.ose_priority	/* our priority */
132 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 	char			*swd_path;	/* saved pathname of device */
134 	int			swd_pathlen;	/* length of pathname */
135 	int			swd_npages;	/* #pages we can use */
136 	int			swd_npginuse;	/* #pages in use */
137 	int			swd_npgbad;	/* #pages bad */
138 	int			swd_drumoffset;	/* page0 offset in drum */
139 	int			swd_drumsize;	/* #pages in drum */
140 	blist_t			swd_blist;	/* blist for this swapdev */
141 	struct vnode		*swd_vp;	/* backing vnode */
142 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
143 
144 	int			swd_bsize;	/* blocksize (bytes) */
145 	int			swd_maxactive;	/* max active i/o reqs */
146 	struct bufq_state	*swd_tab;	/* buffer list */
147 	int			swd_active;	/* number of active buffers */
148 };
149 
150 /*
151  * swap device priority entry; the list is kept sorted on `spi_priority'.
152  */
153 struct swappri {
154 	int			spi_priority;     /* priority */
155 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
156 	/* circleq of swapdevs at this priority */
157 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
158 };
159 
160 /*
161  * The following two structures are used to keep track of data transfers
162  * on swap devices associated with regular files.
163  * NOTE: this code is more or less a copy of vnd.c; we use the same
164  * structure names here to ease porting..
165  */
166 struct vndxfer {
167 	struct buf	*vx_bp;		/* Pointer to parent buffer */
168 	struct swapdev	*vx_sdp;
169 	int		vx_error;
170 	int		vx_pending;	/* # of pending aux buffers */
171 	int		vx_flags;
172 #define VX_BUSY		1
173 #define VX_DEAD		2
174 };
175 
176 struct vndbuf {
177 	struct buf	vb_buf;
178 	struct vndxfer	*vb_xfer;
179 };
180 
181 
182 /*
183  * We keep a of pool vndbuf's and vndxfer structures.
184  */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
187 
188 #define	getvndxfer(vnx)	do {						\
189 	int sp = splbio();						\
190 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
191 	splx(sp);							\
192 } while (/*CONSTCOND*/ 0)
193 
194 #define putvndxfer(vnx) {						\
195 	pool_put(&vndxfer_pool, (void *)(vnx));				\
196 }
197 
198 #define	getvndbuf(vbp)	do {						\
199 	int sp = splbio();						\
200 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
201 	splx(sp);							\
202 } while (/*CONSTCOND*/ 0)
203 
204 #define putvndbuf(vbp) {						\
205 	pool_put(&vndbuf_pool, (void *)(vbp));				\
206 }
207 
208 /*
209  * local variables
210  */
211 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
212 
213 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
214 
215 /* list of all active swap devices [by priority] */
216 LIST_HEAD(swap_priority, swappri);
217 static struct swap_priority swap_priority;
218 
219 /* locks */
220 static struct lock swap_syscall_lock;
221 
222 /*
223  * prototypes
224  */
225 static struct swapdev	*swapdrum_getsdp(int);
226 
227 static struct swapdev	*swaplist_find(struct vnode *, int);
228 static void		 swaplist_insert(struct swapdev *,
229 					 struct swappri *, int);
230 static void		 swaplist_trim(void);
231 
232 static int swap_on(struct lwp *, struct swapdev *);
233 static int swap_off(struct lwp *, struct swapdev *);
234 
235 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
236 
237 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
238 static void sw_reg_iodone(struct buf *);
239 static void sw_reg_start(struct swapdev *);
240 
241 static int uvm_swap_io(struct vm_page **, int, int, int);
242 
243 /*
244  * uvm_swap_init: init the swap system data structures and locks
245  *
246  * => called at boot time from init_main.c after the filesystems
247  *	are brought up (which happens after uvm_init())
248  */
249 void
250 uvm_swap_init(void)
251 {
252 	UVMHIST_FUNC("uvm_swap_init");
253 
254 	UVMHIST_CALLED(pdhist);
255 	/*
256 	 * first, init the swap list, its counter, and its lock.
257 	 * then get a handle on the vnode for /dev/drum by using
258 	 * the its dev_t number ("swapdev", from MD conf.c).
259 	 */
260 
261 	LIST_INIT(&swap_priority);
262 	uvmexp.nswapdev = 0;
263 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
264 	simple_lock_init(&uvm.swap_data_lock);
265 
266 	if (bdevvp(swapdev, &swapdev_vp))
267 		panic("uvm_swap_init: can't get vnode for swap device");
268 
269 	/*
270 	 * create swap block resource map to map /dev/drum.   the range
271 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
272 	 * that block 0 is reserved (used to indicate an allocation
273 	 * failure, or no allocation).
274 	 */
275 	swapmap = extent_create("swapmap", 1, INT_MAX,
276 				M_VMSWAP, 0, 0, EX_NOWAIT);
277 	if (swapmap == 0)
278 		panic("uvm_swap_init: extent_create failed");
279 
280 	/*
281 	 * done!
282 	 */
283 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
284 }
285 
286 /*
287  * swaplist functions: functions that operate on the list of swap
288  * devices on the system.
289  */
290 
291 /*
292  * swaplist_insert: insert swap device "sdp" into the global list
293  *
294  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
295  * => caller must provide a newly malloc'd swappri structure (we will
296  *	FREE it if we don't need it... this it to prevent malloc blocking
297  *	here while adding swap)
298  */
299 static void
300 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
301 {
302 	struct swappri *spp, *pspp;
303 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
304 
305 	/*
306 	 * find entry at or after which to insert the new device.
307 	 */
308 	pspp = NULL;
309 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
310 		if (priority <= spp->spi_priority)
311 			break;
312 		pspp = spp;
313 	}
314 
315 	/*
316 	 * new priority?
317 	 */
318 	if (spp == NULL || spp->spi_priority != priority) {
319 		spp = newspp;  /* use newspp! */
320 		UVMHIST_LOG(pdhist, "created new swappri = %d",
321 			    priority, 0, 0, 0);
322 
323 		spp->spi_priority = priority;
324 		CIRCLEQ_INIT(&spp->spi_swapdev);
325 
326 		if (pspp)
327 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
328 		else
329 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
330 	} else {
331 	  	/* we don't need a new priority structure, free it */
332 		FREE(newspp, M_VMSWAP);
333 	}
334 
335 	/*
336 	 * priority found (or created).   now insert on the priority's
337 	 * circleq list and bump the total number of swapdevs.
338 	 */
339 	sdp->swd_priority = priority;
340 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
341 	uvmexp.nswapdev++;
342 }
343 
344 /*
345  * swaplist_find: find and optionally remove a swap device from the
346  *	global list.
347  *
348  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
349  * => we return the swapdev we found (and removed)
350  */
351 static struct swapdev *
352 swaplist_find(struct vnode *vp, boolean_t remove)
353 {
354 	struct swapdev *sdp;
355 	struct swappri *spp;
356 
357 	/*
358 	 * search the lists for the requested vp
359 	 */
360 
361 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
362 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
363 			if (sdp->swd_vp == vp) {
364 				if (remove) {
365 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
366 					    sdp, swd_next);
367 					uvmexp.nswapdev--;
368 				}
369 				return(sdp);
370 			}
371 		}
372 	}
373 	return (NULL);
374 }
375 
376 
377 /*
378  * swaplist_trim: scan priority list for empty priority entries and kill
379  *	them.
380  *
381  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
382  */
383 static void
384 swaplist_trim(void)
385 {
386 	struct swappri *spp, *nextspp;
387 
388 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
389 		nextspp = LIST_NEXT(spp, spi_swappri);
390 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
391 		    (void *)&spp->spi_swapdev)
392 			continue;
393 		LIST_REMOVE(spp, spi_swappri);
394 		free(spp, M_VMSWAP);
395 	}
396 }
397 
398 /*
399  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
400  *	to the "swapdev" that maps that section of the drum.
401  *
402  * => each swapdev takes one big contig chunk of the drum
403  * => caller must hold uvm.swap_data_lock
404  */
405 static struct swapdev *
406 swapdrum_getsdp(int pgno)
407 {
408 	struct swapdev *sdp;
409 	struct swappri *spp;
410 
411 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
412 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
413 			if (sdp->swd_flags & SWF_FAKE)
414 				continue;
415 			if (pgno >= sdp->swd_drumoffset &&
416 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
417 				return sdp;
418 			}
419 		}
420 	}
421 	return NULL;
422 }
423 
424 
425 /*
426  * sys_swapctl: main entry point for swapctl(2) system call
427  * 	[with two helper functions: swap_on and swap_off]
428  */
429 int
430 sys_swapctl(struct lwp *l, void *v, register_t *retval)
431 {
432 	struct sys_swapctl_args /* {
433 		syscallarg(int) cmd;
434 		syscallarg(void *) arg;
435 		syscallarg(int) misc;
436 	} */ *uap = (struct sys_swapctl_args *)v;
437 	struct vnode *vp;
438 	struct nameidata nd;
439 	struct swappri *spp;
440 	struct swapdev *sdp;
441 	struct swapent *sep;
442 #define SWAP_PATH_MAX (PATH_MAX + 1)
443 	char	*userpath;
444 	size_t	len;
445 	int	error, misc;
446 	int	priority;
447 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
448 
449 	misc = SCARG(uap, misc);
450 
451 	/*
452 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
453 	 */
454 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
455 
456 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
457 	/*
458 	 * we handle the non-priv NSWAP and STATS request first.
459 	 *
460 	 * SWAP_NSWAP: return number of config'd swap devices
461 	 * [can also be obtained with uvmexp sysctl]
462 	 */
463 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
464 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
465 		    0, 0, 0);
466 		*retval = uvmexp.nswapdev;
467 		error = 0;
468 		goto out;
469 	}
470 
471 	/*
472 	 * SWAP_STATS: get stats on current # of configured swap devs
473 	 *
474 	 * note that the swap_priority list can't change as long
475 	 * as we are holding the swap_syscall_lock.  we don't want
476 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
477 	 * copyout() and we don't want to be holding that lock then!
478 	 */
479 	if (SCARG(uap, cmd) == SWAP_STATS
480 #if defined(COMPAT_13)
481 	    || SCARG(uap, cmd) == SWAP_OSTATS
482 #endif
483 	    ) {
484 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
485 			misc = uvmexp.nswapdev;
486 #if defined(COMPAT_13)
487 		if (SCARG(uap, cmd) == SWAP_OSTATS)
488 			len = sizeof(struct oswapent) * misc;
489 		else
490 #endif
491 			len = sizeof(struct swapent) * misc;
492 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
493 
494 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
495 		error = copyout(sep, SCARG(uap, arg), len);
496 
497 		free(sep, M_TEMP);
498 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
499 		goto out;
500 	}
501 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
502 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
503 
504 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
505 		goto out;
506 	}
507 
508 	/*
509 	 * all other requests require superuser privs.   verify.
510 	 */
511 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
512 	    0, NULL, NULL, NULL)))
513 		goto out;
514 
515 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
516 		/* drop the current dump device */
517 		dumpdev = NODEV;
518 		cpu_dumpconf();
519 		goto out;
520 	}
521 
522 	/*
523 	 * at this point we expect a path name in arg.   we will
524 	 * use namei() to gain a vnode reference (vref), and lock
525 	 * the vnode (VOP_LOCK).
526 	 *
527 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
528 	 * miniroot)
529 	 */
530 	if (SCARG(uap, arg) == NULL) {
531 		vp = rootvp;		/* miniroot */
532 		if (vget(vp, LK_EXCLUSIVE)) {
533 			error = EBUSY;
534 			goto out;
535 		}
536 		if (SCARG(uap, cmd) == SWAP_ON &&
537 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
538 			panic("swapctl: miniroot copy failed");
539 	} else {
540 		int	space;
541 		char	*where;
542 
543 		if (SCARG(uap, cmd) == SWAP_ON) {
544 			if ((error = copyinstr(SCARG(uap, arg), userpath,
545 			    SWAP_PATH_MAX, &len)))
546 				goto out;
547 			space = UIO_SYSSPACE;
548 			where = userpath;
549 		} else {
550 			space = UIO_USERSPACE;
551 			where = (char *)SCARG(uap, arg);
552 		}
553 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
554 		if ((error = namei(&nd)))
555 			goto out;
556 		vp = nd.ni_vp;
557 	}
558 	/* note: "vp" is referenced and locked */
559 
560 	error = 0;		/* assume no error */
561 	switch(SCARG(uap, cmd)) {
562 
563 	case SWAP_DUMPDEV:
564 		if (vp->v_type != VBLK) {
565 			error = ENOTBLK;
566 			break;
567 		}
568 		dumpdev = vp->v_rdev;
569 		cpu_dumpconf();
570 		break;
571 
572 	case SWAP_CTL:
573 		/*
574 		 * get new priority, remove old entry (if any) and then
575 		 * reinsert it in the correct place.  finally, prune out
576 		 * any empty priority structures.
577 		 */
578 		priority = SCARG(uap, misc);
579 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
580 		simple_lock(&uvm.swap_data_lock);
581 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
582 			error = ENOENT;
583 		} else {
584 			swaplist_insert(sdp, spp, priority);
585 			swaplist_trim();
586 		}
587 		simple_unlock(&uvm.swap_data_lock);
588 		if (error)
589 			free(spp, M_VMSWAP);
590 		break;
591 
592 	case SWAP_ON:
593 
594 		/*
595 		 * check for duplicates.   if none found, then insert a
596 		 * dummy entry on the list to prevent someone else from
597 		 * trying to enable this device while we are working on
598 		 * it.
599 		 */
600 
601 		priority = SCARG(uap, misc);
602 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
603 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
604 		memset(sdp, 0, sizeof(*sdp));
605 		sdp->swd_flags = SWF_FAKE;
606 		sdp->swd_vp = vp;
607 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
608 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
609 		simple_lock(&uvm.swap_data_lock);
610 		if (swaplist_find(vp, 0) != NULL) {
611 			error = EBUSY;
612 			simple_unlock(&uvm.swap_data_lock);
613 			bufq_free(sdp->swd_tab);
614 			free(sdp, M_VMSWAP);
615 			free(spp, M_VMSWAP);
616 			break;
617 		}
618 		swaplist_insert(sdp, spp, priority);
619 		simple_unlock(&uvm.swap_data_lock);
620 
621 		sdp->swd_pathlen = len;
622 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
623 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
624 			panic("swapctl: copystr");
625 
626 		/*
627 		 * we've now got a FAKE placeholder in the swap list.
628 		 * now attempt to enable swap on it.  if we fail, undo
629 		 * what we've done and kill the fake entry we just inserted.
630 		 * if swap_on is a success, it will clear the SWF_FAKE flag
631 		 */
632 
633 		if ((error = swap_on(l, sdp)) != 0) {
634 			simple_lock(&uvm.swap_data_lock);
635 			(void) swaplist_find(vp, 1);  /* kill fake entry */
636 			swaplist_trim();
637 			simple_unlock(&uvm.swap_data_lock);
638 			bufq_free(sdp->swd_tab);
639 			free(sdp->swd_path, M_VMSWAP);
640 			free(sdp, M_VMSWAP);
641 			break;
642 		}
643 		break;
644 
645 	case SWAP_OFF:
646 		simple_lock(&uvm.swap_data_lock);
647 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
648 			simple_unlock(&uvm.swap_data_lock);
649 			error = ENXIO;
650 			break;
651 		}
652 
653 		/*
654 		 * If a device isn't in use or enabled, we
655 		 * can't stop swapping from it (again).
656 		 */
657 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
658 			simple_unlock(&uvm.swap_data_lock);
659 			error = EBUSY;
660 			break;
661 		}
662 
663 		/*
664 		 * do the real work.
665 		 */
666 		error = swap_off(l, sdp);
667 		break;
668 
669 	default:
670 		error = EINVAL;
671 	}
672 
673 	/*
674 	 * done!  release the ref gained by namei() and unlock.
675 	 */
676 	vput(vp);
677 
678 out:
679 	free(userpath, M_TEMP);
680 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
681 
682 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
683 	return (error);
684 }
685 
686 /*
687  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
688  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
689  * emulation to use it directly without going through sys_swapctl().
690  * The problem with using sys_swapctl() there is that it involves
691  * copying the swapent array to the stackgap, and this array's size
692  * is not known at build time. Hence it would not be possible to
693  * ensure it would fit in the stackgap in any case.
694  */
695 void
696 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
697 {
698 
699 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
700 	uvm_swap_stats_locked(cmd, sep, sec, retval);
701 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
702 }
703 
704 static void
705 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
706 {
707 	struct swappri *spp;
708 	struct swapdev *sdp;
709 	int count = 0;
710 
711 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
712 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
713 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
714 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
715 		  	/*
716 			 * backwards compatibility for system call.
717 			 * note that we use 'struct oswapent' as an
718 			 * overlay into both 'struct swapdev' and
719 			 * the userland 'struct swapent', as we
720 			 * want to retain backwards compatibility
721 			 * with NetBSD 1.3.
722 			 */
723 			sdp->swd_ose.ose_inuse =
724 			    btodb((uint64_t)sdp->swd_npginuse <<
725 			    PAGE_SHIFT);
726 			(void)memcpy(sep, &sdp->swd_ose,
727 			    sizeof(struct oswapent));
728 
729 			/* now copy out the path if necessary */
730 #if defined(COMPAT_13)
731 			if (cmd == SWAP_STATS)
732 #endif
733 				(void)memcpy(&sep->se_path, sdp->swd_path,
734 				    sdp->swd_pathlen);
735 
736 			count++;
737 #if defined(COMPAT_13)
738 			if (cmd == SWAP_OSTATS)
739 				sep = (struct swapent *)
740 				    ((struct oswapent *)sep + 1);
741 			else
742 #endif
743 				sep++;
744 		}
745 	}
746 
747 	*retval = count;
748 	return;
749 }
750 
751 /*
752  * swap_on: attempt to enable a swapdev for swapping.   note that the
753  *	swapdev is already on the global list, but disabled (marked
754  *	SWF_FAKE).
755  *
756  * => we avoid the start of the disk (to protect disk labels)
757  * => we also avoid the miniroot, if we are swapping to root.
758  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
759  *	if needed.
760  */
761 static int
762 swap_on(struct lwp *l, struct swapdev *sdp)
763 {
764 	struct vnode *vp;
765 	int error, npages, nblocks, size;
766 	long addr;
767 	u_long result;
768 	struct vattr va;
769 #ifdef NFS
770 	extern int (**nfsv2_vnodeop_p)(void *);
771 #endif /* NFS */
772 	const struct bdevsw *bdev;
773 	dev_t dev;
774 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
775 
776 	/*
777 	 * we want to enable swapping on sdp.   the swd_vp contains
778 	 * the vnode we want (locked and ref'd), and the swd_dev
779 	 * contains the dev_t of the file, if it a block device.
780 	 */
781 
782 	vp = sdp->swd_vp;
783 	dev = sdp->swd_dev;
784 
785 	/*
786 	 * open the swap file (mostly useful for block device files to
787 	 * let device driver know what is up).
788 	 *
789 	 * we skip the open/close for root on swap because the root
790 	 * has already been opened when root was mounted (mountroot).
791 	 */
792 	if (vp != rootvp) {
793 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
794 			return (error);
795 	}
796 
797 	/* XXX this only works for block devices */
798 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
799 
800 	/*
801 	 * we now need to determine the size of the swap area.   for
802 	 * block specials we can call the d_psize function.
803 	 * for normal files, we must stat [get attrs].
804 	 *
805 	 * we put the result in nblks.
806 	 * for normal files, we also want the filesystem block size
807 	 * (which we get with statfs).
808 	 */
809 	switch (vp->v_type) {
810 	case VBLK:
811 		bdev = bdevsw_lookup(dev);
812 		if (bdev == NULL || bdev->d_psize == NULL ||
813 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
814 			error = ENXIO;
815 			goto bad;
816 		}
817 		break;
818 
819 	case VREG:
820 		if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
821 			goto bad;
822 		nblocks = (int)btodb(va.va_size);
823 		if ((error =
824 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
825 			goto bad;
826 
827 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
828 		/*
829 		 * limit the max # of outstanding I/O requests we issue
830 		 * at any one time.   take it easy on NFS servers.
831 		 */
832 #ifdef NFS
833 		if (vp->v_op == nfsv2_vnodeop_p)
834 			sdp->swd_maxactive = 2; /* XXX */
835 		else
836 #endif /* NFS */
837 			sdp->swd_maxactive = 8; /* XXX */
838 		break;
839 
840 	default:
841 		error = ENXIO;
842 		goto bad;
843 	}
844 
845 	/*
846 	 * save nblocks in a safe place and convert to pages.
847 	 */
848 
849 	sdp->swd_ose.ose_nblks = nblocks;
850 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
851 
852 	/*
853 	 * for block special files, we want to make sure that leave
854 	 * the disklabel and bootblocks alone, so we arrange to skip
855 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
856 	 * note that because of this the "size" can be less than the
857 	 * actual number of blocks on the device.
858 	 */
859 	if (vp->v_type == VBLK) {
860 		/* we use pages 1 to (size - 1) [inclusive] */
861 		size = npages - 1;
862 		addr = 1;
863 	} else {
864 		/* we use pages 0 to (size - 1) [inclusive] */
865 		size = npages;
866 		addr = 0;
867 	}
868 
869 	/*
870 	 * make sure we have enough blocks for a reasonable sized swap
871 	 * area.   we want at least one page.
872 	 */
873 
874 	if (size < 1) {
875 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
876 		error = EINVAL;
877 		goto bad;
878 	}
879 
880 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
881 
882 	/*
883 	 * now we need to allocate an extent to manage this swap device
884 	 */
885 
886 	sdp->swd_blist = blist_create(npages);
887 	/* mark all expect the `saved' region free. */
888 	blist_free(sdp->swd_blist, addr, size);
889 
890 	/*
891 	 * if the vnode we are swapping to is the root vnode
892 	 * (i.e. we are swapping to the miniroot) then we want
893 	 * to make sure we don't overwrite it.   do a statfs to
894 	 * find its size and skip over it.
895 	 */
896 	if (vp == rootvp) {
897 		struct mount *mp;
898 		struct statvfs *sp;
899 		int rootblocks, rootpages;
900 
901 		mp = rootvnode->v_mount;
902 		sp = &mp->mnt_stat;
903 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
904 		/*
905 		 * XXX: sp->f_blocks isn't the total number of
906 		 * blocks in the filesystem, it's the number of
907 		 * data blocks.  so, our rootblocks almost
908 		 * definitely underestimates the total size
909 		 * of the filesystem - how badly depends on the
910 		 * details of the filesystem type.  there isn't
911 		 * an obvious way to deal with this cleanly
912 		 * and perfectly, so for now we just pad our
913 		 * rootblocks estimate with an extra 5 percent.
914 		 */
915 		rootblocks += (rootblocks >> 5) +
916 			(rootblocks >> 6) +
917 			(rootblocks >> 7);
918 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
919 		if (rootpages > size)
920 			panic("swap_on: miniroot larger than swap?");
921 
922 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
923 			panic("swap_on: unable to preserve miniroot");
924 		}
925 
926 		size -= rootpages;
927 		printf("Preserved %d pages of miniroot ", rootpages);
928 		printf("leaving %d pages of swap\n", size);
929 	}
930 
931 	/*
932 	 * add a ref to vp to reflect usage as a swap device.
933 	 */
934 	vref(vp);
935 
936 	/*
937 	 * now add the new swapdev to the drum and enable.
938 	 */
939 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
940 	    EX_WAITOK, &result))
941 		panic("swapdrum_add");
942 
943 	sdp->swd_drumoffset = (int)result;
944 	sdp->swd_drumsize = npages;
945 	sdp->swd_npages = size;
946 	simple_lock(&uvm.swap_data_lock);
947 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
948 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
949 	uvmexp.swpages += size;
950 	uvmexp.swpgavail += size;
951 	simple_unlock(&uvm.swap_data_lock);
952 	return (0);
953 
954 	/*
955 	 * failure: clean up and return error.
956 	 */
957 
958 bad:
959 	if (sdp->swd_blist) {
960 		blist_destroy(sdp->swd_blist);
961 	}
962 	if (vp != rootvp) {
963 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
964 	}
965 	return (error);
966 }
967 
968 /*
969  * swap_off: stop swapping on swapdev
970  *
971  * => swap data should be locked, we will unlock.
972  */
973 static int
974 swap_off(struct lwp *l, struct swapdev *sdp)
975 {
976 	int npages = sdp->swd_npages;
977 	int error = 0;
978 
979 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
980 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
981 
982 	/* disable the swap area being removed */
983 	sdp->swd_flags &= ~SWF_ENABLE;
984 	uvmexp.swpgavail -= npages;
985 	simple_unlock(&uvm.swap_data_lock);
986 
987 	/*
988 	 * the idea is to find all the pages that are paged out to this
989 	 * device, and page them all in.  in uvm, swap-backed pageable
990 	 * memory can take two forms: aobjs and anons.  call the
991 	 * swapoff hook for each subsystem to bring in pages.
992 	 */
993 
994 	if (uao_swap_off(sdp->swd_drumoffset,
995 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
996 	    amap_swap_off(sdp->swd_drumoffset,
997 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
998 		error = ENOMEM;
999 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1000 		error = EBUSY;
1001 	}
1002 
1003 	if (error) {
1004 		simple_lock(&uvm.swap_data_lock);
1005 		sdp->swd_flags |= SWF_ENABLE;
1006 		uvmexp.swpgavail += npages;
1007 		simple_unlock(&uvm.swap_data_lock);
1008 
1009 		return error;
1010 	}
1011 
1012 	/*
1013 	 * done with the vnode.
1014 	 * drop our ref on the vnode before calling VOP_CLOSE()
1015 	 * so that spec_close() can tell if this is the last close.
1016 	 */
1017 	vrele(sdp->swd_vp);
1018 	if (sdp->swd_vp != rootvp) {
1019 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1020 	}
1021 
1022 	simple_lock(&uvm.swap_data_lock);
1023 	uvmexp.swpages -= npages;
1024 	uvmexp.swpginuse -= sdp->swd_npgbad;
1025 
1026 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1027 		panic("swap_off: swapdev not in list");
1028 	swaplist_trim();
1029 	simple_unlock(&uvm.swap_data_lock);
1030 
1031 	/*
1032 	 * free all resources!
1033 	 */
1034 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1035 		    EX_WAITOK);
1036 	blist_destroy(sdp->swd_blist);
1037 	bufq_free(sdp->swd_tab);
1038 	free(sdp, M_VMSWAP);
1039 	return (0);
1040 }
1041 
1042 /*
1043  * /dev/drum interface and i/o functions
1044  */
1045 
1046 /*
1047  * swstrategy: perform I/O on the drum
1048  *
1049  * => we must map the i/o request from the drum to the correct swapdev.
1050  */
1051 static void
1052 swstrategy(struct buf *bp)
1053 {
1054 	struct swapdev *sdp;
1055 	struct vnode *vp;
1056 	int s, pageno, bn;
1057 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1058 
1059 	/*
1060 	 * convert block number to swapdev.   note that swapdev can't
1061 	 * be yanked out from under us because we are holding resources
1062 	 * in it (i.e. the blocks we are doing I/O on).
1063 	 */
1064 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1065 	simple_lock(&uvm.swap_data_lock);
1066 	sdp = swapdrum_getsdp(pageno);
1067 	simple_unlock(&uvm.swap_data_lock);
1068 	if (sdp == NULL) {
1069 		bp->b_error = EINVAL;
1070 		bp->b_flags |= B_ERROR;
1071 		biodone(bp);
1072 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1073 		return;
1074 	}
1075 
1076 	/*
1077 	 * convert drum page number to block number on this swapdev.
1078 	 */
1079 
1080 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1081 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1082 
1083 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1084 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1085 		sdp->swd_drumoffset, bn, bp->b_bcount);
1086 
1087 	/*
1088 	 * for block devices we finish up here.
1089 	 * for regular files we have to do more work which we delegate
1090 	 * to sw_reg_strategy().
1091 	 */
1092 
1093 	switch (sdp->swd_vp->v_type) {
1094 	default:
1095 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1096 
1097 	case VBLK:
1098 
1099 		/*
1100 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1101 		 * on the swapdev (sdp).
1102 		 */
1103 		s = splbio();
1104 		bp->b_blkno = bn;		/* swapdev block number */
1105 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1106 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1107 
1108 		/*
1109 		 * if we are doing a write, we have to redirect the i/o on
1110 		 * drum's v_numoutput counter to the swapdevs.
1111 		 */
1112 		if ((bp->b_flags & B_READ) == 0) {
1113 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1114 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
1115 		}
1116 
1117 		/*
1118 		 * finally plug in swapdev vnode and start I/O
1119 		 */
1120 		bp->b_vp = vp;
1121 		splx(s);
1122 		VOP_STRATEGY(vp, bp);
1123 		return;
1124 
1125 	case VREG:
1126 		/*
1127 		 * delegate to sw_reg_strategy function.
1128 		 */
1129 		sw_reg_strategy(sdp, bp, bn);
1130 		return;
1131 	}
1132 	/* NOTREACHED */
1133 }
1134 
1135 /*
1136  * swread: the read function for the drum (just a call to physio)
1137  */
1138 /*ARGSUSED*/
1139 static int
1140 swread(dev_t dev, struct uio *uio, int ioflag)
1141 {
1142 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1143 
1144 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1145 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1146 }
1147 
1148 /*
1149  * swwrite: the write function for the drum (just a call to physio)
1150  */
1151 /*ARGSUSED*/
1152 static int
1153 swwrite(dev_t dev, struct uio *uio, int ioflag)
1154 {
1155 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1156 
1157 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1158 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1159 }
1160 
1161 const struct bdevsw swap_bdevsw = {
1162 	noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1163 };
1164 
1165 const struct cdevsw swap_cdevsw = {
1166 	nullopen, nullclose, swread, swwrite, noioctl,
1167 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1168 };
1169 
1170 /*
1171  * sw_reg_strategy: handle swap i/o to regular files
1172  */
1173 static void
1174 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1175 {
1176 	struct vnode	*vp;
1177 	struct vndxfer	*vnx;
1178 	daddr_t		nbn;
1179 	caddr_t		addr;
1180 	off_t		byteoff;
1181 	int		s, off, nra, error, sz, resid;
1182 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1183 
1184 	/*
1185 	 * allocate a vndxfer head for this transfer and point it to
1186 	 * our buffer.
1187 	 */
1188 	getvndxfer(vnx);
1189 	vnx->vx_flags = VX_BUSY;
1190 	vnx->vx_error = 0;
1191 	vnx->vx_pending = 0;
1192 	vnx->vx_bp = bp;
1193 	vnx->vx_sdp = sdp;
1194 
1195 	/*
1196 	 * setup for main loop where we read filesystem blocks into
1197 	 * our buffer.
1198 	 */
1199 	error = 0;
1200 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1201 	addr = bp->b_data;		/* current position in buffer */
1202 	byteoff = dbtob((uint64_t)bn);
1203 
1204 	for (resid = bp->b_resid; resid; resid -= sz) {
1205 		struct vndbuf	*nbp;
1206 
1207 		/*
1208 		 * translate byteoffset into block number.  return values:
1209 		 *   vp = vnode of underlying device
1210 		 *  nbn = new block number (on underlying vnode dev)
1211 		 *  nra = num blocks we can read-ahead (excludes requested
1212 		 *	block)
1213 		 */
1214 		nra = 0;
1215 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1216 				 	&vp, &nbn, &nra);
1217 
1218 		if (error == 0 && nbn == (daddr_t)-1) {
1219 			/*
1220 			 * this used to just set error, but that doesn't
1221 			 * do the right thing.  Instead, it causes random
1222 			 * memory errors.  The panic() should remain until
1223 			 * this condition doesn't destabilize the system.
1224 			 */
1225 #if 1
1226 			panic("sw_reg_strategy: swap to sparse file");
1227 #else
1228 			error = EIO;	/* failure */
1229 #endif
1230 		}
1231 
1232 		/*
1233 		 * punt if there was an error or a hole in the file.
1234 		 * we must wait for any i/o ops we have already started
1235 		 * to finish before returning.
1236 		 *
1237 		 * XXX we could deal with holes here but it would be
1238 		 * a hassle (in the write case).
1239 		 */
1240 		if (error) {
1241 			s = splbio();
1242 			vnx->vx_error = error;	/* pass error up */
1243 			goto out;
1244 		}
1245 
1246 		/*
1247 		 * compute the size ("sz") of this transfer (in bytes).
1248 		 */
1249 		off = byteoff % sdp->swd_bsize;
1250 		sz = (1 + nra) * sdp->swd_bsize - off;
1251 		if (sz > resid)
1252 			sz = resid;
1253 
1254 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1255 			    "vp %p/%p offset 0x%x/0x%x",
1256 			    sdp->swd_vp, vp, byteoff, nbn);
1257 
1258 		/*
1259 		 * now get a buf structure.   note that the vb_buf is
1260 		 * at the front of the nbp structure so that you can
1261 		 * cast pointers between the two structure easily.
1262 		 */
1263 		getvndbuf(nbp);
1264 		BUF_INIT(&nbp->vb_buf);
1265 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1266 		nbp->vb_buf.b_bcount   = sz;
1267 		nbp->vb_buf.b_bufsize  = sz;
1268 		nbp->vb_buf.b_error    = 0;
1269 		nbp->vb_buf.b_data     = addr;
1270 		nbp->vb_buf.b_lblkno   = 0;
1271 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1272 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1273 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1274 		nbp->vb_buf.b_vp       = vp;
1275 		if (vp->v_type == VBLK) {
1276 			nbp->vb_buf.b_dev = vp->v_rdev;
1277 		}
1278 
1279 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1280 
1281 		/*
1282 		 * Just sort by block number
1283 		 */
1284 		s = splbio();
1285 		if (vnx->vx_error != 0) {
1286 			putvndbuf(nbp);
1287 			goto out;
1288 		}
1289 		vnx->vx_pending++;
1290 
1291 		/* sort it in and start I/O if we are not over our limit */
1292 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1293 		sw_reg_start(sdp);
1294 		splx(s);
1295 
1296 		/*
1297 		 * advance to the next I/O
1298 		 */
1299 		byteoff += sz;
1300 		addr += sz;
1301 	}
1302 
1303 	s = splbio();
1304 
1305 out: /* Arrive here at splbio */
1306 	vnx->vx_flags &= ~VX_BUSY;
1307 	if (vnx->vx_pending == 0) {
1308 		if (vnx->vx_error != 0) {
1309 			bp->b_error = vnx->vx_error;
1310 			bp->b_flags |= B_ERROR;
1311 		}
1312 		putvndxfer(vnx);
1313 		biodone(bp);
1314 	}
1315 	splx(s);
1316 }
1317 
1318 /*
1319  * sw_reg_start: start an I/O request on the requested swapdev
1320  *
1321  * => reqs are sorted by b_rawblkno (above)
1322  */
1323 static void
1324 sw_reg_start(struct swapdev *sdp)
1325 {
1326 	struct buf	*bp;
1327 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1328 
1329 	/* recursion control */
1330 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1331 		return;
1332 
1333 	sdp->swd_flags |= SWF_BUSY;
1334 
1335 	while (sdp->swd_active < sdp->swd_maxactive) {
1336 		bp = BUFQ_GET(sdp->swd_tab);
1337 		if (bp == NULL)
1338 			break;
1339 		sdp->swd_active++;
1340 
1341 		UVMHIST_LOG(pdhist,
1342 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1343 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1344 		if ((bp->b_flags & B_READ) == 0)
1345 			V_INCR_NUMOUTPUT(bp->b_vp);
1346 
1347 		VOP_STRATEGY(bp->b_vp, bp);
1348 	}
1349 	sdp->swd_flags &= ~SWF_BUSY;
1350 }
1351 
1352 /*
1353  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1354  *
1355  * => note that we can recover the vndbuf struct by casting the buf ptr
1356  */
1357 static void
1358 sw_reg_iodone(struct buf *bp)
1359 {
1360 	struct vndbuf *vbp = (struct vndbuf *) bp;
1361 	struct vndxfer *vnx = vbp->vb_xfer;
1362 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1363 	struct swapdev	*sdp = vnx->vx_sdp;
1364 	int s, resid, error;
1365 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1366 
1367 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1368 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1369 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1370 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1371 
1372 	/*
1373 	 * protect vbp at splbio and update.
1374 	 */
1375 
1376 	s = splbio();
1377 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1378 	pbp->b_resid -= resid;
1379 	vnx->vx_pending--;
1380 
1381 	if (vbp->vb_buf.b_flags & B_ERROR) {
1382 		/* pass error upward */
1383 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1384 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1385 		vnx->vx_error = error;
1386 	}
1387 
1388 	/*
1389 	 * kill vbp structure
1390 	 */
1391 	putvndbuf(vbp);
1392 
1393 	/*
1394 	 * wrap up this transaction if it has run to completion or, in
1395 	 * case of an error, when all auxiliary buffers have returned.
1396 	 */
1397 	if (vnx->vx_error != 0) {
1398 		/* pass error upward */
1399 		pbp->b_flags |= B_ERROR;
1400 		pbp->b_error = vnx->vx_error;
1401 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1402 			putvndxfer(vnx);
1403 			biodone(pbp);
1404 		}
1405 	} else if (pbp->b_resid == 0) {
1406 		KASSERT(vnx->vx_pending == 0);
1407 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1408 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1409 			    pbp, vnx->vx_error, 0, 0);
1410 			putvndxfer(vnx);
1411 			biodone(pbp);
1412 		}
1413 	}
1414 
1415 	/*
1416 	 * done!   start next swapdev I/O if one is pending
1417 	 */
1418 	sdp->swd_active--;
1419 	sw_reg_start(sdp);
1420 	splx(s);
1421 }
1422 
1423 
1424 /*
1425  * uvm_swap_alloc: allocate space on swap
1426  *
1427  * => allocation is done "round robin" down the priority list, as we
1428  *	allocate in a priority we "rotate" the circle queue.
1429  * => space can be freed with uvm_swap_free
1430  * => we return the page slot number in /dev/drum (0 == invalid slot)
1431  * => we lock uvm.swap_data_lock
1432  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1433  */
1434 int
1435 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1436 {
1437 	struct swapdev *sdp;
1438 	struct swappri *spp;
1439 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1440 
1441 	/*
1442 	 * no swap devices configured yet?   definite failure.
1443 	 */
1444 	if (uvmexp.nswapdev < 1)
1445 		return 0;
1446 
1447 	/*
1448 	 * lock data lock, convert slots into blocks, and enter loop
1449 	 */
1450 	simple_lock(&uvm.swap_data_lock);
1451 
1452 ReTry:	/* XXXMRG */
1453 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1454 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1455 			uint64_t result;
1456 
1457 			/* if it's not enabled, then we can't swap from it */
1458 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1459 				continue;
1460 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1461 				continue;
1462 			result = blist_alloc(sdp->swd_blist, *nslots);
1463 			if (result == BLIST_NONE) {
1464 				continue;
1465 			}
1466 			KASSERT(result < sdp->swd_drumsize);
1467 
1468 			/*
1469 			 * successful allocation!  now rotate the circleq.
1470 			 */
1471 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1472 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1473 			sdp->swd_npginuse += *nslots;
1474 			uvmexp.swpginuse += *nslots;
1475 			simple_unlock(&uvm.swap_data_lock);
1476 			/* done!  return drum slot number */
1477 			UVMHIST_LOG(pdhist,
1478 			    "success!  returning %d slots starting at %d",
1479 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1480 			return (result + sdp->swd_drumoffset);
1481 		}
1482 	}
1483 
1484 	/* XXXMRG: BEGIN HACK */
1485 	if (*nslots > 1 && lessok) {
1486 		*nslots = 1;
1487 		/* XXXMRG: ugh!  blist should support this for us */
1488 		goto ReTry;
1489 	}
1490 	/* XXXMRG: END HACK */
1491 
1492 	simple_unlock(&uvm.swap_data_lock);
1493 	return 0;
1494 }
1495 
1496 boolean_t
1497 uvm_swapisfull(void)
1498 {
1499 	boolean_t rv;
1500 
1501 	simple_lock(&uvm.swap_data_lock);
1502 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1503 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1504 	simple_unlock(&uvm.swap_data_lock);
1505 
1506 	return (rv);
1507 }
1508 
1509 /*
1510  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1511  *
1512  * => we lock uvm.swap_data_lock
1513  */
1514 void
1515 uvm_swap_markbad(int startslot, int nslots)
1516 {
1517 	struct swapdev *sdp;
1518 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1519 
1520 	simple_lock(&uvm.swap_data_lock);
1521 	sdp = swapdrum_getsdp(startslot);
1522 	KASSERT(sdp != NULL);
1523 
1524 	/*
1525 	 * we just keep track of how many pages have been marked bad
1526 	 * in this device, to make everything add up in swap_off().
1527 	 * we assume here that the range of slots will all be within
1528 	 * one swap device.
1529 	 */
1530 
1531 	KASSERT(uvmexp.swpgonly >= nslots);
1532 	uvmexp.swpgonly -= nslots;
1533 	sdp->swd_npgbad += nslots;
1534 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1535 	simple_unlock(&uvm.swap_data_lock);
1536 }
1537 
1538 /*
1539  * uvm_swap_free: free swap slots
1540  *
1541  * => this can be all or part of an allocation made by uvm_swap_alloc
1542  * => we lock uvm.swap_data_lock
1543  */
1544 void
1545 uvm_swap_free(int startslot, int nslots)
1546 {
1547 	struct swapdev *sdp;
1548 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1549 
1550 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1551 	    startslot, 0, 0);
1552 
1553 	/*
1554 	 * ignore attempts to free the "bad" slot.
1555 	 */
1556 
1557 	if (startslot == SWSLOT_BAD) {
1558 		return;
1559 	}
1560 
1561 	/*
1562 	 * convert drum slot offset back to sdp, free the blocks
1563 	 * in the extent, and return.   must hold pri lock to do
1564 	 * lookup and access the extent.
1565 	 */
1566 
1567 	simple_lock(&uvm.swap_data_lock);
1568 	sdp = swapdrum_getsdp(startslot);
1569 	KASSERT(uvmexp.nswapdev >= 1);
1570 	KASSERT(sdp != NULL);
1571 	KASSERT(sdp->swd_npginuse >= nslots);
1572 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1573 	sdp->swd_npginuse -= nslots;
1574 	uvmexp.swpginuse -= nslots;
1575 	simple_unlock(&uvm.swap_data_lock);
1576 }
1577 
1578 /*
1579  * uvm_swap_put: put any number of pages into a contig place on swap
1580  *
1581  * => can be sync or async
1582  */
1583 
1584 int
1585 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1586 {
1587 	int error;
1588 
1589 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1590 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1591 	return error;
1592 }
1593 
1594 /*
1595  * uvm_swap_get: get a single page from swap
1596  *
1597  * => usually a sync op (from fault)
1598  */
1599 
1600 int
1601 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1602 {
1603 	int error;
1604 
1605 	uvmexp.nswget++;
1606 	KASSERT(flags & PGO_SYNCIO);
1607 	if (swslot == SWSLOT_BAD) {
1608 		return EIO;
1609 	}
1610 
1611 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1612 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1613 	if (error == 0) {
1614 
1615 		/*
1616 		 * this page is no longer only in swap.
1617 		 */
1618 
1619 		simple_lock(&uvm.swap_data_lock);
1620 		KASSERT(uvmexp.swpgonly > 0);
1621 		uvmexp.swpgonly--;
1622 		simple_unlock(&uvm.swap_data_lock);
1623 	}
1624 	return error;
1625 }
1626 
1627 /*
1628  * uvm_swap_io: do an i/o operation to swap
1629  */
1630 
1631 static int
1632 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1633 {
1634 	daddr_t startblk;
1635 	struct	buf *bp;
1636 	vaddr_t kva;
1637 	int	error, s, mapinflags;
1638 	boolean_t write, async;
1639 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1640 
1641 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1642 	    startslot, npages, flags, 0);
1643 
1644 	write = (flags & B_READ) == 0;
1645 	async = (flags & B_ASYNC) != 0;
1646 
1647 	/*
1648 	 * convert starting drum slot to block number
1649 	 */
1650 
1651 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1652 
1653 	/*
1654 	 * first, map the pages into the kernel.
1655 	 */
1656 
1657 	mapinflags = !write ?
1658 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1659 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1660 	kva = uvm_pagermapin(pps, npages, mapinflags);
1661 
1662 	/*
1663 	 * now allocate a buf for the i/o.
1664 	 */
1665 
1666 	bp = getiobuf();
1667 
1668 	/*
1669 	 * fill in the bp/sbp.   we currently route our i/o through
1670 	 * /dev/drum's vnode [swapdev_vp].
1671 	 */
1672 
1673 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1674 	bp->b_proc = &proc0;	/* XXX */
1675 	bp->b_vnbufs.le_next = NOLIST;
1676 	bp->b_data = (caddr_t)kva;
1677 	bp->b_blkno = startblk;
1678 	bp->b_vp = swapdev_vp;
1679 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1680 
1681 	/*
1682 	 * bump v_numoutput (counter of number of active outputs).
1683 	 */
1684 
1685 	if (write) {
1686 		s = splbio();
1687 		V_INCR_NUMOUTPUT(swapdev_vp);
1688 		splx(s);
1689 	}
1690 
1691 	/*
1692 	 * for async ops we must set up the iodone handler.
1693 	 */
1694 
1695 	if (async) {
1696 		bp->b_flags |= B_CALL;
1697 		bp->b_iodone = uvm_aio_biodone;
1698 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1699 		if (curproc == uvm.pagedaemon_proc)
1700 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1701 		else
1702 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1703 	} else {
1704 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1705 	}
1706 	UVMHIST_LOG(pdhist,
1707 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1708 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1709 
1710 	/*
1711 	 * now we start the I/O, and if async, return.
1712 	 */
1713 
1714 	VOP_STRATEGY(swapdev_vp, bp);
1715 	if (async)
1716 		return 0;
1717 
1718 	/*
1719 	 * must be sync i/o.   wait for it to finish
1720 	 */
1721 
1722 	error = biowait(bp);
1723 
1724 	/*
1725 	 * kill the pager mapping
1726 	 */
1727 
1728 	uvm_pagermapout(kva, npages);
1729 
1730 	/*
1731 	 * now dispose of the buf and we're done.
1732 	 */
1733 
1734 	s = splbio();
1735 	if (write)
1736 		vwakeup(bp);
1737 	putiobuf(bp);
1738 	splx(s);
1739 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1740 	return (error);
1741 }
1742