1 /* $NetBSD: uvm_swap.c,v 1.34 2000/02/07 20:16:59 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp 31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp 32 */ 33 34 #include "fs_nfs.h" 35 #include "opt_uvmhist.h" 36 #include "opt_compat_netbsd.h" 37 38 #include <sys/param.h> 39 #include <sys/systm.h> 40 #include <sys/buf.h> 41 #include <sys/proc.h> 42 #include <sys/namei.h> 43 #include <sys/disklabel.h> 44 #include <sys/errno.h> 45 #include <sys/kernel.h> 46 #include <sys/malloc.h> 47 #include <sys/vnode.h> 48 #include <sys/file.h> 49 #include <sys/extent.h> 50 #include <sys/mount.h> 51 #include <sys/pool.h> 52 #include <sys/syscallargs.h> 53 #include <sys/swap.h> 54 55 #include <vm/vm.h> 56 #include <vm/vm_conf.h> 57 58 #include <uvm/uvm.h> 59 60 #include <miscfs/specfs/specdev.h> 61 62 /* 63 * uvm_swap.c: manage configuration and i/o to swap space. 64 */ 65 66 /* 67 * swap space is managed in the following way: 68 * 69 * each swap partition or file is described by a "swapdev" structure. 70 * each "swapdev" structure contains a "swapent" structure which contains 71 * information that is passed up to the user (via system calls). 72 * 73 * each swap partition is assigned a "priority" (int) which controls 74 * swap parition usage. 75 * 76 * the system maintains a global data structure describing all swap 77 * partitions/files. there is a sorted LIST of "swappri" structures 78 * which describe "swapdev"'s at that priority. this LIST is headed 79 * by the "swap_priority" global var. each "swappri" contains a 80 * CIRCLEQ of "swapdev" structures at that priority. 81 * 82 * the system maintains a fixed pool of "swapbuf" structures for use 83 * at swap i/o time. a swapbuf includes a "buf" structure and an 84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time 85 * since memory may be low]. 86 * 87 * locking: 88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl 89 * system call and prevents the swap priority list from changing 90 * while we are in the middle of a system call (e.g. SWAP_STATS). 91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data 92 * structures including the priority list, the swapdev structures, 93 * and the swapmap extent. 94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf 95 * pool. 96 * 97 * each swap device has the following info: 98 * - swap device in use (could be disabled, preventing future use) 99 * - swap enabled (allows new allocations on swap) 100 * - map info in /dev/drum 101 * - vnode pointer 102 * for swap files only: 103 * - block size 104 * - max byte count in buffer 105 * - buffer 106 * - credentials to use when doing i/o to file 107 * 108 * userland controls and configures swap with the swapctl(2) system call. 109 * the sys_swapctl performs the following operations: 110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured 111 * [2] SWAP_STATS: given a pointer to an array of swapent structures 112 * (passed in via "arg") of a size passed in via "misc" ... we load 113 * the current swap config into the array. 114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a 115 * priority in "misc", start swapping on it. 116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device 117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in 118 * "misc") 119 */ 120 121 /* 122 * swapdev: describes a single swap partition/file 123 * 124 * note the following should be true: 125 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] 126 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] 127 */ 128 struct swapdev { 129 struct oswapent swd_ose; 130 #define swd_dev swd_ose.ose_dev /* device id */ 131 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */ 132 #define swd_priority swd_ose.ose_priority /* our priority */ 133 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */ 134 char *swd_path; /* saved pathname of device */ 135 int swd_pathlen; /* length of pathname */ 136 int swd_npages; /* #pages we can use */ 137 int swd_npginuse; /* #pages in use */ 138 int swd_npgbad; /* #pages bad */ 139 int swd_drumoffset; /* page0 offset in drum */ 140 int swd_drumsize; /* #pages in drum */ 141 struct extent *swd_ex; /* extent for this swapdev */ 142 struct vnode *swd_vp; /* backing vnode */ 143 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */ 144 145 int swd_bsize; /* blocksize (bytes) */ 146 int swd_maxactive; /* max active i/o reqs */ 147 struct buf_queue swd_tab; /* buffer list */ 148 int swd_active; /* number of active buffers */ 149 struct ucred *swd_cred; /* cred for file access */ 150 }; 151 152 /* 153 * swap device priority entry; the list is kept sorted on `spi_priority'. 154 */ 155 struct swappri { 156 int spi_priority; /* priority */ 157 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev; 158 /* circleq of swapdevs at this priority */ 159 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ 160 }; 161 162 /* 163 * swapbuf, swapbuffer plus async i/o info 164 */ 165 struct swapbuf { 166 struct buf sw_buf; /* a buffer structure */ 167 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */ 168 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */ 169 }; 170 171 /* 172 * The following two structures are used to keep track of data transfers 173 * on swap devices associated with regular files. 174 * NOTE: this code is more or less a copy of vnd.c; we use the same 175 * structure names here to ease porting.. 176 */ 177 struct vndxfer { 178 struct buf *vx_bp; /* Pointer to parent buffer */ 179 struct swapdev *vx_sdp; 180 int vx_error; 181 int vx_pending; /* # of pending aux buffers */ 182 int vx_flags; 183 #define VX_BUSY 1 184 #define VX_DEAD 2 185 }; 186 187 struct vndbuf { 188 struct buf vb_buf; 189 struct vndxfer *vb_xfer; 190 }; 191 192 193 /* 194 * We keep a of pool vndbuf's and vndxfer structures. 195 */ 196 struct pool *vndxfer_pool; 197 struct pool *vndbuf_pool; 198 199 #define getvndxfer(vnx) do { \ 200 int s = splbio(); \ 201 vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \ 202 splx(s); \ 203 } while (0) 204 205 #define putvndxfer(vnx) { \ 206 pool_put(vndxfer_pool, (void *)(vnx)); \ 207 } 208 209 #define getvndbuf(vbp) do { \ 210 int s = splbio(); \ 211 vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \ 212 splx(s); \ 213 } while (0) 214 215 #define putvndbuf(vbp) { \ 216 pool_put(vndbuf_pool, (void *)(vbp)); \ 217 } 218 219 220 /* 221 * local variables 222 */ 223 static struct extent *swapmap; /* controls the mapping of /dev/drum */ 224 SIMPLEQ_HEAD(swapbufhead, swapbuf); 225 struct pool *swapbuf_pool; 226 227 /* list of all active swap devices [by priority] */ 228 LIST_HEAD(swap_priority, swappri); 229 static struct swap_priority swap_priority; 230 231 /* locks */ 232 lock_data_t swap_syscall_lock; 233 234 /* 235 * prototypes 236 */ 237 static void swapdrum_add __P((struct swapdev *, int)); 238 static struct swapdev *swapdrum_getsdp __P((int)); 239 240 static struct swapdev *swaplist_find __P((struct vnode *, int)); 241 static void swaplist_insert __P((struct swapdev *, 242 struct swappri *, int)); 243 static void swaplist_trim __P((void)); 244 245 static int swap_on __P((struct proc *, struct swapdev *)); 246 static int swap_off __P((struct proc *, struct swapdev *)); 247 248 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int)); 249 static void sw_reg_iodone __P((struct buf *)); 250 static void sw_reg_start __P((struct swapdev *)); 251 252 static void uvm_swap_aiodone __P((struct uvm_aiodesc *)); 253 static void uvm_swap_bufdone __P((struct buf *)); 254 static int uvm_swap_io __P((struct vm_page **, int, int, int)); 255 256 /* 257 * uvm_swap_init: init the swap system data structures and locks 258 * 259 * => called at boot time from init_main.c after the filesystems 260 * are brought up (which happens after uvm_init()) 261 */ 262 void 263 uvm_swap_init() 264 { 265 UVMHIST_FUNC("uvm_swap_init"); 266 267 UVMHIST_CALLED(pdhist); 268 /* 269 * first, init the swap list, its counter, and its lock. 270 * then get a handle on the vnode for /dev/drum by using 271 * the its dev_t number ("swapdev", from MD conf.c). 272 */ 273 274 LIST_INIT(&swap_priority); 275 uvmexp.nswapdev = 0; 276 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0); 277 simple_lock_init(&uvm.swap_data_lock); 278 279 if (bdevvp(swapdev, &swapdev_vp)) 280 panic("uvm_swap_init: can't get vnode for swap device"); 281 282 /* 283 * create swap block resource map to map /dev/drum. the range 284 * from 1 to INT_MAX allows 2 gigablocks of swap space. note 285 * that block 0 is reserved (used to indicate an allocation 286 * failure, or no allocation). 287 */ 288 swapmap = extent_create("swapmap", 1, INT_MAX, 289 M_VMSWAP, 0, 0, EX_NOWAIT); 290 if (swapmap == 0) 291 panic("uvm_swap_init: extent_create failed"); 292 293 /* 294 * allocate our private pool of "swapbuf" structures (includes 295 * a "buf" structure). ["nswbuf" comes from param.c and can 296 * be adjusted by MD code before we get here]. 297 */ 298 299 swapbuf_pool = 300 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0, 301 NULL, NULL, 0); 302 if (swapbuf_pool == NULL) 303 panic("swapinit: pool_create failed"); 304 /* XXX - set a maximum on swapbuf_pool? */ 305 306 vndxfer_pool = 307 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0, 308 NULL, NULL, 0); 309 if (vndxfer_pool == NULL) 310 panic("swapinit: pool_create failed"); 311 312 vndbuf_pool = 313 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0, 314 NULL, NULL, 0); 315 if (vndbuf_pool == NULL) 316 panic("swapinit: pool_create failed"); 317 /* 318 * done! 319 */ 320 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); 321 } 322 323 /* 324 * swaplist functions: functions that operate on the list of swap 325 * devices on the system. 326 */ 327 328 /* 329 * swaplist_insert: insert swap device "sdp" into the global list 330 * 331 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 332 * => caller must provide a newly malloc'd swappri structure (we will 333 * FREE it if we don't need it... this it to prevent malloc blocking 334 * here while adding swap) 335 */ 336 static void 337 swaplist_insert(sdp, newspp, priority) 338 struct swapdev *sdp; 339 struct swappri *newspp; 340 int priority; 341 { 342 struct swappri *spp, *pspp; 343 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist); 344 345 /* 346 * find entry at or after which to insert the new device. 347 */ 348 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL; 349 spp = LIST_NEXT(spp, spi_swappri)) { 350 if (priority <= spp->spi_priority) 351 break; 352 pspp = spp; 353 } 354 355 /* 356 * new priority? 357 */ 358 if (spp == NULL || spp->spi_priority != priority) { 359 spp = newspp; /* use newspp! */ 360 UVMHIST_LOG(pdhist, "created new swappri = %d", 361 priority, 0, 0, 0); 362 363 spp->spi_priority = priority; 364 CIRCLEQ_INIT(&spp->spi_swapdev); 365 366 if (pspp) 367 LIST_INSERT_AFTER(pspp, spp, spi_swappri); 368 else 369 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); 370 } else { 371 /* we don't need a new priority structure, free it */ 372 FREE(newspp, M_VMSWAP); 373 } 374 375 /* 376 * priority found (or created). now insert on the priority's 377 * circleq list and bump the total number of swapdevs. 378 */ 379 sdp->swd_priority = priority; 380 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 381 uvmexp.nswapdev++; 382 } 383 384 /* 385 * swaplist_find: find and optionally remove a swap device from the 386 * global list. 387 * 388 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 389 * => we return the swapdev we found (and removed) 390 */ 391 static struct swapdev * 392 swaplist_find(vp, remove) 393 struct vnode *vp; 394 boolean_t remove; 395 { 396 struct swapdev *sdp; 397 struct swappri *spp; 398 399 /* 400 * search the lists for the requested vp 401 */ 402 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 403 spp = LIST_NEXT(spp, spi_swappri)) { 404 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 405 sdp != (void *)&spp->spi_swapdev; 406 sdp = CIRCLEQ_NEXT(sdp, swd_next)) 407 if (sdp->swd_vp == vp) { 408 if (remove) { 409 CIRCLEQ_REMOVE(&spp->spi_swapdev, 410 sdp, swd_next); 411 uvmexp.nswapdev--; 412 } 413 return(sdp); 414 } 415 } 416 return (NULL); 417 } 418 419 420 /* 421 * swaplist_trim: scan priority list for empty priority entries and kill 422 * them. 423 * 424 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 425 */ 426 static void 427 swaplist_trim() 428 { 429 struct swappri *spp, *nextspp; 430 431 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) { 432 nextspp = LIST_NEXT(spp, spi_swappri); 433 if (CIRCLEQ_FIRST(&spp->spi_swapdev) != 434 (void *)&spp->spi_swapdev) 435 continue; 436 LIST_REMOVE(spp, spi_swappri); 437 free(spp, M_VMSWAP); 438 } 439 } 440 441 /* 442 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area. 443 * 444 * => caller must hold swap_syscall_lock 445 * => uvm.swap_data_lock should be unlocked (we may sleep) 446 */ 447 static void 448 swapdrum_add(sdp, npages) 449 struct swapdev *sdp; 450 int npages; 451 { 452 u_long result; 453 454 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY, 455 EX_WAITOK, &result)) 456 panic("swapdrum_add"); 457 458 sdp->swd_drumoffset = result; 459 sdp->swd_drumsize = npages; 460 } 461 462 /* 463 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back 464 * to the "swapdev" that maps that section of the drum. 465 * 466 * => each swapdev takes one big contig chunk of the drum 467 * => caller must hold uvm.swap_data_lock 468 */ 469 static struct swapdev * 470 swapdrum_getsdp(pgno) 471 int pgno; 472 { 473 struct swapdev *sdp; 474 struct swappri *spp; 475 476 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 477 spp = LIST_NEXT(spp, spi_swappri)) 478 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 479 sdp != (void *)&spp->spi_swapdev; 480 sdp = CIRCLEQ_NEXT(sdp, swd_next)) 481 if (pgno >= sdp->swd_drumoffset && 482 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { 483 return sdp; 484 } 485 return NULL; 486 } 487 488 489 /* 490 * sys_swapctl: main entry point for swapctl(2) system call 491 * [with two helper functions: swap_on and swap_off] 492 */ 493 int 494 sys_swapctl(p, v, retval) 495 struct proc *p; 496 void *v; 497 register_t *retval; 498 { 499 struct sys_swapctl_args /* { 500 syscallarg(int) cmd; 501 syscallarg(void *) arg; 502 syscallarg(int) misc; 503 } */ *uap = (struct sys_swapctl_args *)v; 504 struct vnode *vp; 505 struct nameidata nd; 506 struct swappri *spp; 507 struct swapdev *sdp; 508 struct swapent *sep; 509 char userpath[PATH_MAX + 1]; 510 size_t len; 511 int count, error, misc; 512 int priority; 513 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist); 514 515 misc = SCARG(uap, misc); 516 517 /* 518 * ensure serialized syscall access by grabbing the swap_syscall_lock 519 */ 520 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL); 521 522 /* 523 * we handle the non-priv NSWAP and STATS request first. 524 * 525 * SWAP_NSWAP: return number of config'd swap devices 526 * [can also be obtained with uvmexp sysctl] 527 */ 528 if (SCARG(uap, cmd) == SWAP_NSWAP) { 529 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev, 530 0, 0, 0); 531 *retval = uvmexp.nswapdev; 532 error = 0; 533 goto out; 534 } 535 536 /* 537 * SWAP_STATS: get stats on current # of configured swap devs 538 * 539 * note that the swap_priority list can't change as long 540 * as we are holding the swap_syscall_lock. we don't want 541 * to grab the uvm.swap_data_lock because we may fault&sleep during 542 * copyout() and we don't want to be holding that lock then! 543 */ 544 if (SCARG(uap, cmd) == SWAP_STATS 545 #if defined(COMPAT_13) 546 || SCARG(uap, cmd) == SWAP_OSTATS 547 #endif 548 ) { 549 sep = (struct swapent *)SCARG(uap, arg); 550 count = 0; 551 552 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 553 spp = LIST_NEXT(spp, spi_swappri)) { 554 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 555 sdp != (void *)&spp->spi_swapdev && misc-- > 0; 556 sdp = CIRCLEQ_NEXT(sdp, swd_next)) { 557 /* 558 * backwards compatibility for system call. 559 * note that we use 'struct oswapent' as an 560 * overlay into both 'struct swapdev' and 561 * the userland 'struct swapent', as we 562 * want to retain backwards compatibility 563 * with NetBSD 1.3. 564 */ 565 sdp->swd_ose.ose_inuse = 566 btodb(sdp->swd_npginuse << PAGE_SHIFT); 567 error = copyout(&sdp->swd_ose, sep, 568 sizeof(struct oswapent)); 569 570 /* now copy out the path if necessary */ 571 #if defined(COMPAT_13) 572 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS) 573 #else 574 if (error == 0) 575 #endif 576 error = copyout(sdp->swd_path, 577 &sep->se_path, sdp->swd_pathlen); 578 579 if (error) 580 goto out; 581 count++; 582 #if defined(COMPAT_13) 583 if (SCARG(uap, cmd) == SWAP_OSTATS) 584 ((struct oswapent *)sep)++; 585 else 586 #endif 587 sep++; 588 } 589 } 590 591 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); 592 593 *retval = count; 594 error = 0; 595 goto out; 596 } 597 598 /* 599 * all other requests require superuser privs. verify. 600 */ 601 if ((error = suser(p->p_ucred, &p->p_acflag))) 602 goto out; 603 604 /* 605 * at this point we expect a path name in arg. we will 606 * use namei() to gain a vnode reference (vref), and lock 607 * the vnode (VOP_LOCK). 608 * 609 * XXX: a NULL arg means use the root vnode pointer (e.g. for 610 * miniroot) 611 */ 612 if (SCARG(uap, arg) == NULL) { 613 vp = rootvp; /* miniroot */ 614 if (vget(vp, LK_EXCLUSIVE)) { 615 error = EBUSY; 616 goto out; 617 } 618 if (SCARG(uap, cmd) == SWAP_ON && 619 copystr("miniroot", userpath, sizeof userpath, &len)) 620 panic("swapctl: miniroot copy failed"); 621 } else { 622 int space; 623 char *where; 624 625 if (SCARG(uap, cmd) == SWAP_ON) { 626 if ((error = copyinstr(SCARG(uap, arg), userpath, 627 sizeof userpath, &len))) 628 goto out; 629 space = UIO_SYSSPACE; 630 where = userpath; 631 } else { 632 space = UIO_USERSPACE; 633 where = (char *)SCARG(uap, arg); 634 } 635 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p); 636 if ((error = namei(&nd))) 637 goto out; 638 vp = nd.ni_vp; 639 } 640 /* note: "vp" is referenced and locked */ 641 642 error = 0; /* assume no error */ 643 switch(SCARG(uap, cmd)) { 644 case SWAP_DUMPDEV: 645 if (vp->v_type != VBLK) { 646 error = ENOTBLK; 647 goto out; 648 } 649 dumpdev = vp->v_rdev; 650 651 break; 652 653 case SWAP_CTL: 654 /* 655 * get new priority, remove old entry (if any) and then 656 * reinsert it in the correct place. finally, prune out 657 * any empty priority structures. 658 */ 659 priority = SCARG(uap, misc); 660 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 661 simple_lock(&uvm.swap_data_lock); 662 if ((sdp = swaplist_find(vp, 1)) == NULL) { 663 error = ENOENT; 664 } else { 665 swaplist_insert(sdp, spp, priority); 666 swaplist_trim(); 667 } 668 simple_unlock(&uvm.swap_data_lock); 669 if (error) 670 free(spp, M_VMSWAP); 671 break; 672 673 case SWAP_ON: 674 675 /* 676 * check for duplicates. if none found, then insert a 677 * dummy entry on the list to prevent someone else from 678 * trying to enable this device while we are working on 679 * it. 680 */ 681 682 priority = SCARG(uap, misc); 683 simple_lock(&uvm.swap_data_lock); 684 if ((sdp = swaplist_find(vp, 0)) != NULL) { 685 error = EBUSY; 686 simple_unlock(&uvm.swap_data_lock); 687 break; 688 } 689 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK); 690 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 691 memset(sdp, 0, sizeof(*sdp)); 692 sdp->swd_flags = SWF_FAKE; /* placeholder only */ 693 sdp->swd_vp = vp; 694 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; 695 BUFQ_INIT(&sdp->swd_tab); 696 697 /* 698 * XXX Is NFS elaboration necessary? 699 */ 700 if (vp->v_type == VREG) { 701 sdp->swd_cred = crdup(p->p_ucred); 702 } 703 704 swaplist_insert(sdp, spp, priority); 705 simple_unlock(&uvm.swap_data_lock); 706 707 sdp->swd_pathlen = len; 708 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK); 709 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0) 710 panic("swapctl: copystr"); 711 712 /* 713 * we've now got a FAKE placeholder in the swap list. 714 * now attempt to enable swap on it. if we fail, undo 715 * what we've done and kill the fake entry we just inserted. 716 * if swap_on is a success, it will clear the SWF_FAKE flag 717 */ 718 719 if ((error = swap_on(p, sdp)) != 0) { 720 simple_lock(&uvm.swap_data_lock); 721 (void) swaplist_find(vp, 1); /* kill fake entry */ 722 swaplist_trim(); 723 simple_unlock(&uvm.swap_data_lock); 724 if (vp->v_type == VREG) { 725 crfree(sdp->swd_cred); 726 } 727 free(sdp->swd_path, M_VMSWAP); 728 free(sdp, M_VMSWAP); 729 break; 730 } 731 732 /* 733 * got it! now add a second reference to vp so that 734 * we keep a reference to the vnode after we return. 735 */ 736 vref(vp); 737 break; 738 739 case SWAP_OFF: 740 simple_lock(&uvm.swap_data_lock); 741 if ((sdp = swaplist_find(vp, 0)) == NULL) { 742 simple_unlock(&uvm.swap_data_lock); 743 error = ENXIO; 744 break; 745 } 746 747 /* 748 * If a device isn't in use or enabled, we 749 * can't stop swapping from it (again). 750 */ 751 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { 752 simple_unlock(&uvm.swap_data_lock); 753 error = EBUSY; 754 break; 755 } 756 757 /* 758 * do the real work. 759 */ 760 if ((error = swap_off(p, sdp)) != 0) 761 goto out; 762 763 break; 764 765 default: 766 error = EINVAL; 767 } 768 769 /* 770 * done! use vput to drop our reference and unlock 771 */ 772 vput(vp); 773 out: 774 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL); 775 776 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0); 777 return (error); 778 } 779 780 /* 781 * swap_on: attempt to enable a swapdev for swapping. note that the 782 * swapdev is already on the global list, but disabled (marked 783 * SWF_FAKE). 784 * 785 * => we avoid the start of the disk (to protect disk labels) 786 * => we also avoid the miniroot, if we are swapping to root. 787 * => caller should leave uvm.swap_data_lock unlocked, we may lock it 788 * if needed. 789 */ 790 static int 791 swap_on(p, sdp) 792 struct proc *p; 793 struct swapdev *sdp; 794 { 795 static int count = 0; /* static */ 796 struct vnode *vp; 797 int error, npages, nblocks, size; 798 long addr; 799 struct vattr va; 800 #ifdef NFS 801 extern int (**nfsv2_vnodeop_p) __P((void *)); 802 #endif /* NFS */ 803 dev_t dev; 804 char *name; 805 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist); 806 807 /* 808 * we want to enable swapping on sdp. the swd_vp contains 809 * the vnode we want (locked and ref'd), and the swd_dev 810 * contains the dev_t of the file, if it a block device. 811 */ 812 813 vp = sdp->swd_vp; 814 dev = sdp->swd_dev; 815 816 /* 817 * open the swap file (mostly useful for block device files to 818 * let device driver know what is up). 819 * 820 * we skip the open/close for root on swap because the root 821 * has already been opened when root was mounted (mountroot). 822 */ 823 if (vp != rootvp) { 824 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p))) 825 return (error); 826 } 827 828 /* XXX this only works for block devices */ 829 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0); 830 831 /* 832 * we now need to determine the size of the swap area. for 833 * block specials we can call the d_psize function. 834 * for normal files, we must stat [get attrs]. 835 * 836 * we put the result in nblks. 837 * for normal files, we also want the filesystem block size 838 * (which we get with statfs). 839 */ 840 switch (vp->v_type) { 841 case VBLK: 842 if (bdevsw[major(dev)].d_psize == 0 || 843 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) { 844 error = ENXIO; 845 goto bad; 846 } 847 break; 848 849 case VREG: 850 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) 851 goto bad; 852 nblocks = (int)btodb(va.va_size); 853 if ((error = 854 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0) 855 goto bad; 856 857 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize; 858 /* 859 * limit the max # of outstanding I/O requests we issue 860 * at any one time. take it easy on NFS servers. 861 */ 862 #ifdef NFS 863 if (vp->v_op == nfsv2_vnodeop_p) 864 sdp->swd_maxactive = 2; /* XXX */ 865 else 866 #endif /* NFS */ 867 sdp->swd_maxactive = 8; /* XXX */ 868 break; 869 870 default: 871 error = ENXIO; 872 goto bad; 873 } 874 875 /* 876 * save nblocks in a safe place and convert to pages. 877 */ 878 879 sdp->swd_ose.ose_nblks = nblocks; 880 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT; 881 882 /* 883 * for block special files, we want to make sure that leave 884 * the disklabel and bootblocks alone, so we arrange to skip 885 * over them (arbitrarily choosing to skip PAGE_SIZE bytes). 886 * note that because of this the "size" can be less than the 887 * actual number of blocks on the device. 888 */ 889 if (vp->v_type == VBLK) { 890 /* we use pages 1 to (size - 1) [inclusive] */ 891 size = npages - 1; 892 addr = 1; 893 } else { 894 /* we use pages 0 to (size - 1) [inclusive] */ 895 size = npages; 896 addr = 0; 897 } 898 899 /* 900 * make sure we have enough blocks for a reasonable sized swap 901 * area. we want at least one page. 902 */ 903 904 if (size < 1) { 905 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); 906 error = EINVAL; 907 goto bad; 908 } 909 910 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0); 911 912 /* 913 * now we need to allocate an extent to manage this swap device 914 */ 915 name = malloc(12, M_VMSWAP, M_WAITOK); 916 sprintf(name, "swap0x%04x", count++); 917 918 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */ 919 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP, 920 0, 0, EX_WAITOK); 921 /* allocate the `saved' region from the extent so it won't be used */ 922 if (addr) { 923 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK)) 924 panic("disklabel region"); 925 } 926 927 /* 928 * if the vnode we are swapping to is the root vnode 929 * (i.e. we are swapping to the miniroot) then we want 930 * to make sure we don't overwrite it. do a statfs to 931 * find its size and skip over it. 932 */ 933 if (vp == rootvp) { 934 struct mount *mp; 935 struct statfs *sp; 936 int rootblocks, rootpages; 937 938 mp = rootvnode->v_mount; 939 sp = &mp->mnt_stat; 940 rootblocks = sp->f_blocks * btodb(sp->f_bsize); 941 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; 942 if (rootpages > size) 943 panic("swap_on: miniroot larger than swap?"); 944 945 if (extent_alloc_region(sdp->swd_ex, addr, 946 rootpages, EX_WAITOK)) 947 panic("swap_on: unable to preserve miniroot"); 948 949 size -= rootpages; 950 printf("Preserved %d pages of miniroot ", rootpages); 951 printf("leaving %d pages of swap\n", size); 952 } 953 954 /* 955 * add anons to reflect the new swap space 956 */ 957 uvm_anon_add(size); 958 959 /* 960 * now add the new swapdev to the drum and enable. 961 */ 962 simple_lock(&uvm.swap_data_lock); 963 swapdrum_add(sdp, npages); 964 sdp->swd_npages = size; 965 sdp->swd_flags &= ~SWF_FAKE; /* going live */ 966 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); 967 uvmexp.swpages += size; 968 simple_unlock(&uvm.swap_data_lock); 969 return (0); 970 971 bad: 972 /* 973 * failure: close device if necessary and return error. 974 */ 975 if (vp != rootvp) 976 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p); 977 return (error); 978 } 979 980 /* 981 * swap_off: stop swapping on swapdev 982 * 983 * => swap data should be locked, we will unlock. 984 */ 985 static int 986 swap_off(p, sdp) 987 struct proc *p; 988 struct swapdev *sdp; 989 { 990 void *name; 991 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist); 992 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0); 993 994 /* disable the swap area being removed */ 995 sdp->swd_flags &= ~SWF_ENABLE; 996 simple_unlock(&uvm.swap_data_lock); 997 998 /* 999 * the idea is to find all the pages that are paged out to this 1000 * device, and page them all in. in uvm, swap-backed pageable 1001 * memory can take two forms: aobjs and anons. call the 1002 * swapoff hook for each subsystem to bring in pages. 1003 */ 1004 1005 if (uao_swap_off(sdp->swd_drumoffset, 1006 sdp->swd_drumoffset + sdp->swd_drumsize) || 1007 anon_swap_off(sdp->swd_drumoffset, 1008 sdp->swd_drumoffset + sdp->swd_drumsize)) { 1009 1010 simple_lock(&uvm.swap_data_lock); 1011 sdp->swd_flags |= SWF_ENABLE; 1012 simple_unlock(&uvm.swap_data_lock); 1013 return ENOMEM; 1014 } 1015 1016 #ifdef DIAGNOSTIC 1017 if (sdp->swd_npginuse != sdp->swd_npgbad) { 1018 panic("swap_off: sdp %p - %d pages still in use (%d bad)\n", 1019 sdp, sdp->swd_npginuse, sdp->swd_npgbad); 1020 } 1021 #endif 1022 1023 /* 1024 * done with the vnode. 1025 */ 1026 if (sdp->swd_vp->v_type == VREG) { 1027 crfree(sdp->swd_cred); 1028 } 1029 if (sdp->swd_vp != rootvp) { 1030 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p); 1031 } 1032 if (sdp->swd_vp) { 1033 vrele(sdp->swd_vp); 1034 } 1035 1036 /* remove anons from the system */ 1037 uvm_anon_remove(sdp->swd_npages); 1038 1039 simple_lock(&uvm.swap_data_lock); 1040 uvmexp.swpages -= sdp->swd_npages; 1041 1042 if (swaplist_find(sdp->swd_vp, 1) == NULL) 1043 panic("swap_off: swapdev not in list\n"); 1044 swaplist_trim(); 1045 1046 /* 1047 * free all resources! 1048 */ 1049 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize, 1050 EX_WAITOK); 1051 name = (void *)sdp->swd_ex->ex_name; 1052 extent_destroy(sdp->swd_ex); 1053 free(name, M_VMSWAP); 1054 free(sdp, M_VMSWAP); 1055 simple_unlock(&uvm.swap_data_lock); 1056 return (0); 1057 } 1058 1059 /* 1060 * /dev/drum interface and i/o functions 1061 */ 1062 1063 /* 1064 * swread: the read function for the drum (just a call to physio) 1065 */ 1066 /*ARGSUSED*/ 1067 int 1068 swread(dev, uio, ioflag) 1069 dev_t dev; 1070 struct uio *uio; 1071 int ioflag; 1072 { 1073 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist); 1074 1075 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1076 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); 1077 } 1078 1079 /* 1080 * swwrite: the write function for the drum (just a call to physio) 1081 */ 1082 /*ARGSUSED*/ 1083 int 1084 swwrite(dev, uio, ioflag) 1085 dev_t dev; 1086 struct uio *uio; 1087 int ioflag; 1088 { 1089 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist); 1090 1091 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1092 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); 1093 } 1094 1095 /* 1096 * swstrategy: perform I/O on the drum 1097 * 1098 * => we must map the i/o request from the drum to the correct swapdev. 1099 */ 1100 void 1101 swstrategy(bp) 1102 struct buf *bp; 1103 { 1104 struct swapdev *sdp; 1105 struct vnode *vp; 1106 int s, pageno, bn; 1107 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist); 1108 1109 /* 1110 * convert block number to swapdev. note that swapdev can't 1111 * be yanked out from under us because we are holding resources 1112 * in it (i.e. the blocks we are doing I/O on). 1113 */ 1114 pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT; 1115 simple_lock(&uvm.swap_data_lock); 1116 sdp = swapdrum_getsdp(pageno); 1117 simple_unlock(&uvm.swap_data_lock); 1118 if (sdp == NULL) { 1119 bp->b_error = EINVAL; 1120 bp->b_flags |= B_ERROR; 1121 biodone(bp); 1122 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); 1123 return; 1124 } 1125 1126 /* 1127 * convert drum page number to block number on this swapdev. 1128 */ 1129 1130 pageno -= sdp->swd_drumoffset; /* page # on swapdev */ 1131 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */ 1132 1133 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n", 1134 ((bp->b_flags & B_READ) == 0) ? "write" : "read", 1135 sdp->swd_drumoffset, bn, bp->b_bcount); 1136 1137 /* 1138 * for block devices we finish up here. 1139 * for regular files we have to do more work which we delegate 1140 * to sw_reg_strategy(). 1141 */ 1142 1143 switch (sdp->swd_vp->v_type) { 1144 default: 1145 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type); 1146 1147 case VBLK: 1148 1149 /* 1150 * must convert "bp" from an I/O on /dev/drum to an I/O 1151 * on the swapdev (sdp). 1152 */ 1153 s = splbio(); 1154 bp->b_blkno = bn; /* swapdev block number */ 1155 vp = sdp->swd_vp; /* swapdev vnode pointer */ 1156 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ 1157 VHOLD(vp); /* "hold" swapdev vp for i/o */ 1158 1159 /* 1160 * if we are doing a write, we have to redirect the i/o on 1161 * drum's v_numoutput counter to the swapdevs. 1162 */ 1163 if ((bp->b_flags & B_READ) == 0) { 1164 vwakeup(bp); /* kills one 'v_numoutput' on drum */ 1165 vp->v_numoutput++; /* put it on swapdev */ 1166 } 1167 1168 /* 1169 * dissassocate buffer with /dev/drum vnode 1170 * [could be null if buf was from physio] 1171 */ 1172 if (bp->b_vp != NULLVP) 1173 brelvp(bp); 1174 1175 /* 1176 * finally plug in swapdev vnode and start I/O 1177 */ 1178 bp->b_vp = vp; 1179 splx(s); 1180 VOP_STRATEGY(bp); 1181 return; 1182 1183 case VREG: 1184 /* 1185 * delegate to sw_reg_strategy function. 1186 */ 1187 sw_reg_strategy(sdp, bp, bn); 1188 return; 1189 } 1190 /* NOTREACHED */ 1191 } 1192 1193 /* 1194 * sw_reg_strategy: handle swap i/o to regular files 1195 */ 1196 static void 1197 sw_reg_strategy(sdp, bp, bn) 1198 struct swapdev *sdp; 1199 struct buf *bp; 1200 int bn; 1201 { 1202 struct vnode *vp; 1203 struct vndxfer *vnx; 1204 daddr_t nbn, byteoff; 1205 caddr_t addr; 1206 int s, off, nra, error, sz, resid; 1207 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist); 1208 1209 /* 1210 * allocate a vndxfer head for this transfer and point it to 1211 * our buffer. 1212 */ 1213 getvndxfer(vnx); 1214 vnx->vx_flags = VX_BUSY; 1215 vnx->vx_error = 0; 1216 vnx->vx_pending = 0; 1217 vnx->vx_bp = bp; 1218 vnx->vx_sdp = sdp; 1219 1220 /* 1221 * setup for main loop where we read filesystem blocks into 1222 * our buffer. 1223 */ 1224 error = 0; 1225 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */ 1226 addr = bp->b_data; /* current position in buffer */ 1227 byteoff = dbtob(bn); 1228 1229 for (resid = bp->b_resid; resid; resid -= sz) { 1230 struct vndbuf *nbp; 1231 1232 /* 1233 * translate byteoffset into block number. return values: 1234 * vp = vnode of underlying device 1235 * nbn = new block number (on underlying vnode dev) 1236 * nra = num blocks we can read-ahead (excludes requested 1237 * block) 1238 */ 1239 nra = 0; 1240 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, 1241 &vp, &nbn, &nra); 1242 1243 if (error == 0 && nbn == (daddr_t)-1) { 1244 /* 1245 * this used to just set error, but that doesn't 1246 * do the right thing. Instead, it causes random 1247 * memory errors. The panic() should remain until 1248 * this condition doesn't destabilize the system. 1249 */ 1250 #if 1 1251 panic("sw_reg_strategy: swap to sparse file"); 1252 #else 1253 error = EIO; /* failure */ 1254 #endif 1255 } 1256 1257 /* 1258 * punt if there was an error or a hole in the file. 1259 * we must wait for any i/o ops we have already started 1260 * to finish before returning. 1261 * 1262 * XXX we could deal with holes here but it would be 1263 * a hassle (in the write case). 1264 */ 1265 if (error) { 1266 s = splbio(); 1267 vnx->vx_error = error; /* pass error up */ 1268 goto out; 1269 } 1270 1271 /* 1272 * compute the size ("sz") of this transfer (in bytes). 1273 * XXXCDC: ignores read-ahead for non-zero offset 1274 */ 1275 if ((off = (byteoff % sdp->swd_bsize)) != 0) 1276 sz = sdp->swd_bsize - off; 1277 else 1278 sz = (1 + nra) * sdp->swd_bsize; 1279 1280 if (resid < sz) 1281 sz = resid; 1282 1283 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x", 1284 sdp->swd_vp, vp, byteoff, nbn); 1285 1286 /* 1287 * now get a buf structure. note that the vb_buf is 1288 * at the front of the nbp structure so that you can 1289 * cast pointers between the two structure easily. 1290 */ 1291 getvndbuf(nbp); 1292 nbp->vb_buf.b_flags = bp->b_flags | B_CALL; 1293 nbp->vb_buf.b_bcount = sz; 1294 nbp->vb_buf.b_bufsize = sz; 1295 nbp->vb_buf.b_error = 0; 1296 nbp->vb_buf.b_data = addr; 1297 nbp->vb_buf.b_blkno = nbn + btodb(off); 1298 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; 1299 nbp->vb_buf.b_proc = bp->b_proc; 1300 nbp->vb_buf.b_iodone = sw_reg_iodone; 1301 nbp->vb_buf.b_vp = NULLVP; 1302 nbp->vb_buf.b_vnbufs.le_next = NOLIST; 1303 nbp->vb_buf.b_rcred = sdp->swd_cred; 1304 nbp->vb_buf.b_wcred = sdp->swd_cred; 1305 LIST_INIT(&nbp->vb_buf.b_dep); 1306 1307 /* 1308 * set b_dirtyoff/end and b_validoff/end. this is 1309 * required by the NFS client code (otherwise it will 1310 * just discard our I/O request). 1311 */ 1312 if (bp->b_dirtyend == 0) { 1313 nbp->vb_buf.b_dirtyoff = 0; 1314 nbp->vb_buf.b_dirtyend = sz; 1315 } else { 1316 nbp->vb_buf.b_dirtyoff = 1317 max(0, bp->b_dirtyoff - (bp->b_bcount-resid)); 1318 nbp->vb_buf.b_dirtyend = 1319 min(sz, 1320 max(0, bp->b_dirtyend - (bp->b_bcount-resid))); 1321 } 1322 if (bp->b_validend == 0) { 1323 nbp->vb_buf.b_validoff = 0; 1324 nbp->vb_buf.b_validend = sz; 1325 } else { 1326 nbp->vb_buf.b_validoff = 1327 max(0, bp->b_validoff - (bp->b_bcount-resid)); 1328 nbp->vb_buf.b_validend = 1329 min(sz, 1330 max(0, bp->b_validend - (bp->b_bcount-resid))); 1331 } 1332 1333 nbp->vb_xfer = vnx; /* patch it back in to vnx */ 1334 1335 /* 1336 * Just sort by block number 1337 */ 1338 s = splbio(); 1339 if (vnx->vx_error != 0) { 1340 putvndbuf(nbp); 1341 goto out; 1342 } 1343 vnx->vx_pending++; 1344 1345 /* assoc new buffer with underlying vnode */ 1346 bgetvp(vp, &nbp->vb_buf); 1347 1348 /* sort it in and start I/O if we are not over our limit */ 1349 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf); 1350 sw_reg_start(sdp); 1351 splx(s); 1352 1353 /* 1354 * advance to the next I/O 1355 */ 1356 byteoff += sz; 1357 addr += sz; 1358 } 1359 1360 s = splbio(); 1361 1362 out: /* Arrive here at splbio */ 1363 vnx->vx_flags &= ~VX_BUSY; 1364 if (vnx->vx_pending == 0) { 1365 if (vnx->vx_error != 0) { 1366 bp->b_error = vnx->vx_error; 1367 bp->b_flags |= B_ERROR; 1368 } 1369 putvndxfer(vnx); 1370 biodone(bp); 1371 } 1372 splx(s); 1373 } 1374 1375 /* 1376 * sw_reg_start: start an I/O request on the requested swapdev 1377 * 1378 * => reqs are sorted by disksort (above) 1379 */ 1380 static void 1381 sw_reg_start(sdp) 1382 struct swapdev *sdp; 1383 { 1384 struct buf *bp; 1385 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist); 1386 1387 /* recursion control */ 1388 if ((sdp->swd_flags & SWF_BUSY) != 0) 1389 return; 1390 1391 sdp->swd_flags |= SWF_BUSY; 1392 1393 while (sdp->swd_active < sdp->swd_maxactive) { 1394 bp = BUFQ_FIRST(&sdp->swd_tab); 1395 if (bp == NULL) 1396 break; 1397 BUFQ_REMOVE(&sdp->swd_tab, bp); 1398 sdp->swd_active++; 1399 1400 UVMHIST_LOG(pdhist, 1401 "sw_reg_start: bp %p vp %p blkno %p cnt %lx", 1402 bp, bp->b_vp, bp->b_blkno, bp->b_bcount); 1403 if ((bp->b_flags & B_READ) == 0) 1404 bp->b_vp->v_numoutput++; 1405 VOP_STRATEGY(bp); 1406 } 1407 sdp->swd_flags &= ~SWF_BUSY; 1408 } 1409 1410 /* 1411 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup 1412 * 1413 * => note that we can recover the vndbuf struct by casting the buf ptr 1414 */ 1415 static void 1416 sw_reg_iodone(bp) 1417 struct buf *bp; 1418 { 1419 struct vndbuf *vbp = (struct vndbuf *) bp; 1420 struct vndxfer *vnx = vbp->vb_xfer; 1421 struct buf *pbp = vnx->vx_bp; /* parent buffer */ 1422 struct swapdev *sdp = vnx->vx_sdp; 1423 int s, resid; 1424 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist); 1425 1426 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p", 1427 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data); 1428 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx", 1429 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); 1430 1431 /* 1432 * protect vbp at splbio and update. 1433 */ 1434 1435 s = splbio(); 1436 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; 1437 pbp->b_resid -= resid; 1438 vnx->vx_pending--; 1439 1440 if (vbp->vb_buf.b_error) { 1441 UVMHIST_LOG(pdhist, " got error=%d !", 1442 vbp->vb_buf.b_error, 0, 0, 0); 1443 1444 /* pass error upward */ 1445 vnx->vx_error = vbp->vb_buf.b_error; 1446 } 1447 1448 /* 1449 * kill vbp structure 1450 */ 1451 putvndbuf(vbp); 1452 1453 /* 1454 * wrap up this transaction if it has run to completion or, in 1455 * case of an error, when all auxiliary buffers have returned. 1456 */ 1457 if (vnx->vx_error != 0) { 1458 /* pass error upward */ 1459 pbp->b_flags |= B_ERROR; 1460 pbp->b_error = vnx->vx_error; 1461 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { 1462 putvndxfer(vnx); 1463 biodone(pbp); 1464 } 1465 } else if (pbp->b_resid == 0) { 1466 #ifdef DIAGNOSTIC 1467 if (vnx->vx_pending != 0) 1468 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending); 1469 #endif 1470 1471 if ((vnx->vx_flags & VX_BUSY) == 0) { 1472 UVMHIST_LOG(pdhist, " iodone error=%d !", 1473 pbp, vnx->vx_error, 0, 0); 1474 putvndxfer(vnx); 1475 biodone(pbp); 1476 } 1477 } 1478 1479 /* 1480 * done! start next swapdev I/O if one is pending 1481 */ 1482 sdp->swd_active--; 1483 sw_reg_start(sdp); 1484 splx(s); 1485 } 1486 1487 1488 /* 1489 * uvm_swap_alloc: allocate space on swap 1490 * 1491 * => allocation is done "round robin" down the priority list, as we 1492 * allocate in a priority we "rotate" the circle queue. 1493 * => space can be freed with uvm_swap_free 1494 * => we return the page slot number in /dev/drum (0 == invalid slot) 1495 * => we lock uvm.swap_data_lock 1496 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM 1497 */ 1498 int 1499 uvm_swap_alloc(nslots, lessok) 1500 int *nslots; /* IN/OUT */ 1501 boolean_t lessok; 1502 { 1503 struct swapdev *sdp; 1504 struct swappri *spp; 1505 u_long result; 1506 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist); 1507 1508 /* 1509 * no swap devices configured yet? definite failure. 1510 */ 1511 if (uvmexp.nswapdev < 1) 1512 return 0; 1513 1514 /* 1515 * lock data lock, convert slots into blocks, and enter loop 1516 */ 1517 simple_lock(&uvm.swap_data_lock); 1518 1519 ReTry: /* XXXMRG */ 1520 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 1521 spp = LIST_NEXT(spp, spi_swappri)) { 1522 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 1523 sdp != (void *)&spp->spi_swapdev; 1524 sdp = CIRCLEQ_NEXT(sdp,swd_next)) { 1525 /* if it's not enabled, then we can't swap from it */ 1526 if ((sdp->swd_flags & SWF_ENABLE) == 0) 1527 continue; 1528 if (sdp->swd_npginuse + *nslots > sdp->swd_npages) 1529 continue; 1530 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 1531 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT, 1532 &result) != 0) { 1533 continue; 1534 } 1535 1536 /* 1537 * successful allocation! now rotate the circleq. 1538 */ 1539 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1540 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 1541 sdp->swd_npginuse += *nslots; 1542 uvmexp.swpginuse += *nslots; 1543 simple_unlock(&uvm.swap_data_lock); 1544 /* done! return drum slot number */ 1545 UVMHIST_LOG(pdhist, 1546 "success! returning %d slots starting at %d", 1547 *nslots, result + sdp->swd_drumoffset, 0, 0); 1548 return(result + sdp->swd_drumoffset); 1549 } 1550 } 1551 1552 /* XXXMRG: BEGIN HACK */ 1553 if (*nslots > 1 && lessok) { 1554 *nslots = 1; 1555 goto ReTry; /* XXXMRG: ugh! extent should support this for us */ 1556 } 1557 /* XXXMRG: END HACK */ 1558 1559 simple_unlock(&uvm.swap_data_lock); 1560 return 0; /* failed */ 1561 } 1562 1563 /* 1564 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors 1565 * 1566 * => we lock uvm.swap_data_lock 1567 */ 1568 void 1569 uvm_swap_markbad(startslot, nslots) 1570 int startslot; 1571 int nslots; 1572 { 1573 struct swapdev *sdp; 1574 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist); 1575 1576 simple_lock(&uvm.swap_data_lock); 1577 sdp = swapdrum_getsdp(startslot); 1578 1579 /* 1580 * we just keep track of how many pages have been marked bad 1581 * in this device, to make everything add up in swap_off(). 1582 * we assume here that the range of slots will all be within 1583 * one swap device. 1584 */ 1585 sdp->swd_npgbad += nslots; 1586 1587 simple_unlock(&uvm.swap_data_lock); 1588 } 1589 1590 /* 1591 * uvm_swap_free: free swap slots 1592 * 1593 * => this can be all or part of an allocation made by uvm_swap_alloc 1594 * => we lock uvm.swap_data_lock 1595 */ 1596 void 1597 uvm_swap_free(startslot, nslots) 1598 int startslot; 1599 int nslots; 1600 { 1601 struct swapdev *sdp; 1602 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist); 1603 1604 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots, 1605 startslot, 0, 0); 1606 1607 /* 1608 * ignore attempts to free the "bad" slot. 1609 */ 1610 if (startslot == SWSLOT_BAD) { 1611 return; 1612 } 1613 1614 /* 1615 * convert drum slot offset back to sdp, free the blocks 1616 * in the extent, and return. must hold pri lock to do 1617 * lookup and access the extent. 1618 */ 1619 simple_lock(&uvm.swap_data_lock); 1620 sdp = swapdrum_getsdp(startslot); 1621 1622 #ifdef DIAGNOSTIC 1623 if (uvmexp.nswapdev < 1) 1624 panic("uvm_swap_free: uvmexp.nswapdev < 1\n"); 1625 if (sdp == NULL) { 1626 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot, 1627 nslots); 1628 panic("uvm_swap_free: unmapped address\n"); 1629 } 1630 #endif 1631 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots, 1632 EX_MALLOCOK|EX_NOWAIT) != 0) { 1633 printf("warning: resource shortage: %d pages of swap lost\n", 1634 nslots); 1635 } 1636 1637 sdp->swd_npginuse -= nslots; 1638 uvmexp.swpginuse -= nslots; 1639 #ifdef DIAGNOSTIC 1640 if (sdp->swd_npginuse < 0) 1641 panic("uvm_swap_free: inuse < 0"); 1642 #endif 1643 simple_unlock(&uvm.swap_data_lock); 1644 } 1645 1646 /* 1647 * uvm_swap_put: put any number of pages into a contig place on swap 1648 * 1649 * => can be sync or async 1650 * => XXXMRG: consider making it an inline or macro 1651 */ 1652 int 1653 uvm_swap_put(swslot, ppsp, npages, flags) 1654 int swslot; 1655 struct vm_page **ppsp; 1656 int npages; 1657 int flags; 1658 { 1659 int result; 1660 1661 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE | 1662 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1663 1664 return (result); 1665 } 1666 1667 /* 1668 * uvm_swap_get: get a single page from swap 1669 * 1670 * => usually a sync op (from fault) 1671 * => XXXMRG: consider making it an inline or macro 1672 */ 1673 int 1674 uvm_swap_get(page, swslot, flags) 1675 struct vm_page *page; 1676 int swslot, flags; 1677 { 1678 int result; 1679 1680 uvmexp.nswget++; 1681 #ifdef DIAGNOSTIC 1682 if ((flags & PGO_SYNCIO) == 0) 1683 printf("uvm_swap_get: ASYNC get requested?\n"); 1684 #endif 1685 1686 if (swslot == SWSLOT_BAD) { 1687 return VM_PAGER_ERROR; 1688 } 1689 1690 /* 1691 * this page is (about to be) no longer only in swap. 1692 */ 1693 simple_lock(&uvm.swap_data_lock); 1694 uvmexp.swpgonly--; 1695 simple_unlock(&uvm.swap_data_lock); 1696 1697 result = uvm_swap_io(&page, swslot, 1, B_READ | 1698 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1699 1700 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) { 1701 /* 1702 * oops, the read failed so it really is still only in swap. 1703 */ 1704 simple_lock(&uvm.swap_data_lock); 1705 uvmexp.swpgonly++; 1706 simple_unlock(&uvm.swap_data_lock); 1707 } 1708 1709 return (result); 1710 } 1711 1712 /* 1713 * uvm_swap_io: do an i/o operation to swap 1714 */ 1715 1716 static int 1717 uvm_swap_io(pps, startslot, npages, flags) 1718 struct vm_page **pps; 1719 int startslot, npages, flags; 1720 { 1721 daddr_t startblk; 1722 struct swapbuf *sbp; 1723 struct buf *bp; 1724 vaddr_t kva; 1725 int result, s, waitf, pflag; 1726 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist); 1727 1728 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d", 1729 startslot, npages, flags, 0); 1730 1731 /* 1732 * convert starting drum slot to block number 1733 */ 1734 startblk = btodb(startslot << PAGE_SHIFT); 1735 1736 /* 1737 * first, map the pages into the kernel (XXX: currently required 1738 * by buffer system). note that we don't let pagermapin alloc 1739 * an aiodesc structure because we don't want to chance a malloc. 1740 * we've got our own pool of aiodesc structures (in swapbuf). 1741 */ 1742 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK; 1743 kva = uvm_pagermapin(pps, npages, NULL, waitf); 1744 if (kva == NULL) 1745 return (VM_PAGER_AGAIN); 1746 1747 /* 1748 * now allocate a swap buffer off of freesbufs 1749 * [make sure we don't put the pagedaemon to sleep...] 1750 */ 1751 s = splbio(); 1752 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc) 1753 ? 0 1754 : PR_WAITOK; 1755 sbp = pool_get(swapbuf_pool, pflag); 1756 splx(s); /* drop splbio */ 1757 1758 /* 1759 * if we failed to get a swapbuf, return "try again" 1760 */ 1761 if (sbp == NULL) 1762 return (VM_PAGER_AGAIN); 1763 1764 /* 1765 * fill in the bp/sbp. we currently route our i/o through 1766 * /dev/drum's vnode [swapdev_vp]. 1767 */ 1768 bp = &sbp->sw_buf; 1769 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC)); 1770 bp->b_proc = &proc0; /* XXX */ 1771 bp->b_rcred = bp->b_wcred = proc0.p_ucred; 1772 bp->b_vnbufs.le_next = NOLIST; 1773 bp->b_data = (caddr_t)kva; 1774 bp->b_blkno = startblk; 1775 s = splbio(); 1776 VHOLD(swapdev_vp); 1777 bp->b_vp = swapdev_vp; 1778 splx(s); 1779 /* XXXCDC: isn't swapdev_vp always a VCHR? */ 1780 /* XXXMRG: probably -- this is obviously something inherited... */ 1781 if (swapdev_vp->v_type == VBLK) 1782 bp->b_dev = swapdev_vp->v_rdev; 1783 bp->b_bcount = npages << PAGE_SHIFT; 1784 LIST_INIT(&bp->b_dep); 1785 1786 /* 1787 * for pageouts we must set "dirtyoff" [NFS client code needs it]. 1788 * and we bump v_numoutput (counter of number of active outputs). 1789 */ 1790 if ((bp->b_flags & B_READ) == 0) { 1791 bp->b_dirtyoff = 0; 1792 bp->b_dirtyend = npages << PAGE_SHIFT; 1793 s = splbio(); 1794 swapdev_vp->v_numoutput++; 1795 splx(s); 1796 } 1797 1798 /* 1799 * for async ops we must set up the aiodesc and setup the callback 1800 * XXX: we expect no async-reads, but we don't prevent it here. 1801 */ 1802 if (flags & B_ASYNC) { 1803 sbp->sw_aio.aiodone = uvm_swap_aiodone; 1804 sbp->sw_aio.kva = kva; 1805 sbp->sw_aio.npages = npages; 1806 sbp->sw_aio.pd_ptr = sbp; /* backpointer */ 1807 bp->b_flags |= B_CALL; /* set callback */ 1808 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */ 1809 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); 1810 } 1811 UVMHIST_LOG(pdhist, 1812 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld", 1813 bp->b_data, bp->b_blkno, bp->b_bcount, 0); 1814 1815 /* 1816 * now we start the I/O, and if async, return. 1817 */ 1818 VOP_STRATEGY(bp); 1819 if (flags & B_ASYNC) 1820 return (VM_PAGER_PEND); 1821 1822 /* 1823 * must be sync i/o. wait for it to finish 1824 */ 1825 bp->b_error = biowait(bp); 1826 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK; 1827 1828 /* 1829 * kill the pager mapping 1830 */ 1831 uvm_pagermapout(kva, npages); 1832 1833 /* 1834 * now dispose of the swap buffer 1835 */ 1836 s = splbio(); 1837 if (bp->b_vp) 1838 brelvp(bp); 1839 1840 pool_put(swapbuf_pool, sbp); 1841 splx(s); 1842 1843 /* 1844 * finally return. 1845 */ 1846 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0); 1847 return (result); 1848 } 1849 1850 /* 1851 * uvm_swap_bufdone: called from the buffer system when the i/o is done 1852 */ 1853 static void 1854 uvm_swap_bufdone(bp) 1855 struct buf *bp; 1856 { 1857 struct swapbuf *sbp = (struct swapbuf *) bp; 1858 int s = splbio(); 1859 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist); 1860 1861 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0); 1862 #ifdef DIAGNOSTIC 1863 /* 1864 * sanity check: swapbufs are private, so they shouldn't be wanted 1865 */ 1866 if (bp->b_flags & B_WANTED) 1867 panic("uvm_swap_bufdone: private buf wanted"); 1868 #endif 1869 1870 /* 1871 * drop the buffer's reference to the vnode. 1872 */ 1873 if (bp->b_vp) 1874 brelvp(bp); 1875 1876 /* 1877 * now put the aio on the uvm.aio_done list and wake the 1878 * pagedaemon (which will finish up our job in its context). 1879 */ 1880 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */ 1881 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq); 1882 simple_unlock(&uvm.pagedaemon_lock); 1883 1884 wakeup(&uvm.pagedaemon); 1885 splx(s); 1886 } 1887 1888 /* 1889 * uvm_swap_aiodone: aiodone function for anonymous memory 1890 * 1891 * => this is called in the context of the pagedaemon (but with the 1892 * page queues unlocked!) 1893 * => our "aio" structure must be part of a "swapbuf" 1894 */ 1895 static void 1896 uvm_swap_aiodone(aio) 1897 struct uvm_aiodesc *aio; 1898 { 1899 struct swapbuf *sbp = aio->pd_ptr; 1900 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT]; 1901 int lcv, s; 1902 vaddr_t addr; 1903 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist); 1904 1905 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0); 1906 #ifdef DIAGNOSTIC 1907 /* 1908 * sanity check 1909 */ 1910 if (aio->npages > (MAXBSIZE >> PAGE_SHIFT)) 1911 panic("uvm_swap_aiodone: aio too big!"); 1912 #endif 1913 1914 /* 1915 * first, we have to recover the page pointers (pps) by poking in the 1916 * kernel pmap (XXX: should be saved in the buf structure). 1917 */ 1918 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ; 1919 addr += PAGE_SIZE, lcv++) { 1920 pps[lcv] = uvm_pageratop(addr); 1921 } 1922 1923 /* 1924 * now we can dispose of the kernel mappings of the buffer 1925 */ 1926 uvm_pagermapout(aio->kva, aio->npages); 1927 1928 /* 1929 * now we can dispose of the pages by using the dropcluster function 1930 * [note that we have no "page of interest" so we pass in null] 1931 */ 1932 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages, 1933 PGO_PDFREECLUST); 1934 1935 /* 1936 * finally, we can dispose of the swapbuf 1937 */ 1938 s = splbio(); 1939 pool_put(swapbuf_pool, sbp); 1940 splx(s); 1941 } 1942