1 /* $NetBSD: uvm_swap.c,v 1.174 2016/07/08 06:45:34 skrll Exp $ */ 2 3 /* 4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 * 28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp 29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp 30 */ 31 32 #include <sys/cdefs.h> 33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.174 2016/07/08 06:45:34 skrll Exp $"); 34 35 #include "opt_uvmhist.h" 36 #include "opt_compat_netbsd.h" 37 #include "opt_ddb.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/buf.h> 42 #include <sys/bufq.h> 43 #include <sys/conf.h> 44 #include <sys/proc.h> 45 #include <sys/namei.h> 46 #include <sys/disklabel.h> 47 #include <sys/errno.h> 48 #include <sys/kernel.h> 49 #include <sys/vnode.h> 50 #include <sys/file.h> 51 #include <sys/vmem.h> 52 #include <sys/blist.h> 53 #include <sys/mount.h> 54 #include <sys/pool.h> 55 #include <sys/kmem.h> 56 #include <sys/syscallargs.h> 57 #include <sys/swap.h> 58 #include <sys/kauth.h> 59 #include <sys/sysctl.h> 60 #include <sys/workqueue.h> 61 62 #include <uvm/uvm.h> 63 64 #include <miscfs/specfs/specdev.h> 65 66 /* 67 * uvm_swap.c: manage configuration and i/o to swap space. 68 */ 69 70 /* 71 * swap space is managed in the following way: 72 * 73 * each swap partition or file is described by a "swapdev" structure. 74 * each "swapdev" structure contains a "swapent" structure which contains 75 * information that is passed up to the user (via system calls). 76 * 77 * each swap partition is assigned a "priority" (int) which controls 78 * swap parition usage. 79 * 80 * the system maintains a global data structure describing all swap 81 * partitions/files. there is a sorted LIST of "swappri" structures 82 * which describe "swapdev"'s at that priority. this LIST is headed 83 * by the "swap_priority" global var. each "swappri" contains a 84 * TAILQ of "swapdev" structures at that priority. 85 * 86 * locking: 87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl 88 * system call and prevents the swap priority list from changing 89 * while we are in the middle of a system call (e.g. SWAP_STATS). 90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data 91 * structures including the priority list, the swapdev structures, 92 * and the swapmap arena. 93 * 94 * each swap device has the following info: 95 * - swap device in use (could be disabled, preventing future use) 96 * - swap enabled (allows new allocations on swap) 97 * - map info in /dev/drum 98 * - vnode pointer 99 * for swap files only: 100 * - block size 101 * - max byte count in buffer 102 * - buffer 103 * 104 * userland controls and configures swap with the swapctl(2) system call. 105 * the sys_swapctl performs the following operations: 106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured 107 * [2] SWAP_STATS: given a pointer to an array of swapent structures 108 * (passed in via "arg") of a size passed in via "misc" ... we load 109 * the current swap config into the array. The actual work is done 110 * in the uvm_swap_stats() function. 111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a 112 * priority in "misc", start swapping on it. 113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device 114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in 115 * "misc") 116 */ 117 118 /* 119 * swapdev: describes a single swap partition/file 120 * 121 * note the following should be true: 122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] 123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] 124 */ 125 struct swapdev { 126 dev_t swd_dev; /* device id */ 127 int swd_flags; /* flags:inuse/enable/fake */ 128 int swd_priority; /* our priority */ 129 int swd_nblks; /* blocks in this device */ 130 char *swd_path; /* saved pathname of device */ 131 int swd_pathlen; /* length of pathname */ 132 int swd_npages; /* #pages we can use */ 133 int swd_npginuse; /* #pages in use */ 134 int swd_npgbad; /* #pages bad */ 135 int swd_drumoffset; /* page0 offset in drum */ 136 int swd_drumsize; /* #pages in drum */ 137 blist_t swd_blist; /* blist for this swapdev */ 138 struct vnode *swd_vp; /* backing vnode */ 139 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */ 140 141 int swd_bsize; /* blocksize (bytes) */ 142 int swd_maxactive; /* max active i/o reqs */ 143 struct bufq_state *swd_tab; /* buffer list */ 144 int swd_active; /* number of active buffers */ 145 }; 146 147 /* 148 * swap device priority entry; the list is kept sorted on `spi_priority'. 149 */ 150 struct swappri { 151 int spi_priority; /* priority */ 152 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev; 153 /* tailq of swapdevs at this priority */ 154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ 155 }; 156 157 /* 158 * The following two structures are used to keep track of data transfers 159 * on swap devices associated with regular files. 160 * NOTE: this code is more or less a copy of vnd.c; we use the same 161 * structure names here to ease porting.. 162 */ 163 struct vndxfer { 164 struct buf *vx_bp; /* Pointer to parent buffer */ 165 struct swapdev *vx_sdp; 166 int vx_error; 167 int vx_pending; /* # of pending aux buffers */ 168 int vx_flags; 169 #define VX_BUSY 1 170 #define VX_DEAD 2 171 }; 172 173 struct vndbuf { 174 struct buf vb_buf; 175 struct vndxfer *vb_xfer; 176 }; 177 178 /* 179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit 180 * dev_t and has no se_path[] member. 181 */ 182 struct swapent13 { 183 int32_t se13_dev; /* device id */ 184 int se13_flags; /* flags */ 185 int se13_nblks; /* total blocks */ 186 int se13_inuse; /* blocks in use */ 187 int se13_priority; /* priority of this device */ 188 }; 189 190 /* 191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit 192 * dev_t. 193 */ 194 struct swapent50 { 195 int32_t se50_dev; /* device id */ 196 int se50_flags; /* flags */ 197 int se50_nblks; /* total blocks */ 198 int se50_inuse; /* blocks in use */ 199 int se50_priority; /* priority of this device */ 200 char se50_path[PATH_MAX+1]; /* path name */ 201 }; 202 203 /* 204 * We keep a of pool vndbuf's and vndxfer structures. 205 */ 206 static struct pool vndxfer_pool, vndbuf_pool; 207 208 /* 209 * local variables 210 */ 211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */ 212 213 /* list of all active swap devices [by priority] */ 214 LIST_HEAD(swap_priority, swappri); 215 static struct swap_priority swap_priority; 216 217 /* locks */ 218 static krwlock_t swap_syscall_lock; 219 220 /* workqueue and use counter for swap to regular files */ 221 static int sw_reg_count = 0; 222 static struct workqueue *sw_reg_workqueue; 223 224 /* tuneables */ 225 u_int uvm_swapisfull_factor = 99; 226 227 /* 228 * prototypes 229 */ 230 static struct swapdev *swapdrum_getsdp(int); 231 232 static struct swapdev *swaplist_find(struct vnode *, bool); 233 static void swaplist_insert(struct swapdev *, 234 struct swappri *, int); 235 static void swaplist_trim(void); 236 237 static int swap_on(struct lwp *, struct swapdev *); 238 static int swap_off(struct lwp *, struct swapdev *); 239 240 static void sw_reg_strategy(struct swapdev *, struct buf *, int); 241 static void sw_reg_biodone(struct buf *); 242 static void sw_reg_iodone(struct work *wk, void *dummy); 243 static void sw_reg_start(struct swapdev *); 244 245 static int uvm_swap_io(struct vm_page **, int, int, int); 246 247 /* 248 * uvm_swap_init: init the swap system data structures and locks 249 * 250 * => called at boot time from init_main.c after the filesystems 251 * are brought up (which happens after uvm_init()) 252 */ 253 void 254 uvm_swap_init(void) 255 { 256 UVMHIST_FUNC("uvm_swap_init"); 257 258 UVMHIST_CALLED(pdhist); 259 /* 260 * first, init the swap list, its counter, and its lock. 261 * then get a handle on the vnode for /dev/drum by using 262 * the its dev_t number ("swapdev", from MD conf.c). 263 */ 264 265 LIST_INIT(&swap_priority); 266 uvmexp.nswapdev = 0; 267 rw_init(&swap_syscall_lock); 268 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE); 269 270 if (bdevvp(swapdev, &swapdev_vp)) 271 panic("%s: can't get vnode for swap device", __func__); 272 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY)) 273 panic("%s: can't lock swap device", __func__); 274 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED)) 275 panic("%s: can't open swap device", __func__); 276 VOP_UNLOCK(swapdev_vp); 277 278 /* 279 * create swap block resource map to map /dev/drum. the range 280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note 281 * that block 0 is reserved (used to indicate an allocation 282 * failure, or no allocation). 283 */ 284 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0, 285 VM_NOSLEEP, IPL_NONE); 286 if (swapmap == 0) { 287 panic("%s: vmem_create failed", __func__); 288 } 289 290 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 291 NULL, IPL_BIO); 292 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 293 NULL, IPL_BIO); 294 295 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); 296 } 297 298 /* 299 * swaplist functions: functions that operate on the list of swap 300 * devices on the system. 301 */ 302 303 /* 304 * swaplist_insert: insert swap device "sdp" into the global list 305 * 306 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock 307 * => caller must provide a newly allocated swappri structure (we will 308 * FREE it if we don't need it... this it to prevent allocation 309 * blocking here while adding swap) 310 */ 311 static void 312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority) 313 { 314 struct swappri *spp, *pspp; 315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist); 316 317 /* 318 * find entry at or after which to insert the new device. 319 */ 320 pspp = NULL; 321 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 322 if (priority <= spp->spi_priority) 323 break; 324 pspp = spp; 325 } 326 327 /* 328 * new priority? 329 */ 330 if (spp == NULL || spp->spi_priority != priority) { 331 spp = newspp; /* use newspp! */ 332 UVMHIST_LOG(pdhist, "created new swappri = %d", 333 priority, 0, 0, 0); 334 335 spp->spi_priority = priority; 336 TAILQ_INIT(&spp->spi_swapdev); 337 338 if (pspp) 339 LIST_INSERT_AFTER(pspp, spp, spi_swappri); 340 else 341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); 342 } else { 343 /* we don't need a new priority structure, free it */ 344 kmem_free(newspp, sizeof(*newspp)); 345 } 346 347 /* 348 * priority found (or created). now insert on the priority's 349 * tailq list and bump the total number of swapdevs. 350 */ 351 sdp->swd_priority = priority; 352 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 353 uvmexp.nswapdev++; 354 } 355 356 /* 357 * swaplist_find: find and optionally remove a swap device from the 358 * global list. 359 * 360 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock 361 * => we return the swapdev we found (and removed) 362 */ 363 static struct swapdev * 364 swaplist_find(struct vnode *vp, bool remove) 365 { 366 struct swapdev *sdp; 367 struct swappri *spp; 368 369 /* 370 * search the lists for the requested vp 371 */ 372 373 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 374 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 375 if (sdp->swd_vp == vp) { 376 if (remove) { 377 TAILQ_REMOVE(&spp->spi_swapdev, 378 sdp, swd_next); 379 uvmexp.nswapdev--; 380 } 381 return(sdp); 382 } 383 } 384 } 385 return (NULL); 386 } 387 388 /* 389 * swaplist_trim: scan priority list for empty priority entries and kill 390 * them. 391 * 392 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock 393 */ 394 static void 395 swaplist_trim(void) 396 { 397 struct swappri *spp, *nextspp; 398 399 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) { 400 if (!TAILQ_EMPTY(&spp->spi_swapdev)) 401 continue; 402 LIST_REMOVE(spp, spi_swappri); 403 kmem_free(spp, sizeof(*spp)); 404 } 405 } 406 407 /* 408 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back 409 * to the "swapdev" that maps that section of the drum. 410 * 411 * => each swapdev takes one big contig chunk of the drum 412 * => caller must hold uvm_swap_data_lock 413 */ 414 static struct swapdev * 415 swapdrum_getsdp(int pgno) 416 { 417 struct swapdev *sdp; 418 struct swappri *spp; 419 420 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 421 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 422 if (sdp->swd_flags & SWF_FAKE) 423 continue; 424 if (pgno >= sdp->swd_drumoffset && 425 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { 426 return sdp; 427 } 428 } 429 } 430 return NULL; 431 } 432 433 void swapsys_lock(krw_t op) 434 { 435 rw_enter(&swap_syscall_lock, op); 436 } 437 438 void swapsys_unlock(void) 439 { 440 rw_exit(&swap_syscall_lock); 441 } 442 443 /* 444 * sys_swapctl: main entry point for swapctl(2) system call 445 * [with two helper functions: swap_on and swap_off] 446 */ 447 int 448 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval) 449 { 450 /* { 451 syscallarg(int) cmd; 452 syscallarg(void *) arg; 453 syscallarg(int) misc; 454 } */ 455 struct vnode *vp; 456 struct nameidata nd; 457 struct swappri *spp; 458 struct swapdev *sdp; 459 struct swapent *sep; 460 #define SWAP_PATH_MAX (PATH_MAX + 1) 461 char *userpath; 462 size_t len = 0; 463 int error, misc; 464 int priority; 465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist); 466 467 /* 468 * we handle the non-priv NSWAP and STATS request first. 469 * 470 * SWAP_NSWAP: return number of config'd swap devices 471 * [can also be obtained with uvmexp sysctl] 472 */ 473 if (SCARG(uap, cmd) == SWAP_NSWAP) { 474 const int nswapdev = uvmexp.nswapdev; 475 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0); 476 *retval = nswapdev; 477 return 0; 478 } 479 480 misc = SCARG(uap, misc); 481 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP); 482 483 /* 484 * ensure serialized syscall access by grabbing the swap_syscall_lock 485 */ 486 rw_enter(&swap_syscall_lock, RW_WRITER); 487 488 /* 489 * SWAP_STATS: get stats on current # of configured swap devs 490 * 491 * note that the swap_priority list can't change as long 492 * as we are holding the swap_syscall_lock. we don't want 493 * to grab the uvm_swap_data_lock because we may fault&sleep during 494 * copyout() and we don't want to be holding that lock then! 495 */ 496 if (SCARG(uap, cmd) == SWAP_STATS 497 #if defined(COMPAT_50) 498 || SCARG(uap, cmd) == SWAP_STATS50 499 #endif 500 #if defined(COMPAT_13) 501 || SCARG(uap, cmd) == SWAP_STATS13 502 #endif 503 ) { 504 if (misc < 0) { 505 error = EINVAL; 506 goto out; 507 } 508 if (misc == 0 || uvmexp.nswapdev == 0) { 509 error = 0; 510 goto out; 511 } 512 /* Make sure userland cannot exhaust kernel memory */ 513 if ((size_t)misc > (size_t)uvmexp.nswapdev) 514 misc = uvmexp.nswapdev; 515 KASSERT(misc > 0); 516 #if defined(COMPAT_13) 517 if (SCARG(uap, cmd) == SWAP_STATS13) 518 len = sizeof(struct swapent13) * misc; 519 else 520 #endif 521 #if defined(COMPAT_50) 522 if (SCARG(uap, cmd) == SWAP_STATS50) 523 len = sizeof(struct swapent50) * misc; 524 else 525 #endif 526 len = sizeof(struct swapent) * misc; 527 sep = (struct swapent *)kmem_alloc(len, KM_SLEEP); 528 529 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval); 530 error = copyout(sep, SCARG(uap, arg), len); 531 532 kmem_free(sep, len); 533 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); 534 goto out; 535 } 536 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) { 537 dev_t *devp = (dev_t *)SCARG(uap, arg); 538 539 error = copyout(&dumpdev, devp, sizeof(dumpdev)); 540 goto out; 541 } 542 543 /* 544 * all other requests require superuser privs. verify. 545 */ 546 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL, 547 0, NULL, NULL, NULL))) 548 goto out; 549 550 if (SCARG(uap, cmd) == SWAP_DUMPOFF) { 551 /* drop the current dump device */ 552 dumpdev = NODEV; 553 dumpcdev = NODEV; 554 cpu_dumpconf(); 555 goto out; 556 } 557 558 /* 559 * at this point we expect a path name in arg. we will 560 * use namei() to gain a vnode reference (vref), and lock 561 * the vnode (VOP_LOCK). 562 * 563 * XXX: a NULL arg means use the root vnode pointer (e.g. for 564 * miniroot) 565 */ 566 if (SCARG(uap, arg) == NULL) { 567 vp = rootvp; /* miniroot */ 568 vref(vp); 569 if (vn_lock(vp, LK_EXCLUSIVE)) { 570 vrele(vp); 571 error = EBUSY; 572 goto out; 573 } 574 if (SCARG(uap, cmd) == SWAP_ON && 575 copystr("miniroot", userpath, SWAP_PATH_MAX, &len)) 576 panic("swapctl: miniroot copy failed"); 577 } else { 578 struct pathbuf *pb; 579 580 /* 581 * This used to allow copying in one extra byte 582 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON. 583 * This was completely pointless because if anyone 584 * used that extra byte namei would fail with 585 * ENAMETOOLONG anyway, so I've removed the excess 586 * logic. - dholland 20100215 587 */ 588 589 error = pathbuf_copyin(SCARG(uap, arg), &pb); 590 if (error) { 591 goto out; 592 } 593 if (SCARG(uap, cmd) == SWAP_ON) { 594 /* get a copy of the string */ 595 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX); 596 len = strlen(userpath) + 1; 597 } 598 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb); 599 if ((error = namei(&nd))) { 600 pathbuf_destroy(pb); 601 goto out; 602 } 603 vp = nd.ni_vp; 604 pathbuf_destroy(pb); 605 } 606 /* note: "vp" is referenced and locked */ 607 608 error = 0; /* assume no error */ 609 switch(SCARG(uap, cmd)) { 610 611 case SWAP_DUMPDEV: 612 if (vp->v_type != VBLK) { 613 error = ENOTBLK; 614 break; 615 } 616 if (bdevsw_lookup(vp->v_rdev)) { 617 dumpdev = vp->v_rdev; 618 dumpcdev = devsw_blk2chr(dumpdev); 619 } else 620 dumpdev = NODEV; 621 cpu_dumpconf(); 622 break; 623 624 case SWAP_CTL: 625 /* 626 * get new priority, remove old entry (if any) and then 627 * reinsert it in the correct place. finally, prune out 628 * any empty priority structures. 629 */ 630 priority = SCARG(uap, misc); 631 spp = kmem_alloc(sizeof(*spp), KM_SLEEP); 632 mutex_enter(&uvm_swap_data_lock); 633 if ((sdp = swaplist_find(vp, true)) == NULL) { 634 error = ENOENT; 635 } else { 636 swaplist_insert(sdp, spp, priority); 637 swaplist_trim(); 638 } 639 mutex_exit(&uvm_swap_data_lock); 640 if (error) 641 kmem_free(spp, sizeof(*spp)); 642 break; 643 644 case SWAP_ON: 645 646 /* 647 * check for duplicates. if none found, then insert a 648 * dummy entry on the list to prevent someone else from 649 * trying to enable this device while we are working on 650 * it. 651 */ 652 653 priority = SCARG(uap, misc); 654 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP); 655 spp = kmem_alloc(sizeof(*spp), KM_SLEEP); 656 sdp->swd_flags = SWF_FAKE; 657 sdp->swd_vp = vp; 658 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; 659 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK); 660 mutex_enter(&uvm_swap_data_lock); 661 if (swaplist_find(vp, false) != NULL) { 662 error = EBUSY; 663 mutex_exit(&uvm_swap_data_lock); 664 bufq_free(sdp->swd_tab); 665 kmem_free(sdp, sizeof(*sdp)); 666 kmem_free(spp, sizeof(*spp)); 667 break; 668 } 669 swaplist_insert(sdp, spp, priority); 670 mutex_exit(&uvm_swap_data_lock); 671 672 KASSERT(len > 0); 673 sdp->swd_pathlen = len; 674 sdp->swd_path = kmem_alloc(len, KM_SLEEP); 675 if (copystr(userpath, sdp->swd_path, len, 0) != 0) 676 panic("swapctl: copystr"); 677 678 /* 679 * we've now got a FAKE placeholder in the swap list. 680 * now attempt to enable swap on it. if we fail, undo 681 * what we've done and kill the fake entry we just inserted. 682 * if swap_on is a success, it will clear the SWF_FAKE flag 683 */ 684 685 if ((error = swap_on(l, sdp)) != 0) { 686 mutex_enter(&uvm_swap_data_lock); 687 (void) swaplist_find(vp, true); /* kill fake entry */ 688 swaplist_trim(); 689 mutex_exit(&uvm_swap_data_lock); 690 bufq_free(sdp->swd_tab); 691 kmem_free(sdp->swd_path, sdp->swd_pathlen); 692 kmem_free(sdp, sizeof(*sdp)); 693 break; 694 } 695 break; 696 697 case SWAP_OFF: 698 mutex_enter(&uvm_swap_data_lock); 699 if ((sdp = swaplist_find(vp, false)) == NULL) { 700 mutex_exit(&uvm_swap_data_lock); 701 error = ENXIO; 702 break; 703 } 704 705 /* 706 * If a device isn't in use or enabled, we 707 * can't stop swapping from it (again). 708 */ 709 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { 710 mutex_exit(&uvm_swap_data_lock); 711 error = EBUSY; 712 break; 713 } 714 715 /* 716 * do the real work. 717 */ 718 error = swap_off(l, sdp); 719 break; 720 721 default: 722 error = EINVAL; 723 } 724 725 /* 726 * done! release the ref gained by namei() and unlock. 727 */ 728 vput(vp); 729 out: 730 rw_exit(&swap_syscall_lock); 731 kmem_free(userpath, SWAP_PATH_MAX); 732 733 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0); 734 return (error); 735 } 736 737 /* 738 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept 739 * away from sys_swapctl() in order to allow COMPAT_* swapctl() 740 * emulation to use it directly without going through sys_swapctl(). 741 * The problem with using sys_swapctl() there is that it involves 742 * copying the swapent array to the stackgap, and this array's size 743 * is not known at build time. Hence it would not be possible to 744 * ensure it would fit in the stackgap in any case. 745 */ 746 void 747 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval) 748 { 749 struct swappri *spp; 750 struct swapdev *sdp; 751 int count = 0; 752 753 KASSERT(rw_lock_held(&swap_syscall_lock)); 754 755 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 756 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 757 int inuse; 758 759 if (sec-- <= 0) 760 break; 761 762 /* 763 * backwards compatibility for system call. 764 * For NetBSD 1.3 and 5.0, we have to use 765 * the 32 bit dev_t. For 5.0 and -current 766 * we have to add the path. 767 */ 768 inuse = btodb((uint64_t)sdp->swd_npginuse << 769 PAGE_SHIFT); 770 771 #if defined(COMPAT_13) || defined(COMPAT_50) 772 if (cmd == SWAP_STATS) { 773 #endif 774 sep->se_dev = sdp->swd_dev; 775 sep->se_flags = sdp->swd_flags; 776 sep->se_nblks = sdp->swd_nblks; 777 sep->se_inuse = inuse; 778 sep->se_priority = sdp->swd_priority; 779 KASSERT(sdp->swd_pathlen < 780 sizeof(sep->se_path)); 781 strcpy(sep->se_path, sdp->swd_path); 782 sep++; 783 #if defined(COMPAT_13) 784 } else if (cmd == SWAP_STATS13) { 785 struct swapent13 *sep13 = 786 (struct swapent13 *)sep; 787 788 sep13->se13_dev = sdp->swd_dev; 789 sep13->se13_flags = sdp->swd_flags; 790 sep13->se13_nblks = sdp->swd_nblks; 791 sep13->se13_inuse = inuse; 792 sep13->se13_priority = sdp->swd_priority; 793 sep = (struct swapent *)(sep13 + 1); 794 #endif 795 #if defined(COMPAT_50) 796 } else if (cmd == SWAP_STATS50) { 797 struct swapent50 *sep50 = 798 (struct swapent50 *)sep; 799 800 sep50->se50_dev = sdp->swd_dev; 801 sep50->se50_flags = sdp->swd_flags; 802 sep50->se50_nblks = sdp->swd_nblks; 803 sep50->se50_inuse = inuse; 804 sep50->se50_priority = sdp->swd_priority; 805 KASSERT(sdp->swd_pathlen < 806 sizeof(sep50->se50_path)); 807 strcpy(sep50->se50_path, sdp->swd_path); 808 sep = (struct swapent *)(sep50 + 1); 809 #endif 810 #if defined(COMPAT_13) || defined(COMPAT_50) 811 } 812 #endif 813 count++; 814 } 815 } 816 *retval = count; 817 } 818 819 /* 820 * swap_on: attempt to enable a swapdev for swapping. note that the 821 * swapdev is already on the global list, but disabled (marked 822 * SWF_FAKE). 823 * 824 * => we avoid the start of the disk (to protect disk labels) 825 * => we also avoid the miniroot, if we are swapping to root. 826 * => caller should leave uvm_swap_data_lock unlocked, we may lock it 827 * if needed. 828 */ 829 static int 830 swap_on(struct lwp *l, struct swapdev *sdp) 831 { 832 struct vnode *vp; 833 int error, npages, nblocks, size; 834 long addr; 835 vmem_addr_t result; 836 struct vattr va; 837 dev_t dev; 838 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist); 839 840 /* 841 * we want to enable swapping on sdp. the swd_vp contains 842 * the vnode we want (locked and ref'd), and the swd_dev 843 * contains the dev_t of the file, if it a block device. 844 */ 845 846 vp = sdp->swd_vp; 847 dev = sdp->swd_dev; 848 849 /* 850 * open the swap file (mostly useful for block device files to 851 * let device driver know what is up). 852 * 853 * we skip the open/close for root on swap because the root 854 * has already been opened when root was mounted (mountroot). 855 */ 856 if (vp != rootvp) { 857 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred))) 858 return (error); 859 } 860 861 /* XXX this only works for block devices */ 862 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0); 863 864 /* 865 * we now need to determine the size of the swap area. for 866 * block specials we can call the d_psize function. 867 * for normal files, we must stat [get attrs]. 868 * 869 * we put the result in nblks. 870 * for normal files, we also want the filesystem block size 871 * (which we get with statfs). 872 */ 873 switch (vp->v_type) { 874 case VBLK: 875 if ((nblocks = bdev_size(dev)) == -1) { 876 error = ENXIO; 877 goto bad; 878 } 879 break; 880 881 case VREG: 882 if ((error = VOP_GETATTR(vp, &va, l->l_cred))) 883 goto bad; 884 nblocks = (int)btodb(va.va_size); 885 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift; 886 /* 887 * limit the max # of outstanding I/O requests we issue 888 * at any one time. take it easy on NFS servers. 889 */ 890 if (vp->v_tag == VT_NFS) 891 sdp->swd_maxactive = 2; /* XXX */ 892 else 893 sdp->swd_maxactive = 8; /* XXX */ 894 break; 895 896 default: 897 error = ENXIO; 898 goto bad; 899 } 900 901 /* 902 * save nblocks in a safe place and convert to pages. 903 */ 904 905 sdp->swd_nblks = nblocks; 906 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT; 907 908 /* 909 * for block special files, we want to make sure that leave 910 * the disklabel and bootblocks alone, so we arrange to skip 911 * over them (arbitrarily choosing to skip PAGE_SIZE bytes). 912 * note that because of this the "size" can be less than the 913 * actual number of blocks on the device. 914 */ 915 if (vp->v_type == VBLK) { 916 /* we use pages 1 to (size - 1) [inclusive] */ 917 size = npages - 1; 918 addr = 1; 919 } else { 920 /* we use pages 0 to (size - 1) [inclusive] */ 921 size = npages; 922 addr = 0; 923 } 924 925 /* 926 * make sure we have enough blocks for a reasonable sized swap 927 * area. we want at least one page. 928 */ 929 930 if (size < 1) { 931 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); 932 error = EINVAL; 933 goto bad; 934 } 935 936 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld", dev, size, addr, 0); 937 938 /* 939 * now we need to allocate an extent to manage this swap device 940 */ 941 942 sdp->swd_blist = blist_create(npages); 943 /* mark all expect the `saved' region free. */ 944 blist_free(sdp->swd_blist, addr, size); 945 946 /* 947 * if the vnode we are swapping to is the root vnode 948 * (i.e. we are swapping to the miniroot) then we want 949 * to make sure we don't overwrite it. do a statfs to 950 * find its size and skip over it. 951 */ 952 if (vp == rootvp) { 953 struct mount *mp; 954 struct statvfs *sp; 955 int rootblocks, rootpages; 956 957 mp = rootvnode->v_mount; 958 sp = &mp->mnt_stat; 959 rootblocks = sp->f_blocks * btodb(sp->f_frsize); 960 /* 961 * XXX: sp->f_blocks isn't the total number of 962 * blocks in the filesystem, it's the number of 963 * data blocks. so, our rootblocks almost 964 * definitely underestimates the total size 965 * of the filesystem - how badly depends on the 966 * details of the filesystem type. there isn't 967 * an obvious way to deal with this cleanly 968 * and perfectly, so for now we just pad our 969 * rootblocks estimate with an extra 5 percent. 970 */ 971 rootblocks += (rootblocks >> 5) + 972 (rootblocks >> 6) + 973 (rootblocks >> 7); 974 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; 975 if (rootpages > size) 976 panic("swap_on: miniroot larger than swap?"); 977 978 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) { 979 panic("swap_on: unable to preserve miniroot"); 980 } 981 982 size -= rootpages; 983 printf("Preserved %d pages of miniroot ", rootpages); 984 printf("leaving %d pages of swap\n", size); 985 } 986 987 /* 988 * add a ref to vp to reflect usage as a swap device. 989 */ 990 vref(vp); 991 992 /* 993 * now add the new swapdev to the drum and enable. 994 */ 995 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result); 996 if (error != 0) 997 panic("swapdrum_add"); 998 /* 999 * If this is the first regular swap create the workqueue. 1000 * => Protected by swap_syscall_lock. 1001 */ 1002 if (vp->v_type != VBLK) { 1003 if (sw_reg_count++ == 0) { 1004 KASSERT(sw_reg_workqueue == NULL); 1005 if (workqueue_create(&sw_reg_workqueue, "swapiod", 1006 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0) 1007 panic("%s: workqueue_create failed", __func__); 1008 } 1009 } 1010 1011 sdp->swd_drumoffset = (int)result; 1012 sdp->swd_drumsize = npages; 1013 sdp->swd_npages = size; 1014 mutex_enter(&uvm_swap_data_lock); 1015 sdp->swd_flags &= ~SWF_FAKE; /* going live */ 1016 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); 1017 uvmexp.swpages += size; 1018 uvmexp.swpgavail += size; 1019 mutex_exit(&uvm_swap_data_lock); 1020 return (0); 1021 1022 /* 1023 * failure: clean up and return error. 1024 */ 1025 1026 bad: 1027 if (sdp->swd_blist) { 1028 blist_destroy(sdp->swd_blist); 1029 } 1030 if (vp != rootvp) { 1031 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred); 1032 } 1033 return (error); 1034 } 1035 1036 /* 1037 * swap_off: stop swapping on swapdev 1038 * 1039 * => swap data should be locked, we will unlock. 1040 */ 1041 static int 1042 swap_off(struct lwp *l, struct swapdev *sdp) 1043 { 1044 int npages = sdp->swd_npages; 1045 int error = 0; 1046 1047 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist); 1048 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0); 1049 1050 /* disable the swap area being removed */ 1051 sdp->swd_flags &= ~SWF_ENABLE; 1052 uvmexp.swpgavail -= npages; 1053 mutex_exit(&uvm_swap_data_lock); 1054 1055 /* 1056 * the idea is to find all the pages that are paged out to this 1057 * device, and page them all in. in uvm, swap-backed pageable 1058 * memory can take two forms: aobjs and anons. call the 1059 * swapoff hook for each subsystem to bring in pages. 1060 */ 1061 1062 if (uao_swap_off(sdp->swd_drumoffset, 1063 sdp->swd_drumoffset + sdp->swd_drumsize) || 1064 amap_swap_off(sdp->swd_drumoffset, 1065 sdp->swd_drumoffset + sdp->swd_drumsize)) { 1066 error = ENOMEM; 1067 } else if (sdp->swd_npginuse > sdp->swd_npgbad) { 1068 error = EBUSY; 1069 } 1070 1071 if (error) { 1072 mutex_enter(&uvm_swap_data_lock); 1073 sdp->swd_flags |= SWF_ENABLE; 1074 uvmexp.swpgavail += npages; 1075 mutex_exit(&uvm_swap_data_lock); 1076 1077 return error; 1078 } 1079 1080 /* 1081 * If this is the last regular swap destroy the workqueue. 1082 * => Protected by swap_syscall_lock. 1083 */ 1084 if (sdp->swd_vp->v_type != VBLK) { 1085 KASSERT(sw_reg_count > 0); 1086 KASSERT(sw_reg_workqueue != NULL); 1087 if (--sw_reg_count == 0) { 1088 workqueue_destroy(sw_reg_workqueue); 1089 sw_reg_workqueue = NULL; 1090 } 1091 } 1092 1093 /* 1094 * done with the vnode. 1095 * drop our ref on the vnode before calling VOP_CLOSE() 1096 * so that spec_close() can tell if this is the last close. 1097 */ 1098 vrele(sdp->swd_vp); 1099 if (sdp->swd_vp != rootvp) { 1100 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred); 1101 } 1102 1103 mutex_enter(&uvm_swap_data_lock); 1104 uvmexp.swpages -= npages; 1105 uvmexp.swpginuse -= sdp->swd_npgbad; 1106 1107 if (swaplist_find(sdp->swd_vp, true) == NULL) 1108 panic("%s: swapdev not in list", __func__); 1109 swaplist_trim(); 1110 mutex_exit(&uvm_swap_data_lock); 1111 1112 /* 1113 * free all resources! 1114 */ 1115 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize); 1116 blist_destroy(sdp->swd_blist); 1117 bufq_free(sdp->swd_tab); 1118 kmem_free(sdp, sizeof(*sdp)); 1119 return (0); 1120 } 1121 1122 void 1123 uvm_swap_shutdown(struct lwp *l) 1124 { 1125 struct swapdev *sdp; 1126 struct swappri *spp; 1127 struct vnode *vp; 1128 int error; 1129 1130 printf("turning of swap..."); 1131 rw_enter(&swap_syscall_lock, RW_WRITER); 1132 mutex_enter(&uvm_swap_data_lock); 1133 again: 1134 LIST_FOREACH(spp, &swap_priority, spi_swappri) 1135 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 1136 if (sdp->swd_flags & SWF_FAKE) 1137 continue; 1138 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) 1139 continue; 1140 #ifdef DEBUG 1141 printf("\nturning off swap on %s...", 1142 sdp->swd_path); 1143 #endif 1144 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) { 1145 error = EBUSY; 1146 vp = NULL; 1147 } else 1148 error = 0; 1149 if (!error) { 1150 error = swap_off(l, sdp); 1151 mutex_enter(&uvm_swap_data_lock); 1152 } 1153 if (error) { 1154 printf("stopping swap on %s failed " 1155 "with error %d\n", sdp->swd_path, error); 1156 TAILQ_REMOVE(&spp->spi_swapdev, sdp, 1157 swd_next); 1158 uvmexp.nswapdev--; 1159 swaplist_trim(); 1160 if (vp) 1161 vput(vp); 1162 } 1163 goto again; 1164 } 1165 printf(" done\n"); 1166 mutex_exit(&uvm_swap_data_lock); 1167 rw_exit(&swap_syscall_lock); 1168 } 1169 1170 1171 /* 1172 * /dev/drum interface and i/o functions 1173 */ 1174 1175 /* 1176 * swstrategy: perform I/O on the drum 1177 * 1178 * => we must map the i/o request from the drum to the correct swapdev. 1179 */ 1180 static void 1181 swstrategy(struct buf *bp) 1182 { 1183 struct swapdev *sdp; 1184 struct vnode *vp; 1185 int pageno, bn; 1186 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist); 1187 1188 /* 1189 * convert block number to swapdev. note that swapdev can't 1190 * be yanked out from under us because we are holding resources 1191 * in it (i.e. the blocks we are doing I/O on). 1192 */ 1193 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT; 1194 mutex_enter(&uvm_swap_data_lock); 1195 sdp = swapdrum_getsdp(pageno); 1196 mutex_exit(&uvm_swap_data_lock); 1197 if (sdp == NULL) { 1198 bp->b_error = EINVAL; 1199 bp->b_resid = bp->b_bcount; 1200 biodone(bp); 1201 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); 1202 return; 1203 } 1204 1205 /* 1206 * convert drum page number to block number on this swapdev. 1207 */ 1208 1209 pageno -= sdp->swd_drumoffset; /* page # on swapdev */ 1210 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */ 1211 1212 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld", 1213 ((bp->b_flags & B_READ) == 0) ? "write" : "read", 1214 sdp->swd_drumoffset, bn, bp->b_bcount); 1215 1216 /* 1217 * for block devices we finish up here. 1218 * for regular files we have to do more work which we delegate 1219 * to sw_reg_strategy(). 1220 */ 1221 1222 vp = sdp->swd_vp; /* swapdev vnode pointer */ 1223 switch (vp->v_type) { 1224 default: 1225 panic("%s: vnode type 0x%x", __func__, vp->v_type); 1226 1227 case VBLK: 1228 1229 /* 1230 * must convert "bp" from an I/O on /dev/drum to an I/O 1231 * on the swapdev (sdp). 1232 */ 1233 bp->b_blkno = bn; /* swapdev block number */ 1234 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ 1235 1236 /* 1237 * if we are doing a write, we have to redirect the i/o on 1238 * drum's v_numoutput counter to the swapdevs. 1239 */ 1240 if ((bp->b_flags & B_READ) == 0) { 1241 mutex_enter(bp->b_objlock); 1242 vwakeup(bp); /* kills one 'v_numoutput' on drum */ 1243 mutex_exit(bp->b_objlock); 1244 mutex_enter(vp->v_interlock); 1245 vp->v_numoutput++; /* put it on swapdev */ 1246 mutex_exit(vp->v_interlock); 1247 } 1248 1249 /* 1250 * finally plug in swapdev vnode and start I/O 1251 */ 1252 bp->b_vp = vp; 1253 bp->b_objlock = vp->v_interlock; 1254 VOP_STRATEGY(vp, bp); 1255 return; 1256 1257 case VREG: 1258 /* 1259 * delegate to sw_reg_strategy function. 1260 */ 1261 sw_reg_strategy(sdp, bp, bn); 1262 return; 1263 } 1264 /* NOTREACHED */ 1265 } 1266 1267 /* 1268 * swread: the read function for the drum (just a call to physio) 1269 */ 1270 /*ARGSUSED*/ 1271 static int 1272 swread(dev_t dev, struct uio *uio, int ioflag) 1273 { 1274 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist); 1275 1276 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1277 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); 1278 } 1279 1280 /* 1281 * swwrite: the write function for the drum (just a call to physio) 1282 */ 1283 /*ARGSUSED*/ 1284 static int 1285 swwrite(dev_t dev, struct uio *uio, int ioflag) 1286 { 1287 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist); 1288 1289 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1290 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); 1291 } 1292 1293 const struct bdevsw swap_bdevsw = { 1294 .d_open = nullopen, 1295 .d_close = nullclose, 1296 .d_strategy = swstrategy, 1297 .d_ioctl = noioctl, 1298 .d_dump = nodump, 1299 .d_psize = nosize, 1300 .d_discard = nodiscard, 1301 .d_flag = D_OTHER 1302 }; 1303 1304 const struct cdevsw swap_cdevsw = { 1305 .d_open = nullopen, 1306 .d_close = nullclose, 1307 .d_read = swread, 1308 .d_write = swwrite, 1309 .d_ioctl = noioctl, 1310 .d_stop = nostop, 1311 .d_tty = notty, 1312 .d_poll = nopoll, 1313 .d_mmap = nommap, 1314 .d_kqfilter = nokqfilter, 1315 .d_discard = nodiscard, 1316 .d_flag = D_OTHER, 1317 }; 1318 1319 /* 1320 * sw_reg_strategy: handle swap i/o to regular files 1321 */ 1322 static void 1323 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn) 1324 { 1325 struct vnode *vp; 1326 struct vndxfer *vnx; 1327 daddr_t nbn; 1328 char *addr; 1329 off_t byteoff; 1330 int s, off, nra, error, sz, resid; 1331 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist); 1332 1333 /* 1334 * allocate a vndxfer head for this transfer and point it to 1335 * our buffer. 1336 */ 1337 vnx = pool_get(&vndxfer_pool, PR_WAITOK); 1338 vnx->vx_flags = VX_BUSY; 1339 vnx->vx_error = 0; 1340 vnx->vx_pending = 0; 1341 vnx->vx_bp = bp; 1342 vnx->vx_sdp = sdp; 1343 1344 /* 1345 * setup for main loop where we read filesystem blocks into 1346 * our buffer. 1347 */ 1348 error = 0; 1349 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */ 1350 addr = bp->b_data; /* current position in buffer */ 1351 byteoff = dbtob((uint64_t)bn); 1352 1353 for (resid = bp->b_resid; resid; resid -= sz) { 1354 struct vndbuf *nbp; 1355 1356 /* 1357 * translate byteoffset into block number. return values: 1358 * vp = vnode of underlying device 1359 * nbn = new block number (on underlying vnode dev) 1360 * nra = num blocks we can read-ahead (excludes requested 1361 * block) 1362 */ 1363 nra = 0; 1364 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, 1365 &vp, &nbn, &nra); 1366 1367 if (error == 0 && nbn == (daddr_t)-1) { 1368 /* 1369 * this used to just set error, but that doesn't 1370 * do the right thing. Instead, it causes random 1371 * memory errors. The panic() should remain until 1372 * this condition doesn't destabilize the system. 1373 */ 1374 #if 1 1375 panic("%s: swap to sparse file", __func__); 1376 #else 1377 error = EIO; /* failure */ 1378 #endif 1379 } 1380 1381 /* 1382 * punt if there was an error or a hole in the file. 1383 * we must wait for any i/o ops we have already started 1384 * to finish before returning. 1385 * 1386 * XXX we could deal with holes here but it would be 1387 * a hassle (in the write case). 1388 */ 1389 if (error) { 1390 s = splbio(); 1391 vnx->vx_error = error; /* pass error up */ 1392 goto out; 1393 } 1394 1395 /* 1396 * compute the size ("sz") of this transfer (in bytes). 1397 */ 1398 off = byteoff % sdp->swd_bsize; 1399 sz = (1 + nra) * sdp->swd_bsize - off; 1400 if (sz > resid) 1401 sz = resid; 1402 1403 UVMHIST_LOG(pdhist, "sw_reg_strategy: " 1404 "vp %p/%p offset 0x%x/0x%x", 1405 sdp->swd_vp, vp, byteoff, nbn); 1406 1407 /* 1408 * now get a buf structure. note that the vb_buf is 1409 * at the front of the nbp structure so that you can 1410 * cast pointers between the two structure easily. 1411 */ 1412 nbp = pool_get(&vndbuf_pool, PR_WAITOK); 1413 buf_init(&nbp->vb_buf); 1414 nbp->vb_buf.b_flags = bp->b_flags; 1415 nbp->vb_buf.b_cflags = bp->b_cflags; 1416 nbp->vb_buf.b_oflags = bp->b_oflags; 1417 nbp->vb_buf.b_bcount = sz; 1418 nbp->vb_buf.b_bufsize = sz; 1419 nbp->vb_buf.b_error = 0; 1420 nbp->vb_buf.b_data = addr; 1421 nbp->vb_buf.b_lblkno = 0; 1422 nbp->vb_buf.b_blkno = nbn + btodb(off); 1423 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; 1424 nbp->vb_buf.b_iodone = sw_reg_biodone; 1425 nbp->vb_buf.b_vp = vp; 1426 nbp->vb_buf.b_objlock = vp->v_interlock; 1427 if (vp->v_type == VBLK) { 1428 nbp->vb_buf.b_dev = vp->v_rdev; 1429 } 1430 1431 nbp->vb_xfer = vnx; /* patch it back in to vnx */ 1432 1433 /* 1434 * Just sort by block number 1435 */ 1436 s = splbio(); 1437 if (vnx->vx_error != 0) { 1438 buf_destroy(&nbp->vb_buf); 1439 pool_put(&vndbuf_pool, nbp); 1440 goto out; 1441 } 1442 vnx->vx_pending++; 1443 1444 /* sort it in and start I/O if we are not over our limit */ 1445 /* XXXAD locking */ 1446 bufq_put(sdp->swd_tab, &nbp->vb_buf); 1447 sw_reg_start(sdp); 1448 splx(s); 1449 1450 /* 1451 * advance to the next I/O 1452 */ 1453 byteoff += sz; 1454 addr += sz; 1455 } 1456 1457 s = splbio(); 1458 1459 out: /* Arrive here at splbio */ 1460 vnx->vx_flags &= ~VX_BUSY; 1461 if (vnx->vx_pending == 0) { 1462 error = vnx->vx_error; 1463 pool_put(&vndxfer_pool, vnx); 1464 bp->b_error = error; 1465 biodone(bp); 1466 } 1467 splx(s); 1468 } 1469 1470 /* 1471 * sw_reg_start: start an I/O request on the requested swapdev 1472 * 1473 * => reqs are sorted by b_rawblkno (above) 1474 */ 1475 static void 1476 sw_reg_start(struct swapdev *sdp) 1477 { 1478 struct buf *bp; 1479 struct vnode *vp; 1480 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist); 1481 1482 /* recursion control */ 1483 if ((sdp->swd_flags & SWF_BUSY) != 0) 1484 return; 1485 1486 sdp->swd_flags |= SWF_BUSY; 1487 1488 while (sdp->swd_active < sdp->swd_maxactive) { 1489 bp = bufq_get(sdp->swd_tab); 1490 if (bp == NULL) 1491 break; 1492 sdp->swd_active++; 1493 1494 UVMHIST_LOG(pdhist, 1495 "sw_reg_start: bp %p vp %p blkno %p cnt %lx", 1496 bp, bp->b_vp, bp->b_blkno, bp->b_bcount); 1497 vp = bp->b_vp; 1498 KASSERT(bp->b_objlock == vp->v_interlock); 1499 if ((bp->b_flags & B_READ) == 0) { 1500 mutex_enter(vp->v_interlock); 1501 vp->v_numoutput++; 1502 mutex_exit(vp->v_interlock); 1503 } 1504 VOP_STRATEGY(vp, bp); 1505 } 1506 sdp->swd_flags &= ~SWF_BUSY; 1507 } 1508 1509 /* 1510 * sw_reg_biodone: one of our i/o's has completed 1511 */ 1512 static void 1513 sw_reg_biodone(struct buf *bp) 1514 { 1515 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL); 1516 } 1517 1518 /* 1519 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup 1520 * 1521 * => note that we can recover the vndbuf struct by casting the buf ptr 1522 */ 1523 static void 1524 sw_reg_iodone(struct work *wk, void *dummy) 1525 { 1526 struct vndbuf *vbp = (void *)wk; 1527 struct vndxfer *vnx = vbp->vb_xfer; 1528 struct buf *pbp = vnx->vx_bp; /* parent buffer */ 1529 struct swapdev *sdp = vnx->vx_sdp; 1530 int s, resid, error; 1531 KASSERT(&vbp->vb_buf.b_work == wk); 1532 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist); 1533 1534 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p", 1535 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data); 1536 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx", 1537 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); 1538 1539 /* 1540 * protect vbp at splbio and update. 1541 */ 1542 1543 s = splbio(); 1544 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; 1545 pbp->b_resid -= resid; 1546 vnx->vx_pending--; 1547 1548 if (vbp->vb_buf.b_error != 0) { 1549 /* pass error upward */ 1550 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO; 1551 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0); 1552 vnx->vx_error = error; 1553 } 1554 1555 /* 1556 * kill vbp structure 1557 */ 1558 buf_destroy(&vbp->vb_buf); 1559 pool_put(&vndbuf_pool, vbp); 1560 1561 /* 1562 * wrap up this transaction if it has run to completion or, in 1563 * case of an error, when all auxiliary buffers have returned. 1564 */ 1565 if (vnx->vx_error != 0) { 1566 /* pass error upward */ 1567 error = vnx->vx_error; 1568 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { 1569 pbp->b_error = error; 1570 biodone(pbp); 1571 pool_put(&vndxfer_pool, vnx); 1572 } 1573 } else if (pbp->b_resid == 0) { 1574 KASSERT(vnx->vx_pending == 0); 1575 if ((vnx->vx_flags & VX_BUSY) == 0) { 1576 UVMHIST_LOG(pdhist, " iodone error=%d !", 1577 pbp, vnx->vx_error, 0, 0); 1578 biodone(pbp); 1579 pool_put(&vndxfer_pool, vnx); 1580 } 1581 } 1582 1583 /* 1584 * done! start next swapdev I/O if one is pending 1585 */ 1586 sdp->swd_active--; 1587 sw_reg_start(sdp); 1588 splx(s); 1589 } 1590 1591 1592 /* 1593 * uvm_swap_alloc: allocate space on swap 1594 * 1595 * => allocation is done "round robin" down the priority list, as we 1596 * allocate in a priority we "rotate" the circle queue. 1597 * => space can be freed with uvm_swap_free 1598 * => we return the page slot number in /dev/drum (0 == invalid slot) 1599 * => we lock uvm_swap_data_lock 1600 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM 1601 */ 1602 int 1603 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok) 1604 { 1605 struct swapdev *sdp; 1606 struct swappri *spp; 1607 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist); 1608 1609 /* 1610 * no swap devices configured yet? definite failure. 1611 */ 1612 if (uvmexp.nswapdev < 1) 1613 return 0; 1614 1615 /* 1616 * XXXJAK: BEGIN HACK 1617 * 1618 * blist_alloc() in subr_blist.c will panic if we try to allocate 1619 * too many slots. 1620 */ 1621 if (*nslots > BLIST_MAX_ALLOC) { 1622 if (__predict_false(lessok == false)) 1623 return 0; 1624 *nslots = BLIST_MAX_ALLOC; 1625 } 1626 /* XXXJAK: END HACK */ 1627 1628 /* 1629 * lock data lock, convert slots into blocks, and enter loop 1630 */ 1631 mutex_enter(&uvm_swap_data_lock); 1632 1633 ReTry: /* XXXMRG */ 1634 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 1635 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 1636 uint64_t result; 1637 1638 /* if it's not enabled, then we can't swap from it */ 1639 if ((sdp->swd_flags & SWF_ENABLE) == 0) 1640 continue; 1641 if (sdp->swd_npginuse + *nslots > sdp->swd_npages) 1642 continue; 1643 result = blist_alloc(sdp->swd_blist, *nslots); 1644 if (result == BLIST_NONE) { 1645 continue; 1646 } 1647 KASSERT(result < sdp->swd_drumsize); 1648 1649 /* 1650 * successful allocation! now rotate the tailq. 1651 */ 1652 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1653 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 1654 sdp->swd_npginuse += *nslots; 1655 uvmexp.swpginuse += *nslots; 1656 mutex_exit(&uvm_swap_data_lock); 1657 /* done! return drum slot number */ 1658 UVMHIST_LOG(pdhist, 1659 "success! returning %d slots starting at %d", 1660 *nslots, result + sdp->swd_drumoffset, 0, 0); 1661 return (result + sdp->swd_drumoffset); 1662 } 1663 } 1664 1665 /* XXXMRG: BEGIN HACK */ 1666 if (*nslots > 1 && lessok) { 1667 *nslots = 1; 1668 /* XXXMRG: ugh! blist should support this for us */ 1669 goto ReTry; 1670 } 1671 /* XXXMRG: END HACK */ 1672 1673 mutex_exit(&uvm_swap_data_lock); 1674 return 0; 1675 } 1676 1677 /* 1678 * uvm_swapisfull: return true if most of available swap is allocated 1679 * and in use. we don't count some small portion as it may be inaccessible 1680 * to us at any given moment, for example if there is lock contention or if 1681 * pages are busy. 1682 */ 1683 bool 1684 uvm_swapisfull(void) 1685 { 1686 int swpgonly; 1687 bool rv; 1688 1689 mutex_enter(&uvm_swap_data_lock); 1690 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1691 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 / 1692 uvm_swapisfull_factor); 1693 rv = (swpgonly >= uvmexp.swpgavail); 1694 mutex_exit(&uvm_swap_data_lock); 1695 1696 return (rv); 1697 } 1698 1699 /* 1700 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors 1701 * 1702 * => we lock uvm_swap_data_lock 1703 */ 1704 void 1705 uvm_swap_markbad(int startslot, int nslots) 1706 { 1707 struct swapdev *sdp; 1708 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist); 1709 1710 mutex_enter(&uvm_swap_data_lock); 1711 sdp = swapdrum_getsdp(startslot); 1712 KASSERT(sdp != NULL); 1713 1714 /* 1715 * we just keep track of how many pages have been marked bad 1716 * in this device, to make everything add up in swap_off(). 1717 * we assume here that the range of slots will all be within 1718 * one swap device. 1719 */ 1720 1721 KASSERT(uvmexp.swpgonly >= nslots); 1722 uvmexp.swpgonly -= nslots; 1723 sdp->swd_npgbad += nslots; 1724 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0); 1725 mutex_exit(&uvm_swap_data_lock); 1726 } 1727 1728 /* 1729 * uvm_swap_free: free swap slots 1730 * 1731 * => this can be all or part of an allocation made by uvm_swap_alloc 1732 * => we lock uvm_swap_data_lock 1733 */ 1734 void 1735 uvm_swap_free(int startslot, int nslots) 1736 { 1737 struct swapdev *sdp; 1738 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist); 1739 1740 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots, 1741 startslot, 0, 0); 1742 1743 /* 1744 * ignore attempts to free the "bad" slot. 1745 */ 1746 1747 if (startslot == SWSLOT_BAD) { 1748 return; 1749 } 1750 1751 /* 1752 * convert drum slot offset back to sdp, free the blocks 1753 * in the extent, and return. must hold pri lock to do 1754 * lookup and access the extent. 1755 */ 1756 1757 mutex_enter(&uvm_swap_data_lock); 1758 sdp = swapdrum_getsdp(startslot); 1759 KASSERT(uvmexp.nswapdev >= 1); 1760 KASSERT(sdp != NULL); 1761 KASSERT(sdp->swd_npginuse >= nslots); 1762 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots); 1763 sdp->swd_npginuse -= nslots; 1764 uvmexp.swpginuse -= nslots; 1765 mutex_exit(&uvm_swap_data_lock); 1766 } 1767 1768 /* 1769 * uvm_swap_put: put any number of pages into a contig place on swap 1770 * 1771 * => can be sync or async 1772 */ 1773 1774 int 1775 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags) 1776 { 1777 int error; 1778 1779 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE | 1780 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1781 return error; 1782 } 1783 1784 /* 1785 * uvm_swap_get: get a single page from swap 1786 * 1787 * => usually a sync op (from fault) 1788 */ 1789 1790 int 1791 uvm_swap_get(struct vm_page *page, int swslot, int flags) 1792 { 1793 int error; 1794 1795 uvmexp.nswget++; 1796 KASSERT(flags & PGO_SYNCIO); 1797 if (swslot == SWSLOT_BAD) { 1798 return EIO; 1799 } 1800 1801 error = uvm_swap_io(&page, swslot, 1, B_READ | 1802 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1803 if (error == 0) { 1804 1805 /* 1806 * this page is no longer only in swap. 1807 */ 1808 1809 mutex_enter(&uvm_swap_data_lock); 1810 KASSERT(uvmexp.swpgonly > 0); 1811 uvmexp.swpgonly--; 1812 mutex_exit(&uvm_swap_data_lock); 1813 } 1814 return error; 1815 } 1816 1817 /* 1818 * uvm_swap_io: do an i/o operation to swap 1819 */ 1820 1821 static int 1822 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags) 1823 { 1824 daddr_t startblk; 1825 struct buf *bp; 1826 vaddr_t kva; 1827 int error, mapinflags; 1828 bool write, async; 1829 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist); 1830 1831 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d", 1832 startslot, npages, flags, 0); 1833 1834 write = (flags & B_READ) == 0; 1835 async = (flags & B_ASYNC) != 0; 1836 1837 /* 1838 * allocate a buf for the i/o. 1839 */ 1840 1841 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async)); 1842 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp); 1843 if (bp == NULL) { 1844 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM); 1845 return ENOMEM; 1846 } 1847 1848 /* 1849 * convert starting drum slot to block number 1850 */ 1851 1852 startblk = btodb((uint64_t)startslot << PAGE_SHIFT); 1853 1854 /* 1855 * first, map the pages into the kernel. 1856 */ 1857 1858 mapinflags = !write ? 1859 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ : 1860 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE; 1861 kva = uvm_pagermapin(pps, npages, mapinflags); 1862 1863 /* 1864 * fill in the bp/sbp. we currently route our i/o through 1865 * /dev/drum's vnode [swapdev_vp]. 1866 */ 1867 1868 bp->b_cflags = BC_BUSY | BC_NOCACHE; 1869 bp->b_flags = (flags & (B_READ|B_ASYNC)); 1870 bp->b_proc = &proc0; /* XXX */ 1871 bp->b_vnbufs.le_next = NOLIST; 1872 bp->b_data = (void *)kva; 1873 bp->b_blkno = startblk; 1874 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT; 1875 1876 /* 1877 * bump v_numoutput (counter of number of active outputs). 1878 */ 1879 1880 if (write) { 1881 mutex_enter(swapdev_vp->v_interlock); 1882 swapdev_vp->v_numoutput++; 1883 mutex_exit(swapdev_vp->v_interlock); 1884 } 1885 1886 /* 1887 * for async ops we must set up the iodone handler. 1888 */ 1889 1890 if (async) { 1891 bp->b_iodone = uvm_aio_biodone; 1892 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); 1893 if (curlwp == uvm.pagedaemon_lwp) 1894 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1895 else 1896 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 1897 } else { 1898 bp->b_iodone = NULL; 1899 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1900 } 1901 UVMHIST_LOG(pdhist, 1902 "about to start io: data = %p blkno = 0x%x, bcount = %ld", 1903 bp->b_data, bp->b_blkno, bp->b_bcount, 0); 1904 1905 /* 1906 * now we start the I/O, and if async, return. 1907 */ 1908 1909 VOP_STRATEGY(swapdev_vp, bp); 1910 if (async) 1911 return 0; 1912 1913 /* 1914 * must be sync i/o. wait for it to finish 1915 */ 1916 1917 error = biowait(bp); 1918 1919 /* 1920 * kill the pager mapping 1921 */ 1922 1923 uvm_pagermapout(kva, npages); 1924 1925 /* 1926 * now dispose of the buf and we're done. 1927 */ 1928 1929 if (write) { 1930 mutex_enter(swapdev_vp->v_interlock); 1931 vwakeup(bp); 1932 mutex_exit(swapdev_vp->v_interlock); 1933 } 1934 putiobuf(bp); 1935 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0); 1936 1937 return (error); 1938 } 1939