xref: /netbsd-src/sys/uvm/uvm_swap.c (revision d90047b5d07facf36e6c01dcc0bded8997ce9cc2)
1 /*	$NetBSD: uvm_swap.c,v 1.197 2020/07/09 05:57:15 skrll Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.197 2020/07/09 05:57:15 skrll Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/cprng.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/kmem.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60 #include <sys/kauth.h>
61 #include <sys/sysctl.h>
62 #include <sys/workqueue.h>
63 
64 #include <uvm/uvm.h>
65 
66 #include <miscfs/specfs/specdev.h>
67 
68 #include <crypto/aes/aes.h>
69 
70 /*
71  * uvm_swap.c: manage configuration and i/o to swap space.
72  */
73 
74 /*
75  * swap space is managed in the following way:
76  *
77  * each swap partition or file is described by a "swapdev" structure.
78  * each "swapdev" structure contains a "swapent" structure which contains
79  * information that is passed up to the user (via system calls).
80  *
81  * each swap partition is assigned a "priority" (int) which controls
82  * swap parition usage.
83  *
84  * the system maintains a global data structure describing all swap
85  * partitions/files.   there is a sorted LIST of "swappri" structures
86  * which describe "swapdev"'s at that priority.   this LIST is headed
87  * by the "swap_priority" global var.    each "swappri" contains a
88  * TAILQ of "swapdev" structures at that priority.
89  *
90  * locking:
91  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
92  *    system call and prevents the swap priority list from changing
93  *    while we are in the middle of a system call (e.g. SWAP_STATS).
94  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
95  *    structures including the priority list, the swapdev structures,
96  *    and the swapmap arena.
97  *
98  * each swap device has the following info:
99  *  - swap device in use (could be disabled, preventing future use)
100  *  - swap enabled (allows new allocations on swap)
101  *  - map info in /dev/drum
102  *  - vnode pointer
103  * for swap files only:
104  *  - block size
105  *  - max byte count in buffer
106  *  - buffer
107  *
108  * userland controls and configures swap with the swapctl(2) system call.
109  * the sys_swapctl performs the following operations:
110  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
111  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
112  *	(passed in via "arg") of a size passed in via "misc" ... we load
113  *	the current swap config into the array. The actual work is done
114  *	in the uvm_swap_stats() function.
115  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
116  *	priority in "misc", start swapping on it.
117  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
118  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
119  *	"misc")
120  */
121 
122 /*
123  * swapdev: describes a single swap partition/file
124  *
125  * note the following should be true:
126  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
127  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
128  */
129 struct swapdev {
130 	dev_t			swd_dev;	/* device id */
131 	int			swd_flags;	/* flags:inuse/enable/fake */
132 	int			swd_priority;	/* our priority */
133 	int			swd_nblks;	/* blocks in this device */
134 	char			*swd_path;	/* saved pathname of device */
135 	int			swd_pathlen;	/* length of pathname */
136 	int			swd_npages;	/* #pages we can use */
137 	int			swd_npginuse;	/* #pages in use */
138 	int			swd_npgbad;	/* #pages bad */
139 	int			swd_drumoffset;	/* page0 offset in drum */
140 	int			swd_drumsize;	/* #pages in drum */
141 	blist_t			swd_blist;	/* blist for this swapdev */
142 	struct vnode		*swd_vp;	/* backing vnode */
143 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
144 
145 	int			swd_bsize;	/* blocksize (bytes) */
146 	int			swd_maxactive;	/* max active i/o reqs */
147 	struct bufq_state	*swd_tab;	/* buffer list */
148 	int			swd_active;	/* number of active buffers */
149 
150 	volatile uint32_t	*swd_encmap;	/* bitmap of encrypted slots */
151 	struct aesenc		swd_enckey;	/* AES key expanded for enc */
152 	struct aesdec		swd_deckey;	/* AES key expanded for dec */
153 	bool			swd_encinit;	/* true if keys initialized */
154 };
155 
156 /*
157  * swap device priority entry; the list is kept sorted on `spi_priority'.
158  */
159 struct swappri {
160 	int			spi_priority;     /* priority */
161 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
162 	/* tailq of swapdevs at this priority */
163 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
164 };
165 
166 /*
167  * The following two structures are used to keep track of data transfers
168  * on swap devices associated with regular files.
169  * NOTE: this code is more or less a copy of vnd.c; we use the same
170  * structure names here to ease porting..
171  */
172 struct vndxfer {
173 	struct buf	*vx_bp;		/* Pointer to parent buffer */
174 	struct swapdev	*vx_sdp;
175 	int		vx_error;
176 	int		vx_pending;	/* # of pending aux buffers */
177 	int		vx_flags;
178 #define VX_BUSY		1
179 #define VX_DEAD		2
180 };
181 
182 struct vndbuf {
183 	struct buf	vb_buf;
184 	struct vndxfer	*vb_xfer;
185 };
186 
187 /*
188  * We keep a of pool vndbuf's and vndxfer structures.
189  */
190 static struct pool vndxfer_pool, vndbuf_pool;
191 
192 /*
193  * local variables
194  */
195 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
196 
197 /* list of all active swap devices [by priority] */
198 LIST_HEAD(swap_priority, swappri);
199 static struct swap_priority swap_priority;
200 
201 /* locks */
202 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
203 static krwlock_t swap_syscall_lock;
204 
205 /* workqueue and use counter for swap to regular files */
206 static int sw_reg_count = 0;
207 static struct workqueue *sw_reg_workqueue;
208 
209 /* tuneables */
210 u_int uvm_swapisfull_factor = 99;
211 bool uvm_swap_encrypt = false;
212 
213 /*
214  * prototypes
215  */
216 static struct swapdev	*swapdrum_getsdp(int);
217 
218 static struct swapdev	*swaplist_find(struct vnode *, bool);
219 static void		 swaplist_insert(struct swapdev *,
220 					 struct swappri *, int);
221 static void		 swaplist_trim(void);
222 
223 static int swap_on(struct lwp *, struct swapdev *);
224 static int swap_off(struct lwp *, struct swapdev *);
225 
226 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
227 static void sw_reg_biodone(struct buf *);
228 static void sw_reg_iodone(struct work *wk, void *dummy);
229 static void sw_reg_start(struct swapdev *);
230 
231 static int uvm_swap_io(struct vm_page **, int, int, int);
232 
233 static void uvm_swap_genkey(struct swapdev *);
234 static void uvm_swap_encryptpage(struct swapdev *, void *, int);
235 static void uvm_swap_decryptpage(struct swapdev *, void *, int);
236 
237 static size_t
238 encmap_size(size_t npages)
239 {
240 	struct swapdev *sdp;
241 	const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
242 	const size_t bitsperword = NBBY * bytesperword;
243 	const size_t nbits = npages; /* one bit for each page */
244 	const size_t nwords = howmany(nbits, bitsperword);
245 	const size_t nbytes = nwords * bytesperword;
246 
247 	return nbytes;
248 }
249 
250 /*
251  * uvm_swap_init: init the swap system data structures and locks
252  *
253  * => called at boot time from init_main.c after the filesystems
254  *	are brought up (which happens after uvm_init())
255  */
256 void
257 uvm_swap_init(void)
258 {
259 	UVMHIST_FUNC(__func__);
260 
261 	UVMHIST_CALLED(pdhist);
262 	/*
263 	 * first, init the swap list, its counter, and its lock.
264 	 * then get a handle on the vnode for /dev/drum by using
265 	 * the its dev_t number ("swapdev", from MD conf.c).
266 	 */
267 
268 	LIST_INIT(&swap_priority);
269 	uvmexp.nswapdev = 0;
270 	rw_init(&swap_syscall_lock);
271 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
272 
273 	if (bdevvp(swapdev, &swapdev_vp))
274 		panic("%s: can't get vnode for swap device", __func__);
275 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
276 		panic("%s: can't lock swap device", __func__);
277 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
278 		panic("%s: can't open swap device", __func__);
279 	VOP_UNLOCK(swapdev_vp);
280 
281 	/*
282 	 * create swap block resource map to map /dev/drum.   the range
283 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
284 	 * that block 0 is reserved (used to indicate an allocation
285 	 * failure, or no allocation).
286 	 */
287 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 	    VM_NOSLEEP, IPL_NONE);
289 	if (swapmap == 0) {
290 		panic("%s: vmem_create failed", __func__);
291 	}
292 
293 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
294 	    NULL, IPL_BIO);
295 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
296 	    NULL, IPL_BIO);
297 
298 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
299 }
300 
301 /*
302  * swaplist functions: functions that operate on the list of swap
303  * devices on the system.
304  */
305 
306 /*
307  * swaplist_insert: insert swap device "sdp" into the global list
308  *
309  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
310  * => caller must provide a newly allocated swappri structure (we will
311  *	FREE it if we don't need it... this it to prevent allocation
312  *	blocking here while adding swap)
313  */
314 static void
315 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
316 {
317 	struct swappri *spp, *pspp;
318 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
319 
320 	KASSERT(rw_write_held(&swap_syscall_lock));
321 	KASSERT(mutex_owned(&uvm_swap_data_lock));
322 
323 	/*
324 	 * find entry at or after which to insert the new device.
325 	 */
326 	pspp = NULL;
327 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
328 		if (priority <= spp->spi_priority)
329 			break;
330 		pspp = spp;
331 	}
332 
333 	/*
334 	 * new priority?
335 	 */
336 	if (spp == NULL || spp->spi_priority != priority) {
337 		spp = newspp;  /* use newspp! */
338 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
339 			    priority, 0, 0, 0);
340 
341 		spp->spi_priority = priority;
342 		TAILQ_INIT(&spp->spi_swapdev);
343 
344 		if (pspp)
345 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
346 		else
347 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
348 	} else {
349 	  	/* we don't need a new priority structure, free it */
350 		kmem_free(newspp, sizeof(*newspp));
351 	}
352 
353 	/*
354 	 * priority found (or created).   now insert on the priority's
355 	 * tailq list and bump the total number of swapdevs.
356 	 */
357 	sdp->swd_priority = priority;
358 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
359 	uvmexp.nswapdev++;
360 }
361 
362 /*
363  * swaplist_find: find and optionally remove a swap device from the
364  *	global list.
365  *
366  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
367  * => we return the swapdev we found (and removed)
368  */
369 static struct swapdev *
370 swaplist_find(struct vnode *vp, bool remove)
371 {
372 	struct swapdev *sdp;
373 	struct swappri *spp;
374 
375 	KASSERT(rw_lock_held(&swap_syscall_lock));
376 	KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
377 	KASSERT(mutex_owned(&uvm_swap_data_lock));
378 
379 	/*
380 	 * search the lists for the requested vp
381 	 */
382 
383 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
384 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
385 			if (sdp->swd_vp == vp) {
386 				if (remove) {
387 					TAILQ_REMOVE(&spp->spi_swapdev,
388 					    sdp, swd_next);
389 					uvmexp.nswapdev--;
390 				}
391 				return(sdp);
392 			}
393 		}
394 	}
395 	return (NULL);
396 }
397 
398 /*
399  * swaplist_trim: scan priority list for empty priority entries and kill
400  *	them.
401  *
402  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
403  */
404 static void
405 swaplist_trim(void)
406 {
407 	struct swappri *spp, *nextspp;
408 
409 	KASSERT(rw_write_held(&swap_syscall_lock));
410 	KASSERT(mutex_owned(&uvm_swap_data_lock));
411 
412 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
413 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
414 			continue;
415 		LIST_REMOVE(spp, spi_swappri);
416 		kmem_free(spp, sizeof(*spp));
417 	}
418 }
419 
420 /*
421  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
422  *	to the "swapdev" that maps that section of the drum.
423  *
424  * => each swapdev takes one big contig chunk of the drum
425  * => caller must hold uvm_swap_data_lock
426  */
427 static struct swapdev *
428 swapdrum_getsdp(int pgno)
429 {
430 	struct swapdev *sdp;
431 	struct swappri *spp;
432 
433 	KASSERT(mutex_owned(&uvm_swap_data_lock));
434 
435 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
436 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
437 			if (sdp->swd_flags & SWF_FAKE)
438 				continue;
439 			if (pgno >= sdp->swd_drumoffset &&
440 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
441 				return sdp;
442 			}
443 		}
444 	}
445 	return NULL;
446 }
447 
448 /*
449  * swapdrum_sdp_is: true iff the swap device for pgno is sdp
450  *
451  * => for use in positive assertions only; result is not stable
452  */
453 static bool __debugused
454 swapdrum_sdp_is(int pgno, struct swapdev *sdp)
455 {
456 	bool result;
457 
458 	mutex_enter(&uvm_swap_data_lock);
459 	result = swapdrum_getsdp(pgno) == sdp;
460 	mutex_exit(&uvm_swap_data_lock);
461 
462 	return result;
463 }
464 
465 void swapsys_lock(krw_t op)
466 {
467 	rw_enter(&swap_syscall_lock, op);
468 }
469 
470 void swapsys_unlock(void)
471 {
472 	rw_exit(&swap_syscall_lock);
473 }
474 
475 static void
476 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
477 {
478 	se->se_dev = sdp->swd_dev;
479 	se->se_flags = sdp->swd_flags;
480 	se->se_nblks = sdp->swd_nblks;
481 	se->se_inuse = inuse;
482 	se->se_priority = sdp->swd_priority;
483 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
484 	strcpy(se->se_path, sdp->swd_path);
485 }
486 
487 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
488     (void *)enosys;
489 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
490     (void *)enosys;
491 
492 /*
493  * sys_swapctl: main entry point for swapctl(2) system call
494  * 	[with two helper functions: swap_on and swap_off]
495  */
496 int
497 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
498 {
499 	/* {
500 		syscallarg(int) cmd;
501 		syscallarg(void *) arg;
502 		syscallarg(int) misc;
503 	} */
504 	struct vnode *vp;
505 	struct nameidata nd;
506 	struct swappri *spp;
507 	struct swapdev *sdp;
508 #define SWAP_PATH_MAX (PATH_MAX + 1)
509 	char	*userpath;
510 	size_t	len = 0;
511 	int	error;
512 	int	priority;
513 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
514 
515 	/*
516 	 * we handle the non-priv NSWAP and STATS request first.
517 	 *
518 	 * SWAP_NSWAP: return number of config'd swap devices
519 	 * [can also be obtained with uvmexp sysctl]
520 	 */
521 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
522 		const int nswapdev = uvmexp.nswapdev;
523 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
524 		    0, 0, 0);
525 		*retval = nswapdev;
526 		return 0;
527 	}
528 
529 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
530 
531 	/*
532 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
533 	 */
534 	rw_enter(&swap_syscall_lock, RW_WRITER);
535 
536 	/*
537 	 * SWAP_STATS: get stats on current # of configured swap devs
538 	 *
539 	 * note that the swap_priority list can't change as long
540 	 * as we are holding the swap_syscall_lock.  we don't want
541 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
542 	 * copyout() and we don't want to be holding that lock then!
543 	 */
544 	switch (SCARG(uap, cmd)) {
545 	case SWAP_STATS13:
546 		error = (*uvm_swap_stats13)(uap, retval);
547 		goto out;
548 	case SWAP_STATS50:
549 		error = (*uvm_swap_stats50)(uap, retval);
550 		goto out;
551 	case SWAP_STATS:
552 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
553 		    NULL, sizeof(struct swapent), retval);
554 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
555 		goto out;
556 
557 	case SWAP_GETDUMPDEV:
558 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
559 		goto out;
560 	default:
561 		break;
562 	}
563 
564 	/*
565 	 * all other requests require superuser privs.   verify.
566 	 */
567 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
568 	    0, NULL, NULL, NULL)))
569 		goto out;
570 
571 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
572 		/* drop the current dump device */
573 		dumpdev = NODEV;
574 		dumpcdev = NODEV;
575 		cpu_dumpconf();
576 		goto out;
577 	}
578 
579 	/*
580 	 * at this point we expect a path name in arg.   we will
581 	 * use namei() to gain a vnode reference (vref), and lock
582 	 * the vnode (VOP_LOCK).
583 	 *
584 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
585 	 * miniroot)
586 	 */
587 	if (SCARG(uap, arg) == NULL) {
588 		vp = rootvp;		/* miniroot */
589 		vref(vp);
590 		if (vn_lock(vp, LK_EXCLUSIVE)) {
591 			vrele(vp);
592 			error = EBUSY;
593 			goto out;
594 		}
595 		if (SCARG(uap, cmd) == SWAP_ON &&
596 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
597 			panic("swapctl: miniroot copy failed");
598 	} else {
599 		struct pathbuf *pb;
600 
601 		/*
602 		 * This used to allow copying in one extra byte
603 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
604 		 * This was completely pointless because if anyone
605 		 * used that extra byte namei would fail with
606 		 * ENAMETOOLONG anyway, so I've removed the excess
607 		 * logic. - dholland 20100215
608 		 */
609 
610 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
611 		if (error) {
612 			goto out;
613 		}
614 		if (SCARG(uap, cmd) == SWAP_ON) {
615 			/* get a copy of the string */
616 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
617 			len = strlen(userpath) + 1;
618 		}
619 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
620 		if ((error = namei(&nd))) {
621 			pathbuf_destroy(pb);
622 			goto out;
623 		}
624 		vp = nd.ni_vp;
625 		pathbuf_destroy(pb);
626 	}
627 	/* note: "vp" is referenced and locked */
628 
629 	error = 0;		/* assume no error */
630 	switch(SCARG(uap, cmd)) {
631 
632 	case SWAP_DUMPDEV:
633 		if (vp->v_type != VBLK) {
634 			error = ENOTBLK;
635 			break;
636 		}
637 		if (bdevsw_lookup(vp->v_rdev)) {
638 			dumpdev = vp->v_rdev;
639 			dumpcdev = devsw_blk2chr(dumpdev);
640 		} else
641 			dumpdev = NODEV;
642 		cpu_dumpconf();
643 		break;
644 
645 	case SWAP_CTL:
646 		/*
647 		 * get new priority, remove old entry (if any) and then
648 		 * reinsert it in the correct place.  finally, prune out
649 		 * any empty priority structures.
650 		 */
651 		priority = SCARG(uap, misc);
652 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
653 		mutex_enter(&uvm_swap_data_lock);
654 		if ((sdp = swaplist_find(vp, true)) == NULL) {
655 			error = ENOENT;
656 		} else {
657 			swaplist_insert(sdp, spp, priority);
658 			swaplist_trim();
659 		}
660 		mutex_exit(&uvm_swap_data_lock);
661 		if (error)
662 			kmem_free(spp, sizeof(*spp));
663 		break;
664 
665 	case SWAP_ON:
666 
667 		/*
668 		 * check for duplicates.   if none found, then insert a
669 		 * dummy entry on the list to prevent someone else from
670 		 * trying to enable this device while we are working on
671 		 * it.
672 		 */
673 
674 		priority = SCARG(uap, misc);
675 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
676 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
677 		sdp->swd_flags = SWF_FAKE;
678 		sdp->swd_vp = vp;
679 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
680 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
681 		mutex_enter(&uvm_swap_data_lock);
682 		if (swaplist_find(vp, false) != NULL) {
683 			error = EBUSY;
684 			mutex_exit(&uvm_swap_data_lock);
685 			bufq_free(sdp->swd_tab);
686 			kmem_free(sdp, sizeof(*sdp));
687 			kmem_free(spp, sizeof(*spp));
688 			break;
689 		}
690 		swaplist_insert(sdp, spp, priority);
691 		mutex_exit(&uvm_swap_data_lock);
692 
693 		KASSERT(len > 0);
694 		sdp->swd_pathlen = len;
695 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
696 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
697 			panic("swapctl: copystr");
698 
699 		/*
700 		 * we've now got a FAKE placeholder in the swap list.
701 		 * now attempt to enable swap on it.  if we fail, undo
702 		 * what we've done and kill the fake entry we just inserted.
703 		 * if swap_on is a success, it will clear the SWF_FAKE flag
704 		 */
705 
706 		if ((error = swap_on(l, sdp)) != 0) {
707 			mutex_enter(&uvm_swap_data_lock);
708 			(void) swaplist_find(vp, true);  /* kill fake entry */
709 			swaplist_trim();
710 			mutex_exit(&uvm_swap_data_lock);
711 			bufq_free(sdp->swd_tab);
712 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
713 			kmem_free(sdp, sizeof(*sdp));
714 			break;
715 		}
716 		break;
717 
718 	case SWAP_OFF:
719 		mutex_enter(&uvm_swap_data_lock);
720 		if ((sdp = swaplist_find(vp, false)) == NULL) {
721 			mutex_exit(&uvm_swap_data_lock);
722 			error = ENXIO;
723 			break;
724 		}
725 
726 		/*
727 		 * If a device isn't in use or enabled, we
728 		 * can't stop swapping from it (again).
729 		 */
730 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
731 			mutex_exit(&uvm_swap_data_lock);
732 			error = EBUSY;
733 			break;
734 		}
735 
736 		/*
737 		 * do the real work.
738 		 */
739 		error = swap_off(l, sdp);
740 		break;
741 
742 	default:
743 		error = EINVAL;
744 	}
745 
746 	/*
747 	 * done!  release the ref gained by namei() and unlock.
748 	 */
749 	vput(vp);
750 out:
751 	rw_exit(&swap_syscall_lock);
752 	kmem_free(userpath, SWAP_PATH_MAX);
753 
754 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
755 	return (error);
756 }
757 
758 /*
759  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
760  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
761  * emulation to use it directly without going through sys_swapctl().
762  * The problem with using sys_swapctl() there is that it involves
763  * copying the swapent array to the stackgap, and this array's size
764  * is not known at build time. Hence it would not be possible to
765  * ensure it would fit in the stackgap in any case.
766  */
767 int
768 uvm_swap_stats(char *ptr, int misc,
769     void (*f)(void *, const struct swapent *), size_t len,
770     register_t *retval)
771 {
772 	struct swappri *spp;
773 	struct swapdev *sdp;
774 	struct swapent sep;
775 	int count = 0;
776 	int error;
777 
778 	KASSERT(len <= sizeof(sep));
779 	if (len == 0)
780 		return ENOSYS;
781 
782 	if (misc < 0)
783 		return EINVAL;
784 
785 	if (misc == 0 || uvmexp.nswapdev == 0)
786 		return 0;
787 
788 	/* Make sure userland cannot exhaust kernel memory */
789 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
790 		misc = uvmexp.nswapdev;
791 
792 	KASSERT(rw_lock_held(&swap_syscall_lock));
793 
794 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
795 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
796 			int inuse;
797 
798 			if (misc-- <= 0)
799 				break;
800 
801 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
802 			    PAGE_SHIFT);
803 
804 			memset(&sep, 0, sizeof(sep));
805 			swapent_cvt(&sep, sdp, inuse);
806 			if (f)
807 				(*f)(&sep, &sep);
808 			if ((error = copyout(&sep, ptr, len)) != 0)
809 				return error;
810 			ptr += len;
811 			count++;
812 		}
813 	}
814 	*retval = count;
815 	return 0;
816 }
817 
818 /*
819  * swap_on: attempt to enable a swapdev for swapping.   note that the
820  *	swapdev is already on the global list, but disabled (marked
821  *	SWF_FAKE).
822  *
823  * => we avoid the start of the disk (to protect disk labels)
824  * => we also avoid the miniroot, if we are swapping to root.
825  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
826  *	if needed.
827  */
828 static int
829 swap_on(struct lwp *l, struct swapdev *sdp)
830 {
831 	struct vnode *vp;
832 	int error, npages, nblocks, size;
833 	long addr;
834 	vmem_addr_t result;
835 	struct vattr va;
836 	dev_t dev;
837 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
838 
839 	/*
840 	 * we want to enable swapping on sdp.   the swd_vp contains
841 	 * the vnode we want (locked and ref'd), and the swd_dev
842 	 * contains the dev_t of the file, if it a block device.
843 	 */
844 
845 	vp = sdp->swd_vp;
846 	dev = sdp->swd_dev;
847 
848 	/*
849 	 * open the swap file (mostly useful for block device files to
850 	 * let device driver know what is up).
851 	 *
852 	 * we skip the open/close for root on swap because the root
853 	 * has already been opened when root was mounted (mountroot).
854 	 */
855 	if (vp != rootvp) {
856 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
857 			return (error);
858 	}
859 
860 	/* XXX this only works for block devices */
861 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
862 
863 	/*
864 	 * we now need to determine the size of the swap area.   for
865 	 * block specials we can call the d_psize function.
866 	 * for normal files, we must stat [get attrs].
867 	 *
868 	 * we put the result in nblks.
869 	 * for normal files, we also want the filesystem block size
870 	 * (which we get with statfs).
871 	 */
872 	switch (vp->v_type) {
873 	case VBLK:
874 		if ((nblocks = bdev_size(dev)) == -1) {
875 			error = ENXIO;
876 			goto bad;
877 		}
878 		break;
879 
880 	case VREG:
881 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
882 			goto bad;
883 		nblocks = (int)btodb(va.va_size);
884 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
885 		/*
886 		 * limit the max # of outstanding I/O requests we issue
887 		 * at any one time.   take it easy on NFS servers.
888 		 */
889 		if (vp->v_tag == VT_NFS)
890 			sdp->swd_maxactive = 2; /* XXX */
891 		else
892 			sdp->swd_maxactive = 8; /* XXX */
893 		break;
894 
895 	default:
896 		error = ENXIO;
897 		goto bad;
898 	}
899 
900 	/*
901 	 * save nblocks in a safe place and convert to pages.
902 	 */
903 
904 	sdp->swd_nblks = nblocks;
905 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
906 
907 	/*
908 	 * for block special files, we want to make sure that leave
909 	 * the disklabel and bootblocks alone, so we arrange to skip
910 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
911 	 * note that because of this the "size" can be less than the
912 	 * actual number of blocks on the device.
913 	 */
914 	if (vp->v_type == VBLK) {
915 		/* we use pages 1 to (size - 1) [inclusive] */
916 		size = npages - 1;
917 		addr = 1;
918 	} else {
919 		/* we use pages 0 to (size - 1) [inclusive] */
920 		size = npages;
921 		addr = 0;
922 	}
923 
924 	/*
925 	 * make sure we have enough blocks for a reasonable sized swap
926 	 * area.   we want at least one page.
927 	 */
928 
929 	if (size < 1) {
930 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
931 		error = EINVAL;
932 		goto bad;
933 	}
934 
935 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
936 
937 	/*
938 	 * now we need to allocate an extent to manage this swap device
939 	 */
940 
941 	sdp->swd_blist = blist_create(npages);
942 	/* mark all expect the `saved' region free. */
943 	blist_free(sdp->swd_blist, addr, size);
944 
945 	/*
946 	 * allocate space to for swap encryption state and mark the
947 	 * keys uninitialized so we generate them lazily
948 	 */
949 	sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
950 	sdp->swd_encinit = false;
951 
952 	/*
953 	 * if the vnode we are swapping to is the root vnode
954 	 * (i.e. we are swapping to the miniroot) then we want
955 	 * to make sure we don't overwrite it.   do a statfs to
956 	 * find its size and skip over it.
957 	 */
958 	if (vp == rootvp) {
959 		struct mount *mp;
960 		struct statvfs *sp;
961 		int rootblocks, rootpages;
962 
963 		mp = rootvnode->v_mount;
964 		sp = &mp->mnt_stat;
965 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
966 		/*
967 		 * XXX: sp->f_blocks isn't the total number of
968 		 * blocks in the filesystem, it's the number of
969 		 * data blocks.  so, our rootblocks almost
970 		 * definitely underestimates the total size
971 		 * of the filesystem - how badly depends on the
972 		 * details of the filesystem type.  there isn't
973 		 * an obvious way to deal with this cleanly
974 		 * and perfectly, so for now we just pad our
975 		 * rootblocks estimate with an extra 5 percent.
976 		 */
977 		rootblocks += (rootblocks >> 5) +
978 			(rootblocks >> 6) +
979 			(rootblocks >> 7);
980 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
981 		if (rootpages > size)
982 			panic("swap_on: miniroot larger than swap?");
983 
984 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
985 			panic("swap_on: unable to preserve miniroot");
986 		}
987 
988 		size -= rootpages;
989 		printf("Preserved %d pages of miniroot ", rootpages);
990 		printf("leaving %d pages of swap\n", size);
991 	}
992 
993 	/*
994 	 * add a ref to vp to reflect usage as a swap device.
995 	 */
996 	vref(vp);
997 
998 	/*
999 	 * now add the new swapdev to the drum and enable.
1000 	 */
1001 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1002 	if (error != 0)
1003 		panic("swapdrum_add");
1004 	/*
1005 	 * If this is the first regular swap create the workqueue.
1006 	 * => Protected by swap_syscall_lock.
1007 	 */
1008 	if (vp->v_type != VBLK) {
1009 		if (sw_reg_count++ == 0) {
1010 			KASSERT(sw_reg_workqueue == NULL);
1011 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
1012 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1013 				panic("%s: workqueue_create failed", __func__);
1014 		}
1015 	}
1016 
1017 	sdp->swd_drumoffset = (int)result;
1018 	sdp->swd_drumsize = npages;
1019 	sdp->swd_npages = size;
1020 	mutex_enter(&uvm_swap_data_lock);
1021 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1022 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1023 	uvmexp.swpages += size;
1024 	uvmexp.swpgavail += size;
1025 	mutex_exit(&uvm_swap_data_lock);
1026 	return (0);
1027 
1028 	/*
1029 	 * failure: clean up and return error.
1030 	 */
1031 
1032 bad:
1033 	if (sdp->swd_blist) {
1034 		blist_destroy(sdp->swd_blist);
1035 	}
1036 	if (vp != rootvp) {
1037 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1038 	}
1039 	return (error);
1040 }
1041 
1042 /*
1043  * swap_off: stop swapping on swapdev
1044  *
1045  * => swap data should be locked, we will unlock.
1046  */
1047 static int
1048 swap_off(struct lwp *l, struct swapdev *sdp)
1049 {
1050 	int npages = sdp->swd_npages;
1051 	int error = 0;
1052 
1053 	UVMHIST_FUNC(__func__);
1054 	UVMHIST_CALLARGS(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1055 
1056 	KASSERT(rw_write_held(&swap_syscall_lock));
1057 	KASSERT(mutex_owned(&uvm_swap_data_lock));
1058 
1059 	/* disable the swap area being removed */
1060 	sdp->swd_flags &= ~SWF_ENABLE;
1061 	uvmexp.swpgavail -= npages;
1062 	mutex_exit(&uvm_swap_data_lock);
1063 
1064 	/*
1065 	 * the idea is to find all the pages that are paged out to this
1066 	 * device, and page them all in.  in uvm, swap-backed pageable
1067 	 * memory can take two forms: aobjs and anons.  call the
1068 	 * swapoff hook for each subsystem to bring in pages.
1069 	 */
1070 
1071 	if (uao_swap_off(sdp->swd_drumoffset,
1072 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1073 	    amap_swap_off(sdp->swd_drumoffset,
1074 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1075 		error = ENOMEM;
1076 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1077 		error = EBUSY;
1078 	}
1079 
1080 	if (error) {
1081 		mutex_enter(&uvm_swap_data_lock);
1082 		sdp->swd_flags |= SWF_ENABLE;
1083 		uvmexp.swpgavail += npages;
1084 		mutex_exit(&uvm_swap_data_lock);
1085 
1086 		return error;
1087 	}
1088 
1089 	/*
1090 	 * If this is the last regular swap destroy the workqueue.
1091 	 * => Protected by swap_syscall_lock.
1092 	 */
1093 	if (sdp->swd_vp->v_type != VBLK) {
1094 		KASSERT(sw_reg_count > 0);
1095 		KASSERT(sw_reg_workqueue != NULL);
1096 		if (--sw_reg_count == 0) {
1097 			workqueue_destroy(sw_reg_workqueue);
1098 			sw_reg_workqueue = NULL;
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * done with the vnode.
1104 	 * drop our ref on the vnode before calling VOP_CLOSE()
1105 	 * so that spec_close() can tell if this is the last close.
1106 	 */
1107 	vrele(sdp->swd_vp);
1108 	if (sdp->swd_vp != rootvp) {
1109 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1110 	}
1111 
1112 	mutex_enter(&uvm_swap_data_lock);
1113 	uvmexp.swpages -= npages;
1114 	uvmexp.swpginuse -= sdp->swd_npgbad;
1115 
1116 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1117 		panic("%s: swapdev not in list", __func__);
1118 	swaplist_trim();
1119 	mutex_exit(&uvm_swap_data_lock);
1120 
1121 	/*
1122 	 * free all resources!
1123 	 */
1124 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1125 	blist_destroy(sdp->swd_blist);
1126 	bufq_free(sdp->swd_tab);
1127 	kmem_free(__UNVOLATILE(sdp->swd_encmap),
1128 	    encmap_size(sdp->swd_drumsize));
1129 	explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
1130 	explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
1131 	kmem_free(sdp, sizeof(*sdp));
1132 	return (0);
1133 }
1134 
1135 void
1136 uvm_swap_shutdown(struct lwp *l)
1137 {
1138 	struct swapdev *sdp;
1139 	struct swappri *spp;
1140 	struct vnode *vp;
1141 	int error;
1142 
1143 	printf("turning off swap...");
1144 	rw_enter(&swap_syscall_lock, RW_WRITER);
1145 	mutex_enter(&uvm_swap_data_lock);
1146 again:
1147 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1148 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1149 			if (sdp->swd_flags & SWF_FAKE)
1150 				continue;
1151 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1152 				continue;
1153 #ifdef DEBUG
1154 			printf("\nturning off swap on %s...",
1155 			    sdp->swd_path);
1156 #endif
1157 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1158 				error = EBUSY;
1159 				vp = NULL;
1160 			} else
1161 				error = 0;
1162 			if (!error) {
1163 				error = swap_off(l, sdp);
1164 				mutex_enter(&uvm_swap_data_lock);
1165 			}
1166 			if (error) {
1167 				printf("stopping swap on %s failed "
1168 				    "with error %d\n", sdp->swd_path, error);
1169 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1170 				    swd_next);
1171 				uvmexp.nswapdev--;
1172 				swaplist_trim();
1173 				if (vp)
1174 					vput(vp);
1175 			}
1176 			goto again;
1177 		}
1178 	printf(" done\n");
1179 	mutex_exit(&uvm_swap_data_lock);
1180 	rw_exit(&swap_syscall_lock);
1181 }
1182 
1183 
1184 /*
1185  * /dev/drum interface and i/o functions
1186  */
1187 
1188 /*
1189  * swstrategy: perform I/O on the drum
1190  *
1191  * => we must map the i/o request from the drum to the correct swapdev.
1192  */
1193 static void
1194 swstrategy(struct buf *bp)
1195 {
1196 	struct swapdev *sdp;
1197 	struct vnode *vp;
1198 	int pageno, bn;
1199 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1200 
1201 	/*
1202 	 * convert block number to swapdev.   note that swapdev can't
1203 	 * be yanked out from under us because we are holding resources
1204 	 * in it (i.e. the blocks we are doing I/O on).
1205 	 */
1206 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1207 	mutex_enter(&uvm_swap_data_lock);
1208 	sdp = swapdrum_getsdp(pageno);
1209 	mutex_exit(&uvm_swap_data_lock);
1210 	if (sdp == NULL) {
1211 		bp->b_error = EINVAL;
1212 		bp->b_resid = bp->b_bcount;
1213 		biodone(bp);
1214 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1215 		return;
1216 	}
1217 
1218 	/*
1219 	 * convert drum page number to block number on this swapdev.
1220 	 */
1221 
1222 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1223 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1224 
1225 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1226 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
1227 		sdp->swd_drumoffset, bn, bp->b_bcount);
1228 
1229 	/*
1230 	 * for block devices we finish up here.
1231 	 * for regular files we have to do more work which we delegate
1232 	 * to sw_reg_strategy().
1233 	 */
1234 
1235 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1236 	switch (vp->v_type) {
1237 	default:
1238 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1239 
1240 	case VBLK:
1241 
1242 		/*
1243 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1244 		 * on the swapdev (sdp).
1245 		 */
1246 		bp->b_blkno = bn;		/* swapdev block number */
1247 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1248 
1249 		/*
1250 		 * if we are doing a write, we have to redirect the i/o on
1251 		 * drum's v_numoutput counter to the swapdevs.
1252 		 */
1253 		if ((bp->b_flags & B_READ) == 0) {
1254 			mutex_enter(bp->b_objlock);
1255 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1256 			mutex_exit(bp->b_objlock);
1257 			mutex_enter(vp->v_interlock);
1258 			vp->v_numoutput++;	/* put it on swapdev */
1259 			mutex_exit(vp->v_interlock);
1260 		}
1261 
1262 		/*
1263 		 * finally plug in swapdev vnode and start I/O
1264 		 */
1265 		bp->b_vp = vp;
1266 		bp->b_objlock = vp->v_interlock;
1267 		VOP_STRATEGY(vp, bp);
1268 		return;
1269 
1270 	case VREG:
1271 		/*
1272 		 * delegate to sw_reg_strategy function.
1273 		 */
1274 		sw_reg_strategy(sdp, bp, bn);
1275 		return;
1276 	}
1277 	/* NOTREACHED */
1278 }
1279 
1280 /*
1281  * swread: the read function for the drum (just a call to physio)
1282  */
1283 /*ARGSUSED*/
1284 static int
1285 swread(dev_t dev, struct uio *uio, int ioflag)
1286 {
1287 	UVMHIST_FUNC(__func__);
1288 	UVMHIST_CALLARGS(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1289 
1290 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1291 }
1292 
1293 /*
1294  * swwrite: the write function for the drum (just a call to physio)
1295  */
1296 /*ARGSUSED*/
1297 static int
1298 swwrite(dev_t dev, struct uio *uio, int ioflag)
1299 {
1300 	UVMHIST_FUNC(__func__);
1301 	UVMHIST_CALLARGS(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1302 
1303 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1304 }
1305 
1306 const struct bdevsw swap_bdevsw = {
1307 	.d_open = nullopen,
1308 	.d_close = nullclose,
1309 	.d_strategy = swstrategy,
1310 	.d_ioctl = noioctl,
1311 	.d_dump = nodump,
1312 	.d_psize = nosize,
1313 	.d_discard = nodiscard,
1314 	.d_flag = D_OTHER
1315 };
1316 
1317 const struct cdevsw swap_cdevsw = {
1318 	.d_open = nullopen,
1319 	.d_close = nullclose,
1320 	.d_read = swread,
1321 	.d_write = swwrite,
1322 	.d_ioctl = noioctl,
1323 	.d_stop = nostop,
1324 	.d_tty = notty,
1325 	.d_poll = nopoll,
1326 	.d_mmap = nommap,
1327 	.d_kqfilter = nokqfilter,
1328 	.d_discard = nodiscard,
1329 	.d_flag = D_OTHER,
1330 };
1331 
1332 /*
1333  * sw_reg_strategy: handle swap i/o to regular files
1334  */
1335 static void
1336 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1337 {
1338 	struct vnode	*vp;
1339 	struct vndxfer	*vnx;
1340 	daddr_t		nbn;
1341 	char 		*addr;
1342 	off_t		byteoff;
1343 	int		s, off, nra, error, sz, resid;
1344 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1345 
1346 	/*
1347 	 * allocate a vndxfer head for this transfer and point it to
1348 	 * our buffer.
1349 	 */
1350 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1351 	vnx->vx_flags = VX_BUSY;
1352 	vnx->vx_error = 0;
1353 	vnx->vx_pending = 0;
1354 	vnx->vx_bp = bp;
1355 	vnx->vx_sdp = sdp;
1356 
1357 	/*
1358 	 * setup for main loop where we read filesystem blocks into
1359 	 * our buffer.
1360 	 */
1361 	error = 0;
1362 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
1363 	addr = bp->b_data;		/* current position in buffer */
1364 	byteoff = dbtob((uint64_t)bn);
1365 
1366 	for (resid = bp->b_resid; resid; resid -= sz) {
1367 		struct vndbuf	*nbp;
1368 
1369 		/*
1370 		 * translate byteoffset into block number.  return values:
1371 		 *   vp = vnode of underlying device
1372 		 *  nbn = new block number (on underlying vnode dev)
1373 		 *  nra = num blocks we can read-ahead (excludes requested
1374 		 *	block)
1375 		 */
1376 		nra = 0;
1377 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1378 				 	&vp, &nbn, &nra);
1379 
1380 		if (error == 0 && nbn == (daddr_t)-1) {
1381 			/*
1382 			 * this used to just set error, but that doesn't
1383 			 * do the right thing.  Instead, it causes random
1384 			 * memory errors.  The panic() should remain until
1385 			 * this condition doesn't destabilize the system.
1386 			 */
1387 #if 1
1388 			panic("%s: swap to sparse file", __func__);
1389 #else
1390 			error = EIO;	/* failure */
1391 #endif
1392 		}
1393 
1394 		/*
1395 		 * punt if there was an error or a hole in the file.
1396 		 * we must wait for any i/o ops we have already started
1397 		 * to finish before returning.
1398 		 *
1399 		 * XXX we could deal with holes here but it would be
1400 		 * a hassle (in the write case).
1401 		 */
1402 		if (error) {
1403 			s = splbio();
1404 			vnx->vx_error = error;	/* pass error up */
1405 			goto out;
1406 		}
1407 
1408 		/*
1409 		 * compute the size ("sz") of this transfer (in bytes).
1410 		 */
1411 		off = byteoff % sdp->swd_bsize;
1412 		sz = (1 + nra) * sdp->swd_bsize - off;
1413 		if (sz > resid)
1414 			sz = resid;
1415 
1416 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1417 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
1418 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1419 
1420 		/*
1421 		 * now get a buf structure.   note that the vb_buf is
1422 		 * at the front of the nbp structure so that you can
1423 		 * cast pointers between the two structure easily.
1424 		 */
1425 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1426 		buf_init(&nbp->vb_buf);
1427 		nbp->vb_buf.b_flags    = bp->b_flags;
1428 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1429 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1430 		nbp->vb_buf.b_bcount   = sz;
1431 		nbp->vb_buf.b_bufsize  = sz;
1432 		nbp->vb_buf.b_error    = 0;
1433 		nbp->vb_buf.b_data     = addr;
1434 		nbp->vb_buf.b_lblkno   = 0;
1435 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1436 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1437 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1438 		nbp->vb_buf.b_vp       = vp;
1439 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1440 		if (vp->v_type == VBLK) {
1441 			nbp->vb_buf.b_dev = vp->v_rdev;
1442 		}
1443 
1444 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1445 
1446 		/*
1447 		 * Just sort by block number
1448 		 */
1449 		s = splbio();
1450 		if (vnx->vx_error != 0) {
1451 			buf_destroy(&nbp->vb_buf);
1452 			pool_put(&vndbuf_pool, nbp);
1453 			goto out;
1454 		}
1455 		vnx->vx_pending++;
1456 
1457 		/* sort it in and start I/O if we are not over our limit */
1458 		/* XXXAD locking */
1459 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1460 		sw_reg_start(sdp);
1461 		splx(s);
1462 
1463 		/*
1464 		 * advance to the next I/O
1465 		 */
1466 		byteoff += sz;
1467 		addr += sz;
1468 	}
1469 
1470 	s = splbio();
1471 
1472 out: /* Arrive here at splbio */
1473 	vnx->vx_flags &= ~VX_BUSY;
1474 	if (vnx->vx_pending == 0) {
1475 		error = vnx->vx_error;
1476 		pool_put(&vndxfer_pool, vnx);
1477 		bp->b_error = error;
1478 		biodone(bp);
1479 	}
1480 	splx(s);
1481 }
1482 
1483 /*
1484  * sw_reg_start: start an I/O request on the requested swapdev
1485  *
1486  * => reqs are sorted by b_rawblkno (above)
1487  */
1488 static void
1489 sw_reg_start(struct swapdev *sdp)
1490 {
1491 	struct buf	*bp;
1492 	struct vnode	*vp;
1493 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1494 
1495 	/* recursion control */
1496 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1497 		return;
1498 
1499 	sdp->swd_flags |= SWF_BUSY;
1500 
1501 	while (sdp->swd_active < sdp->swd_maxactive) {
1502 		bp = bufq_get(sdp->swd_tab);
1503 		if (bp == NULL)
1504 			break;
1505 		sdp->swd_active++;
1506 
1507 		UVMHIST_LOG(pdhist,
1508 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
1509 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1510 		    bp->b_bcount);
1511 		vp = bp->b_vp;
1512 		KASSERT(bp->b_objlock == vp->v_interlock);
1513 		if ((bp->b_flags & B_READ) == 0) {
1514 			mutex_enter(vp->v_interlock);
1515 			vp->v_numoutput++;
1516 			mutex_exit(vp->v_interlock);
1517 		}
1518 		VOP_STRATEGY(vp, bp);
1519 	}
1520 	sdp->swd_flags &= ~SWF_BUSY;
1521 }
1522 
1523 /*
1524  * sw_reg_biodone: one of our i/o's has completed
1525  */
1526 static void
1527 sw_reg_biodone(struct buf *bp)
1528 {
1529 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1530 }
1531 
1532 /*
1533  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1534  *
1535  * => note that we can recover the vndbuf struct by casting the buf ptr
1536  */
1537 static void
1538 sw_reg_iodone(struct work *wk, void *dummy)
1539 {
1540 	struct vndbuf *vbp = (void *)wk;
1541 	struct vndxfer *vnx = vbp->vb_xfer;
1542 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1543 	struct swapdev	*sdp = vnx->vx_sdp;
1544 	int s, resid, error;
1545 	KASSERT(&vbp->vb_buf.b_work == wk);
1546 	UVMHIST_FUNC(__func__);
1547 	UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1548 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1549 	    (uintptr_t)vbp->vb_buf.b_data);
1550 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
1551 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1552 
1553 	/*
1554 	 * protect vbp at splbio and update.
1555 	 */
1556 
1557 	s = splbio();
1558 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1559 	pbp->b_resid -= resid;
1560 	vnx->vx_pending--;
1561 
1562 	if (vbp->vb_buf.b_error != 0) {
1563 		/* pass error upward */
1564 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1565 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
1566 		vnx->vx_error = error;
1567 	}
1568 
1569 	/*
1570 	 * kill vbp structure
1571 	 */
1572 	buf_destroy(&vbp->vb_buf);
1573 	pool_put(&vndbuf_pool, vbp);
1574 
1575 	/*
1576 	 * wrap up this transaction if it has run to completion or, in
1577 	 * case of an error, when all auxiliary buffers have returned.
1578 	 */
1579 	if (vnx->vx_error != 0) {
1580 		/* pass error upward */
1581 		error = vnx->vx_error;
1582 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1583 			pbp->b_error = error;
1584 			biodone(pbp);
1585 			pool_put(&vndxfer_pool, vnx);
1586 		}
1587 	} else if (pbp->b_resid == 0) {
1588 		KASSERT(vnx->vx_pending == 0);
1589 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1590 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
1591 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
1592 			biodone(pbp);
1593 			pool_put(&vndxfer_pool, vnx);
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * done!   start next swapdev I/O if one is pending
1599 	 */
1600 	sdp->swd_active--;
1601 	sw_reg_start(sdp);
1602 	splx(s);
1603 }
1604 
1605 
1606 /*
1607  * uvm_swap_alloc: allocate space on swap
1608  *
1609  * => allocation is done "round robin" down the priority list, as we
1610  *	allocate in a priority we "rotate" the circle queue.
1611  * => space can be freed with uvm_swap_free
1612  * => we return the page slot number in /dev/drum (0 == invalid slot)
1613  * => we lock uvm_swap_data_lock
1614  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1615  */
1616 int
1617 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1618 {
1619 	struct swapdev *sdp;
1620 	struct swappri *spp;
1621 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1622 
1623 	/*
1624 	 * no swap devices configured yet?   definite failure.
1625 	 */
1626 	if (uvmexp.nswapdev < 1)
1627 		return 0;
1628 
1629 	/*
1630 	 * XXXJAK: BEGIN HACK
1631 	 *
1632 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1633 	 * too many slots.
1634 	 */
1635 	if (*nslots > BLIST_MAX_ALLOC) {
1636 		if (__predict_false(lessok == false))
1637 			return 0;
1638 		*nslots = BLIST_MAX_ALLOC;
1639 	}
1640 	/* XXXJAK: END HACK */
1641 
1642 	/*
1643 	 * lock data lock, convert slots into blocks, and enter loop
1644 	 */
1645 	mutex_enter(&uvm_swap_data_lock);
1646 
1647 ReTry:	/* XXXMRG */
1648 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1649 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1650 			uint64_t result;
1651 
1652 			/* if it's not enabled, then we can't swap from it */
1653 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1654 				continue;
1655 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1656 				continue;
1657 			result = blist_alloc(sdp->swd_blist, *nslots);
1658 			if (result == BLIST_NONE) {
1659 				continue;
1660 			}
1661 			KASSERT(result < sdp->swd_drumsize);
1662 
1663 			/*
1664 			 * successful allocation!  now rotate the tailq.
1665 			 */
1666 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1667 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1668 			sdp->swd_npginuse += *nslots;
1669 			uvmexp.swpginuse += *nslots;
1670 			mutex_exit(&uvm_swap_data_lock);
1671 			/* done!  return drum slot number */
1672 			UVMHIST_LOG(pdhist,
1673 			    "success!  returning %jd slots starting at %jd",
1674 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1675 			return (result + sdp->swd_drumoffset);
1676 		}
1677 	}
1678 
1679 	/* XXXMRG: BEGIN HACK */
1680 	if (*nslots > 1 && lessok) {
1681 		*nslots = 1;
1682 		/* XXXMRG: ugh!  blist should support this for us */
1683 		goto ReTry;
1684 	}
1685 	/* XXXMRG: END HACK */
1686 
1687 	mutex_exit(&uvm_swap_data_lock);
1688 	return 0;
1689 }
1690 
1691 /*
1692  * uvm_swapisfull: return true if most of available swap is allocated
1693  * and in use.  we don't count some small portion as it may be inaccessible
1694  * to us at any given moment, for example if there is lock contention or if
1695  * pages are busy.
1696  */
1697 bool
1698 uvm_swapisfull(void)
1699 {
1700 	int swpgonly;
1701 	bool rv;
1702 
1703 	mutex_enter(&uvm_swap_data_lock);
1704 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1705 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1706 	    uvm_swapisfull_factor);
1707 	rv = (swpgonly >= uvmexp.swpgavail);
1708 	mutex_exit(&uvm_swap_data_lock);
1709 
1710 	return (rv);
1711 }
1712 
1713 /*
1714  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1715  *
1716  * => we lock uvm_swap_data_lock
1717  */
1718 void
1719 uvm_swap_markbad(int startslot, int nslots)
1720 {
1721 	struct swapdev *sdp;
1722 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1723 
1724 	mutex_enter(&uvm_swap_data_lock);
1725 	sdp = swapdrum_getsdp(startslot);
1726 	KASSERT(sdp != NULL);
1727 
1728 	/*
1729 	 * we just keep track of how many pages have been marked bad
1730 	 * in this device, to make everything add up in swap_off().
1731 	 * we assume here that the range of slots will all be within
1732 	 * one swap device.
1733 	 */
1734 
1735 	KASSERT(uvmexp.swpgonly >= nslots);
1736 	atomic_add_int(&uvmexp.swpgonly, -nslots);
1737 	sdp->swd_npgbad += nslots;
1738 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1739 	mutex_exit(&uvm_swap_data_lock);
1740 }
1741 
1742 /*
1743  * uvm_swap_free: free swap slots
1744  *
1745  * => this can be all or part of an allocation made by uvm_swap_alloc
1746  * => we lock uvm_swap_data_lock
1747  */
1748 void
1749 uvm_swap_free(int startslot, int nslots)
1750 {
1751 	struct swapdev *sdp;
1752 	UVMHIST_FUNC(__func__);
1753 	UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
1754 	    startslot, 0, 0);
1755 
1756 	/*
1757 	 * ignore attempts to free the "bad" slot.
1758 	 */
1759 
1760 	if (startslot == SWSLOT_BAD) {
1761 		return;
1762 	}
1763 
1764 	/*
1765 	 * convert drum slot offset back to sdp, free the blocks
1766 	 * in the extent, and return.   must hold pri lock to do
1767 	 * lookup and access the extent.
1768 	 */
1769 
1770 	mutex_enter(&uvm_swap_data_lock);
1771 	sdp = swapdrum_getsdp(startslot);
1772 	KASSERT(uvmexp.nswapdev >= 1);
1773 	KASSERT(sdp != NULL);
1774 	KASSERT(sdp->swd_npginuse >= nslots);
1775 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1776 	sdp->swd_npginuse -= nslots;
1777 	uvmexp.swpginuse -= nslots;
1778 	mutex_exit(&uvm_swap_data_lock);
1779 }
1780 
1781 /*
1782  * uvm_swap_put: put any number of pages into a contig place on swap
1783  *
1784  * => can be sync or async
1785  */
1786 
1787 int
1788 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1789 {
1790 	int error;
1791 
1792 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1793 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1794 	return error;
1795 }
1796 
1797 /*
1798  * uvm_swap_get: get a single page from swap
1799  *
1800  * => usually a sync op (from fault)
1801  */
1802 
1803 int
1804 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1805 {
1806 	int error;
1807 
1808 	atomic_inc_uint(&uvmexp.nswget);
1809 	KASSERT(flags & PGO_SYNCIO);
1810 	if (swslot == SWSLOT_BAD) {
1811 		return EIO;
1812 	}
1813 
1814 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1815 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1816 	if (error == 0) {
1817 
1818 		/*
1819 		 * this page is no longer only in swap.
1820 		 */
1821 
1822 		KASSERT(uvmexp.swpgonly > 0);
1823 		atomic_dec_uint(&uvmexp.swpgonly);
1824 	}
1825 	return error;
1826 }
1827 
1828 /*
1829  * uvm_swap_io: do an i/o operation to swap
1830  */
1831 
1832 static int
1833 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1834 {
1835 	daddr_t startblk;
1836 	struct	buf *bp;
1837 	vaddr_t kva;
1838 	int	error, mapinflags;
1839 	bool write, async, swap_encrypt;
1840 	UVMHIST_FUNC(__func__);
1841 	UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1842 	    startslot, npages, flags, 0);
1843 
1844 	write = (flags & B_READ) == 0;
1845 	async = (flags & B_ASYNC) != 0;
1846 	swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
1847 
1848 	/*
1849 	 * allocate a buf for the i/o.
1850 	 */
1851 
1852 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1853 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1854 	if (bp == NULL) {
1855 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1856 		return ENOMEM;
1857 	}
1858 
1859 	/*
1860 	 * convert starting drum slot to block number
1861 	 */
1862 
1863 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1864 
1865 	/*
1866 	 * first, map the pages into the kernel.
1867 	 */
1868 
1869 	mapinflags = !write ?
1870 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1871 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1872 	if (write && swap_encrypt)	/* need to encrypt in-place */
1873 		mapinflags |= UVMPAGER_MAPIN_READ;
1874 	kva = uvm_pagermapin(pps, npages, mapinflags);
1875 
1876 	/*
1877 	 * encrypt writes in place if requested
1878 	 */
1879 
1880 	if (write) do {
1881 		struct swapdev *sdp;
1882 		int i;
1883 
1884 		/*
1885 		 * Get the swapdev so we can discriminate on the
1886 		 * encryption state.  There may or may not be an
1887 		 * encryption key generated; we may or may not be asked
1888 		 * to encrypt swap.
1889 		 *
1890 		 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
1891 		 *
1892 		 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
1893 		 *    and mark the slots encrypted.
1894 		 *
1895 		 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
1896 		 *    marked encrypted from a past life.  Mark them not
1897 		 *    encrypted.
1898 		 *
1899 		 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
1900 		 *    encrypted.
1901 		 */
1902 		mutex_enter(&uvm_swap_data_lock);
1903 		sdp = swapdrum_getsdp(startslot);
1904 		if (!sdp->swd_encinit) {
1905 			if (!swap_encrypt) {
1906 				mutex_exit(&uvm_swap_data_lock);
1907 				break;
1908 			}
1909 			uvm_swap_genkey(sdp);
1910 		}
1911 		KASSERT(sdp->swd_encinit);
1912 		mutex_exit(&uvm_swap_data_lock);
1913 
1914 		for (i = 0; i < npages; i++) {
1915 			int s = startslot + i;
1916 			KDASSERT(swapdrum_sdp_is(s, sdp));
1917 			KASSERT(s >= sdp->swd_drumoffset);
1918 			s -= sdp->swd_drumoffset;
1919 			KASSERT(s < sdp->swd_drumsize);
1920 
1921 			if (swap_encrypt) {
1922 				uvm_swap_encryptpage(sdp,
1923 				    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
1924 				atomic_or_32(&sdp->swd_encmap[s/32],
1925 				    __BIT(s%32));
1926 			} else {
1927 				atomic_and_32(&sdp->swd_encmap[s/32],
1928 				    ~__BIT(s%32));
1929 			}
1930 		}
1931 	} while (0);
1932 
1933 	/*
1934 	 * fill in the bp/sbp.   we currently route our i/o through
1935 	 * /dev/drum's vnode [swapdev_vp].
1936 	 */
1937 
1938 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1939 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1940 	bp->b_proc = &proc0;	/* XXX */
1941 	bp->b_vnbufs.le_next = NOLIST;
1942 	bp->b_data = (void *)kva;
1943 	bp->b_blkno = startblk;
1944 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1945 
1946 	/*
1947 	 * bump v_numoutput (counter of number of active outputs).
1948 	 */
1949 
1950 	if (write) {
1951 		mutex_enter(swapdev_vp->v_interlock);
1952 		swapdev_vp->v_numoutput++;
1953 		mutex_exit(swapdev_vp->v_interlock);
1954 	}
1955 
1956 	/*
1957 	 * for async ops we must set up the iodone handler.
1958 	 */
1959 
1960 	if (async) {
1961 		bp->b_iodone = uvm_aio_aiodone;
1962 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1963 		if (curlwp == uvm.pagedaemon_lwp)
1964 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1965 		else
1966 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1967 	} else {
1968 		bp->b_iodone = NULL;
1969 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1970 	}
1971 	UVMHIST_LOG(pdhist,
1972 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1973 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1974 
1975 	/*
1976 	 * now we start the I/O, and if async, return.
1977 	 */
1978 
1979 	VOP_STRATEGY(swapdev_vp, bp);
1980 	if (async) {
1981 		/*
1982 		 * Reads are always synchronous; if this changes, we
1983 		 * need to add an asynchronous path for decryption.
1984 		 */
1985 		KASSERT(write);
1986 		return 0;
1987 	}
1988 
1989 	/*
1990 	 * must be sync i/o.   wait for it to finish
1991 	 */
1992 
1993 	error = biowait(bp);
1994 	if (error)
1995 		goto out;
1996 
1997 	/*
1998 	 * decrypt reads in place if needed
1999 	 */
2000 
2001 	if (!write) do {
2002 		struct swapdev *sdp;
2003 		bool encinit;
2004 		int i;
2005 
2006 		/*
2007 		 * Get the sdp.  Everything about it except the encinit
2008 		 * bit, saying whether the encryption key is
2009 		 * initialized or not, and the encrypted bit for each
2010 		 * page, is stable until all swap pages have been
2011 		 * released and the device is removed.
2012 		 */
2013 		mutex_enter(&uvm_swap_data_lock);
2014 		sdp = swapdrum_getsdp(startslot);
2015 		encinit = sdp->swd_encinit;
2016 		mutex_exit(&uvm_swap_data_lock);
2017 
2018 		if (!encinit)
2019 			/*
2020 			 * If there's no encryption key, there's no way
2021 			 * any of these slots can be encrypted, so
2022 			 * nothing to do here.
2023 			 */
2024 			break;
2025 		for (i = 0; i < npages; i++) {
2026 			int s = startslot + i;
2027 			KDASSERT(swapdrum_sdp_is(s, sdp));
2028 			KASSERT(s >= sdp->swd_drumoffset);
2029 			s -= sdp->swd_drumoffset;
2030 			KASSERT(s < sdp->swd_drumsize);
2031 			if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
2032 				__BIT(s%32)) == 0)
2033 				continue;
2034 			uvm_swap_decryptpage(sdp,
2035 			    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
2036 		}
2037 	} while (0);
2038 out:
2039 	/*
2040 	 * kill the pager mapping
2041 	 */
2042 
2043 	uvm_pagermapout(kva, npages);
2044 
2045 	/*
2046 	 * now dispose of the buf and we're done.
2047 	 */
2048 
2049 	if (write) {
2050 		mutex_enter(swapdev_vp->v_interlock);
2051 		vwakeup(bp);
2052 		mutex_exit(swapdev_vp->v_interlock);
2053 	}
2054 	putiobuf(bp);
2055 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
2056 
2057 	return (error);
2058 }
2059 
2060 /*
2061  * uvm_swap_genkey(sdp)
2062  *
2063  *	Generate a key for swap encryption.
2064  */
2065 static void
2066 uvm_swap_genkey(struct swapdev *sdp)
2067 {
2068 	uint8_t key[32];
2069 
2070 	KASSERT(!sdp->swd_encinit);
2071 
2072 	cprng_strong(kern_cprng, key, sizeof key, 0);
2073 	aes_setenckey256(&sdp->swd_enckey, key);
2074 	aes_setdeckey256(&sdp->swd_deckey, key);
2075 	explicit_memset(key, 0, sizeof key);
2076 
2077 	sdp->swd_encinit = true;
2078 }
2079 
2080 /*
2081  * uvm_swap_encryptpage(sdp, kva, slot)
2082  *
2083  *	Encrypt one page of data at kva for the specified slot number
2084  *	in the swap device.
2085  */
2086 static void
2087 uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
2088 {
2089 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2090 
2091 	/* iv := AES_k(le32enc(slot) || 0^96) */
2092 	le32enc(preiv, slot);
2093 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2094 
2095 	/* *kva := AES-CBC_k(iv, *kva) */
2096 	aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
2097 	    AES_256_NROUNDS);
2098 
2099 	explicit_memset(&iv, 0, sizeof iv);
2100 }
2101 
2102 /*
2103  * uvm_swap_decryptpage(sdp, kva, slot)
2104  *
2105  *	Decrypt one page of data at kva for the specified slot number
2106  *	in the swap device.
2107  */
2108 static void
2109 uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
2110 {
2111 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2112 
2113 	/* iv := AES_k(le32enc(slot) || 0^96) */
2114 	le32enc(preiv, slot);
2115 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2116 
2117 	/* *kva := AES-CBC^{-1}_k(iv, *kva) */
2118 	aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
2119 	    AES_256_NROUNDS);
2120 
2121 	explicit_memset(&iv, 0, sizeof iv);
2122 }
2123 
2124 SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
2125 {
2126 
2127 	sysctl_createv(clog, 0, NULL, NULL,
2128 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
2129 	    SYSCTL_DESCR("Encrypt data when swapped out to disk"),
2130 	    NULL, 0, &uvm_swap_encrypt, 0,
2131 	    CTL_VM, CTL_CREATE, CTL_EOL);
2132 }
2133