xref: /netbsd-src/sys/uvm/uvm_swap.c (revision c38e7cc395b1472a774ff828e46123de44c628e9)
1 /*	$NetBSD: uvm_swap.c,v 1.177 2018/03/15 03:21:58 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.177 2018/03/15 03:21:58 christos Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * TAILQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats() function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* tailq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * We keep a of pool vndbuf's and vndxfer structures.
180  */
181 static struct pool vndxfer_pool, vndbuf_pool;
182 
183 /*
184  * local variables
185  */
186 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
187 
188 /* list of all active swap devices [by priority] */
189 LIST_HEAD(swap_priority, swappri);
190 static struct swap_priority swap_priority;
191 
192 /* locks */
193 static krwlock_t swap_syscall_lock;
194 
195 /* workqueue and use counter for swap to regular files */
196 static int sw_reg_count = 0;
197 static struct workqueue *sw_reg_workqueue;
198 
199 /* tuneables */
200 u_int uvm_swapisfull_factor = 99;
201 
202 /*
203  * prototypes
204  */
205 static struct swapdev	*swapdrum_getsdp(int);
206 
207 static struct swapdev	*swaplist_find(struct vnode *, bool);
208 static void		 swaplist_insert(struct swapdev *,
209 					 struct swappri *, int);
210 static void		 swaplist_trim(void);
211 
212 static int swap_on(struct lwp *, struct swapdev *);
213 static int swap_off(struct lwp *, struct swapdev *);
214 
215 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
216 static void sw_reg_biodone(struct buf *);
217 static void sw_reg_iodone(struct work *wk, void *dummy);
218 static void sw_reg_start(struct swapdev *);
219 
220 static int uvm_swap_io(struct vm_page **, int, int, int);
221 
222 /*
223  * uvm_swap_init: init the swap system data structures and locks
224  *
225  * => called at boot time from init_main.c after the filesystems
226  *	are brought up (which happens after uvm_init())
227  */
228 void
229 uvm_swap_init(void)
230 {
231 	UVMHIST_FUNC("uvm_swap_init");
232 
233 	UVMHIST_CALLED(pdhist);
234 	/*
235 	 * first, init the swap list, its counter, and its lock.
236 	 * then get a handle on the vnode for /dev/drum by using
237 	 * the its dev_t number ("swapdev", from MD conf.c).
238 	 */
239 
240 	LIST_INIT(&swap_priority);
241 	uvmexp.nswapdev = 0;
242 	rw_init(&swap_syscall_lock);
243 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
244 
245 	if (bdevvp(swapdev, &swapdev_vp))
246 		panic("%s: can't get vnode for swap device", __func__);
247 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
248 		panic("%s: can't lock swap device", __func__);
249 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
250 		panic("%s: can't open swap device", __func__);
251 	VOP_UNLOCK(swapdev_vp);
252 
253 	/*
254 	 * create swap block resource map to map /dev/drum.   the range
255 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
256 	 * that block 0 is reserved (used to indicate an allocation
257 	 * failure, or no allocation).
258 	 */
259 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
260 	    VM_NOSLEEP, IPL_NONE);
261 	if (swapmap == 0) {
262 		panic("%s: vmem_create failed", __func__);
263 	}
264 
265 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
266 	    NULL, IPL_BIO);
267 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
268 	    NULL, IPL_BIO);
269 
270 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
271 }
272 
273 /*
274  * swaplist functions: functions that operate on the list of swap
275  * devices on the system.
276  */
277 
278 /*
279  * swaplist_insert: insert swap device "sdp" into the global list
280  *
281  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
282  * => caller must provide a newly allocated swappri structure (we will
283  *	FREE it if we don't need it... this it to prevent allocation
284  *	blocking here while adding swap)
285  */
286 static void
287 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
288 {
289 	struct swappri *spp, *pspp;
290 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
291 
292 	/*
293 	 * find entry at or after which to insert the new device.
294 	 */
295 	pspp = NULL;
296 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
297 		if (priority <= spp->spi_priority)
298 			break;
299 		pspp = spp;
300 	}
301 
302 	/*
303 	 * new priority?
304 	 */
305 	if (spp == NULL || spp->spi_priority != priority) {
306 		spp = newspp;  /* use newspp! */
307 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
308 			    priority, 0, 0, 0);
309 
310 		spp->spi_priority = priority;
311 		TAILQ_INIT(&spp->spi_swapdev);
312 
313 		if (pspp)
314 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
315 		else
316 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
317 	} else {
318 	  	/* we don't need a new priority structure, free it */
319 		kmem_free(newspp, sizeof(*newspp));
320 	}
321 
322 	/*
323 	 * priority found (or created).   now insert on the priority's
324 	 * tailq list and bump the total number of swapdevs.
325 	 */
326 	sdp->swd_priority = priority;
327 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
328 	uvmexp.nswapdev++;
329 }
330 
331 /*
332  * swaplist_find: find and optionally remove a swap device from the
333  *	global list.
334  *
335  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
336  * => we return the swapdev we found (and removed)
337  */
338 static struct swapdev *
339 swaplist_find(struct vnode *vp, bool remove)
340 {
341 	struct swapdev *sdp;
342 	struct swappri *spp;
343 
344 	/*
345 	 * search the lists for the requested vp
346 	 */
347 
348 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
349 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
350 			if (sdp->swd_vp == vp) {
351 				if (remove) {
352 					TAILQ_REMOVE(&spp->spi_swapdev,
353 					    sdp, swd_next);
354 					uvmexp.nswapdev--;
355 				}
356 				return(sdp);
357 			}
358 		}
359 	}
360 	return (NULL);
361 }
362 
363 /*
364  * swaplist_trim: scan priority list for empty priority entries and kill
365  *	them.
366  *
367  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
368  */
369 static void
370 swaplist_trim(void)
371 {
372 	struct swappri *spp, *nextspp;
373 
374 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
375 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
376 			continue;
377 		LIST_REMOVE(spp, spi_swappri);
378 		kmem_free(spp, sizeof(*spp));
379 	}
380 }
381 
382 /*
383  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
384  *	to the "swapdev" that maps that section of the drum.
385  *
386  * => each swapdev takes one big contig chunk of the drum
387  * => caller must hold uvm_swap_data_lock
388  */
389 static struct swapdev *
390 swapdrum_getsdp(int pgno)
391 {
392 	struct swapdev *sdp;
393 	struct swappri *spp;
394 
395 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
396 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
397 			if (sdp->swd_flags & SWF_FAKE)
398 				continue;
399 			if (pgno >= sdp->swd_drumoffset &&
400 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
401 				return sdp;
402 			}
403 		}
404 	}
405 	return NULL;
406 }
407 
408 void swapsys_lock(krw_t op)
409 {
410 	rw_enter(&swap_syscall_lock, op);
411 }
412 
413 void swapsys_unlock(void)
414 {
415 	rw_exit(&swap_syscall_lock);
416 }
417 
418 static void
419 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
420 {
421 	se->se_dev = sdp->swd_dev;
422 	se->se_flags = sdp->swd_flags;
423 	se->se_nblks = sdp->swd_nblks;
424 	se->se_inuse = inuse;
425 	se->se_priority = sdp->swd_priority;
426 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
427 	strcpy(se->se_path, sdp->swd_path);
428 }
429 
430 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
431     (void *)enosys;
432 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
433     (void *)enosys;
434 
435 /*
436  * sys_swapctl: main entry point for swapctl(2) system call
437  * 	[with two helper functions: swap_on and swap_off]
438  */
439 int
440 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
441 {
442 	/* {
443 		syscallarg(int) cmd;
444 		syscallarg(void *) arg;
445 		syscallarg(int) misc;
446 	} */
447 	struct vnode *vp;
448 	struct nameidata nd;
449 	struct swappri *spp;
450 	struct swapdev *sdp;
451 #define SWAP_PATH_MAX (PATH_MAX + 1)
452 	char	*userpath;
453 	size_t	len = 0;
454 	int	error;
455 	int	priority;
456 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
457 
458 	/*
459 	 * we handle the non-priv NSWAP and STATS request first.
460 	 *
461 	 * SWAP_NSWAP: return number of config'd swap devices
462 	 * [can also be obtained with uvmexp sysctl]
463 	 */
464 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 		const int nswapdev = uvmexp.nswapdev;
466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
467 		    0, 0, 0);
468 		*retval = nswapdev;
469 		return 0;
470 	}
471 
472 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
473 
474 	/*
475 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
476 	 */
477 	rw_enter(&swap_syscall_lock, RW_WRITER);
478 
479 	/*
480 	 * SWAP_STATS: get stats on current # of configured swap devs
481 	 *
482 	 * note that the swap_priority list can't change as long
483 	 * as we are holding the swap_syscall_lock.  we don't want
484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
485 	 * copyout() and we don't want to be holding that lock then!
486 	 */
487 	switch (SCARG(uap, cmd)) {
488 	case SWAP_STATS13:
489 		error = (*uvm_swap_stats13)(uap, retval);
490 		goto out;
491 	case SWAP_STATS50:
492 		error = (*uvm_swap_stats50)(uap, retval);
493 		goto out;
494 	case SWAP_STATS:
495 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
496 		    NULL, sizeof(struct swapent), retval);
497 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
498 		goto out;
499 
500 	case SWAP_GETDUMPDEV:
501 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
502 		goto out;
503 	default:
504 		break;
505 	}
506 
507 	/*
508 	 * all other requests require superuser privs.   verify.
509 	 */
510 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
511 	    0, NULL, NULL, NULL)))
512 		goto out;
513 
514 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
515 		/* drop the current dump device */
516 		dumpdev = NODEV;
517 		dumpcdev = NODEV;
518 		cpu_dumpconf();
519 		goto out;
520 	}
521 
522 	/*
523 	 * at this point we expect a path name in arg.   we will
524 	 * use namei() to gain a vnode reference (vref), and lock
525 	 * the vnode (VOP_LOCK).
526 	 *
527 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
528 	 * miniroot)
529 	 */
530 	if (SCARG(uap, arg) == NULL) {
531 		vp = rootvp;		/* miniroot */
532 		vref(vp);
533 		if (vn_lock(vp, LK_EXCLUSIVE)) {
534 			vrele(vp);
535 			error = EBUSY;
536 			goto out;
537 		}
538 		if (SCARG(uap, cmd) == SWAP_ON &&
539 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
540 			panic("swapctl: miniroot copy failed");
541 	} else {
542 		struct pathbuf *pb;
543 
544 		/*
545 		 * This used to allow copying in one extra byte
546 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
547 		 * This was completely pointless because if anyone
548 		 * used that extra byte namei would fail with
549 		 * ENAMETOOLONG anyway, so I've removed the excess
550 		 * logic. - dholland 20100215
551 		 */
552 
553 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
554 		if (error) {
555 			goto out;
556 		}
557 		if (SCARG(uap, cmd) == SWAP_ON) {
558 			/* get a copy of the string */
559 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
560 			len = strlen(userpath) + 1;
561 		}
562 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
563 		if ((error = namei(&nd))) {
564 			pathbuf_destroy(pb);
565 			goto out;
566 		}
567 		vp = nd.ni_vp;
568 		pathbuf_destroy(pb);
569 	}
570 	/* note: "vp" is referenced and locked */
571 
572 	error = 0;		/* assume no error */
573 	switch(SCARG(uap, cmd)) {
574 
575 	case SWAP_DUMPDEV:
576 		if (vp->v_type != VBLK) {
577 			error = ENOTBLK;
578 			break;
579 		}
580 		if (bdevsw_lookup(vp->v_rdev)) {
581 			dumpdev = vp->v_rdev;
582 			dumpcdev = devsw_blk2chr(dumpdev);
583 		} else
584 			dumpdev = NODEV;
585 		cpu_dumpconf();
586 		break;
587 
588 	case SWAP_CTL:
589 		/*
590 		 * get new priority, remove old entry (if any) and then
591 		 * reinsert it in the correct place.  finally, prune out
592 		 * any empty priority structures.
593 		 */
594 		priority = SCARG(uap, misc);
595 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
596 		mutex_enter(&uvm_swap_data_lock);
597 		if ((sdp = swaplist_find(vp, true)) == NULL) {
598 			error = ENOENT;
599 		} else {
600 			swaplist_insert(sdp, spp, priority);
601 			swaplist_trim();
602 		}
603 		mutex_exit(&uvm_swap_data_lock);
604 		if (error)
605 			kmem_free(spp, sizeof(*spp));
606 		break;
607 
608 	case SWAP_ON:
609 
610 		/*
611 		 * check for duplicates.   if none found, then insert a
612 		 * dummy entry on the list to prevent someone else from
613 		 * trying to enable this device while we are working on
614 		 * it.
615 		 */
616 
617 		priority = SCARG(uap, misc);
618 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
619 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
620 		sdp->swd_flags = SWF_FAKE;
621 		sdp->swd_vp = vp;
622 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
623 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
624 		mutex_enter(&uvm_swap_data_lock);
625 		if (swaplist_find(vp, false) != NULL) {
626 			error = EBUSY;
627 			mutex_exit(&uvm_swap_data_lock);
628 			bufq_free(sdp->swd_tab);
629 			kmem_free(sdp, sizeof(*sdp));
630 			kmem_free(spp, sizeof(*spp));
631 			break;
632 		}
633 		swaplist_insert(sdp, spp, priority);
634 		mutex_exit(&uvm_swap_data_lock);
635 
636 		KASSERT(len > 0);
637 		sdp->swd_pathlen = len;
638 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
639 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
640 			panic("swapctl: copystr");
641 
642 		/*
643 		 * we've now got a FAKE placeholder in the swap list.
644 		 * now attempt to enable swap on it.  if we fail, undo
645 		 * what we've done and kill the fake entry we just inserted.
646 		 * if swap_on is a success, it will clear the SWF_FAKE flag
647 		 */
648 
649 		if ((error = swap_on(l, sdp)) != 0) {
650 			mutex_enter(&uvm_swap_data_lock);
651 			(void) swaplist_find(vp, true);  /* kill fake entry */
652 			swaplist_trim();
653 			mutex_exit(&uvm_swap_data_lock);
654 			bufq_free(sdp->swd_tab);
655 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
656 			kmem_free(sdp, sizeof(*sdp));
657 			break;
658 		}
659 		break;
660 
661 	case SWAP_OFF:
662 		mutex_enter(&uvm_swap_data_lock);
663 		if ((sdp = swaplist_find(vp, false)) == NULL) {
664 			mutex_exit(&uvm_swap_data_lock);
665 			error = ENXIO;
666 			break;
667 		}
668 
669 		/*
670 		 * If a device isn't in use or enabled, we
671 		 * can't stop swapping from it (again).
672 		 */
673 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
674 			mutex_exit(&uvm_swap_data_lock);
675 			error = EBUSY;
676 			break;
677 		}
678 
679 		/*
680 		 * do the real work.
681 		 */
682 		error = swap_off(l, sdp);
683 		break;
684 
685 	default:
686 		error = EINVAL;
687 	}
688 
689 	/*
690 	 * done!  release the ref gained by namei() and unlock.
691 	 */
692 	vput(vp);
693 out:
694 	rw_exit(&swap_syscall_lock);
695 	kmem_free(userpath, SWAP_PATH_MAX);
696 
697 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
698 	return (error);
699 }
700 
701 /*
702  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
703  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
704  * emulation to use it directly without going through sys_swapctl().
705  * The problem with using sys_swapctl() there is that it involves
706  * copying the swapent array to the stackgap, and this array's size
707  * is not known at build time. Hence it would not be possible to
708  * ensure it would fit in the stackgap in any case.
709  */
710 int
711 uvm_swap_stats(char *ptr, int misc,
712     void (*f)(void *, const struct swapent *), size_t len,
713     register_t *retval)
714 {
715 	struct swappri *spp;
716 	struct swapdev *sdp;
717 	struct swapent sep;
718 	int count = 0;
719 	int error;
720 
721 	KASSERT(len <= sizeof(sep));
722 	if (len == 0)
723 		return ENOSYS;
724 
725 	if (misc < 0)
726 		return EINVAL;
727 
728 	if (misc == 0 || uvmexp.nswapdev == 0)
729 		return 0;
730 
731 	/* Make sure userland cannot exhaust kernel memory */
732 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
733 		misc = uvmexp.nswapdev;
734 
735 	KASSERT(rw_lock_held(&swap_syscall_lock));
736 
737 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
738 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
739 			int inuse;
740 
741 			if (misc-- <= 0)
742 				break;
743 
744 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
745 			    PAGE_SHIFT);
746 
747 			swapent_cvt(&sep, sdp, inuse);
748 			if (f)
749 				(*f)(&sep, &sep);
750 			if ((error = copyout(&sep, ptr, len)) != 0)
751 				return error;
752 			ptr += len;
753 			count++;
754 		}
755 	}
756 	*retval = count;
757 	return 0;
758 }
759 
760 /*
761  * swap_on: attempt to enable a swapdev for swapping.   note that the
762  *	swapdev is already on the global list, but disabled (marked
763  *	SWF_FAKE).
764  *
765  * => we avoid the start of the disk (to protect disk labels)
766  * => we also avoid the miniroot, if we are swapping to root.
767  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
768  *	if needed.
769  */
770 static int
771 swap_on(struct lwp *l, struct swapdev *sdp)
772 {
773 	struct vnode *vp;
774 	int error, npages, nblocks, size;
775 	long addr;
776 	vmem_addr_t result;
777 	struct vattr va;
778 	dev_t dev;
779 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
780 
781 	/*
782 	 * we want to enable swapping on sdp.   the swd_vp contains
783 	 * the vnode we want (locked and ref'd), and the swd_dev
784 	 * contains the dev_t of the file, if it a block device.
785 	 */
786 
787 	vp = sdp->swd_vp;
788 	dev = sdp->swd_dev;
789 
790 	/*
791 	 * open the swap file (mostly useful for block device files to
792 	 * let device driver know what is up).
793 	 *
794 	 * we skip the open/close for root on swap because the root
795 	 * has already been opened when root was mounted (mountroot).
796 	 */
797 	if (vp != rootvp) {
798 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
799 			return (error);
800 	}
801 
802 	/* XXX this only works for block devices */
803 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
804 
805 	/*
806 	 * we now need to determine the size of the swap area.   for
807 	 * block specials we can call the d_psize function.
808 	 * for normal files, we must stat [get attrs].
809 	 *
810 	 * we put the result in nblks.
811 	 * for normal files, we also want the filesystem block size
812 	 * (which we get with statfs).
813 	 */
814 	switch (vp->v_type) {
815 	case VBLK:
816 		if ((nblocks = bdev_size(dev)) == -1) {
817 			error = ENXIO;
818 			goto bad;
819 		}
820 		break;
821 
822 	case VREG:
823 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
824 			goto bad;
825 		nblocks = (int)btodb(va.va_size);
826 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
827 		/*
828 		 * limit the max # of outstanding I/O requests we issue
829 		 * at any one time.   take it easy on NFS servers.
830 		 */
831 		if (vp->v_tag == VT_NFS)
832 			sdp->swd_maxactive = 2; /* XXX */
833 		else
834 			sdp->swd_maxactive = 8; /* XXX */
835 		break;
836 
837 	default:
838 		error = ENXIO;
839 		goto bad;
840 	}
841 
842 	/*
843 	 * save nblocks in a safe place and convert to pages.
844 	 */
845 
846 	sdp->swd_nblks = nblocks;
847 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
848 
849 	/*
850 	 * for block special files, we want to make sure that leave
851 	 * the disklabel and bootblocks alone, so we arrange to skip
852 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
853 	 * note that because of this the "size" can be less than the
854 	 * actual number of blocks on the device.
855 	 */
856 	if (vp->v_type == VBLK) {
857 		/* we use pages 1 to (size - 1) [inclusive] */
858 		size = npages - 1;
859 		addr = 1;
860 	} else {
861 		/* we use pages 0 to (size - 1) [inclusive] */
862 		size = npages;
863 		addr = 0;
864 	}
865 
866 	/*
867 	 * make sure we have enough blocks for a reasonable sized swap
868 	 * area.   we want at least one page.
869 	 */
870 
871 	if (size < 1) {
872 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
873 		error = EINVAL;
874 		goto bad;
875 	}
876 
877 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
878 
879 	/*
880 	 * now we need to allocate an extent to manage this swap device
881 	 */
882 
883 	sdp->swd_blist = blist_create(npages);
884 	/* mark all expect the `saved' region free. */
885 	blist_free(sdp->swd_blist, addr, size);
886 
887 	/*
888 	 * if the vnode we are swapping to is the root vnode
889 	 * (i.e. we are swapping to the miniroot) then we want
890 	 * to make sure we don't overwrite it.   do a statfs to
891 	 * find its size and skip over it.
892 	 */
893 	if (vp == rootvp) {
894 		struct mount *mp;
895 		struct statvfs *sp;
896 		int rootblocks, rootpages;
897 
898 		mp = rootvnode->v_mount;
899 		sp = &mp->mnt_stat;
900 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
901 		/*
902 		 * XXX: sp->f_blocks isn't the total number of
903 		 * blocks in the filesystem, it's the number of
904 		 * data blocks.  so, our rootblocks almost
905 		 * definitely underestimates the total size
906 		 * of the filesystem - how badly depends on the
907 		 * details of the filesystem type.  there isn't
908 		 * an obvious way to deal with this cleanly
909 		 * and perfectly, so for now we just pad our
910 		 * rootblocks estimate with an extra 5 percent.
911 		 */
912 		rootblocks += (rootblocks >> 5) +
913 			(rootblocks >> 6) +
914 			(rootblocks >> 7);
915 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
916 		if (rootpages > size)
917 			panic("swap_on: miniroot larger than swap?");
918 
919 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
920 			panic("swap_on: unable to preserve miniroot");
921 		}
922 
923 		size -= rootpages;
924 		printf("Preserved %d pages of miniroot ", rootpages);
925 		printf("leaving %d pages of swap\n", size);
926 	}
927 
928 	/*
929 	 * add a ref to vp to reflect usage as a swap device.
930 	 */
931 	vref(vp);
932 
933 	/*
934 	 * now add the new swapdev to the drum and enable.
935 	 */
936 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
937 	if (error != 0)
938 		panic("swapdrum_add");
939 	/*
940 	 * If this is the first regular swap create the workqueue.
941 	 * => Protected by swap_syscall_lock.
942 	 */
943 	if (vp->v_type != VBLK) {
944 		if (sw_reg_count++ == 0) {
945 			KASSERT(sw_reg_workqueue == NULL);
946 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
947 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
948 				panic("%s: workqueue_create failed", __func__);
949 		}
950 	}
951 
952 	sdp->swd_drumoffset = (int)result;
953 	sdp->swd_drumsize = npages;
954 	sdp->swd_npages = size;
955 	mutex_enter(&uvm_swap_data_lock);
956 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
957 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
958 	uvmexp.swpages += size;
959 	uvmexp.swpgavail += size;
960 	mutex_exit(&uvm_swap_data_lock);
961 	return (0);
962 
963 	/*
964 	 * failure: clean up and return error.
965 	 */
966 
967 bad:
968 	if (sdp->swd_blist) {
969 		blist_destroy(sdp->swd_blist);
970 	}
971 	if (vp != rootvp) {
972 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
973 	}
974 	return (error);
975 }
976 
977 /*
978  * swap_off: stop swapping on swapdev
979  *
980  * => swap data should be locked, we will unlock.
981  */
982 static int
983 swap_off(struct lwp *l, struct swapdev *sdp)
984 {
985 	int npages = sdp->swd_npages;
986 	int error = 0;
987 
988 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
989 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
990 
991 	/* disable the swap area being removed */
992 	sdp->swd_flags &= ~SWF_ENABLE;
993 	uvmexp.swpgavail -= npages;
994 	mutex_exit(&uvm_swap_data_lock);
995 
996 	/*
997 	 * the idea is to find all the pages that are paged out to this
998 	 * device, and page them all in.  in uvm, swap-backed pageable
999 	 * memory can take two forms: aobjs and anons.  call the
1000 	 * swapoff hook for each subsystem to bring in pages.
1001 	 */
1002 
1003 	if (uao_swap_off(sdp->swd_drumoffset,
1004 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1005 	    amap_swap_off(sdp->swd_drumoffset,
1006 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1007 		error = ENOMEM;
1008 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1009 		error = EBUSY;
1010 	}
1011 
1012 	if (error) {
1013 		mutex_enter(&uvm_swap_data_lock);
1014 		sdp->swd_flags |= SWF_ENABLE;
1015 		uvmexp.swpgavail += npages;
1016 		mutex_exit(&uvm_swap_data_lock);
1017 
1018 		return error;
1019 	}
1020 
1021 	/*
1022 	 * If this is the last regular swap destroy the workqueue.
1023 	 * => Protected by swap_syscall_lock.
1024 	 */
1025 	if (sdp->swd_vp->v_type != VBLK) {
1026 		KASSERT(sw_reg_count > 0);
1027 		KASSERT(sw_reg_workqueue != NULL);
1028 		if (--sw_reg_count == 0) {
1029 			workqueue_destroy(sw_reg_workqueue);
1030 			sw_reg_workqueue = NULL;
1031 		}
1032 	}
1033 
1034 	/*
1035 	 * done with the vnode.
1036 	 * drop our ref on the vnode before calling VOP_CLOSE()
1037 	 * so that spec_close() can tell if this is the last close.
1038 	 */
1039 	vrele(sdp->swd_vp);
1040 	if (sdp->swd_vp != rootvp) {
1041 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1042 	}
1043 
1044 	mutex_enter(&uvm_swap_data_lock);
1045 	uvmexp.swpages -= npages;
1046 	uvmexp.swpginuse -= sdp->swd_npgbad;
1047 
1048 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1049 		panic("%s: swapdev not in list", __func__);
1050 	swaplist_trim();
1051 	mutex_exit(&uvm_swap_data_lock);
1052 
1053 	/*
1054 	 * free all resources!
1055 	 */
1056 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1057 	blist_destroy(sdp->swd_blist);
1058 	bufq_free(sdp->swd_tab);
1059 	kmem_free(sdp, sizeof(*sdp));
1060 	return (0);
1061 }
1062 
1063 void
1064 uvm_swap_shutdown(struct lwp *l)
1065 {
1066 	struct swapdev *sdp;
1067 	struct swappri *spp;
1068 	struct vnode *vp;
1069 	int error;
1070 
1071 	printf("turning of swap...");
1072 	rw_enter(&swap_syscall_lock, RW_WRITER);
1073 	mutex_enter(&uvm_swap_data_lock);
1074 again:
1075 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1076 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1077 			if (sdp->swd_flags & SWF_FAKE)
1078 				continue;
1079 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1080 				continue;
1081 #ifdef DEBUG
1082 			printf("\nturning off swap on %s...",
1083 			    sdp->swd_path);
1084 #endif
1085 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1086 				error = EBUSY;
1087 				vp = NULL;
1088 			} else
1089 				error = 0;
1090 			if (!error) {
1091 				error = swap_off(l, sdp);
1092 				mutex_enter(&uvm_swap_data_lock);
1093 			}
1094 			if (error) {
1095 				printf("stopping swap on %s failed "
1096 				    "with error %d\n", sdp->swd_path, error);
1097 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1098 				    swd_next);
1099 				uvmexp.nswapdev--;
1100 				swaplist_trim();
1101 				if (vp)
1102 					vput(vp);
1103 			}
1104 			goto again;
1105 		}
1106 	printf(" done\n");
1107 	mutex_exit(&uvm_swap_data_lock);
1108 	rw_exit(&swap_syscall_lock);
1109 }
1110 
1111 
1112 /*
1113  * /dev/drum interface and i/o functions
1114  */
1115 
1116 /*
1117  * swstrategy: perform I/O on the drum
1118  *
1119  * => we must map the i/o request from the drum to the correct swapdev.
1120  */
1121 static void
1122 swstrategy(struct buf *bp)
1123 {
1124 	struct swapdev *sdp;
1125 	struct vnode *vp;
1126 	int pageno, bn;
1127 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1128 
1129 	/*
1130 	 * convert block number to swapdev.   note that swapdev can't
1131 	 * be yanked out from under us because we are holding resources
1132 	 * in it (i.e. the blocks we are doing I/O on).
1133 	 */
1134 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1135 	mutex_enter(&uvm_swap_data_lock);
1136 	sdp = swapdrum_getsdp(pageno);
1137 	mutex_exit(&uvm_swap_data_lock);
1138 	if (sdp == NULL) {
1139 		bp->b_error = EINVAL;
1140 		bp->b_resid = bp->b_bcount;
1141 		biodone(bp);
1142 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1143 		return;
1144 	}
1145 
1146 	/*
1147 	 * convert drum page number to block number on this swapdev.
1148 	 */
1149 
1150 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1151 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1152 
1153 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1154 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
1155 		sdp->swd_drumoffset, bn, bp->b_bcount);
1156 
1157 	/*
1158 	 * for block devices we finish up here.
1159 	 * for regular files we have to do more work which we delegate
1160 	 * to sw_reg_strategy().
1161 	 */
1162 
1163 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1164 	switch (vp->v_type) {
1165 	default:
1166 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1167 
1168 	case VBLK:
1169 
1170 		/*
1171 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1172 		 * on the swapdev (sdp).
1173 		 */
1174 		bp->b_blkno = bn;		/* swapdev block number */
1175 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1176 
1177 		/*
1178 		 * if we are doing a write, we have to redirect the i/o on
1179 		 * drum's v_numoutput counter to the swapdevs.
1180 		 */
1181 		if ((bp->b_flags & B_READ) == 0) {
1182 			mutex_enter(bp->b_objlock);
1183 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1184 			mutex_exit(bp->b_objlock);
1185 			mutex_enter(vp->v_interlock);
1186 			vp->v_numoutput++;	/* put it on swapdev */
1187 			mutex_exit(vp->v_interlock);
1188 		}
1189 
1190 		/*
1191 		 * finally plug in swapdev vnode and start I/O
1192 		 */
1193 		bp->b_vp = vp;
1194 		bp->b_objlock = vp->v_interlock;
1195 		VOP_STRATEGY(vp, bp);
1196 		return;
1197 
1198 	case VREG:
1199 		/*
1200 		 * delegate to sw_reg_strategy function.
1201 		 */
1202 		sw_reg_strategy(sdp, bp, bn);
1203 		return;
1204 	}
1205 	/* NOTREACHED */
1206 }
1207 
1208 /*
1209  * swread: the read function for the drum (just a call to physio)
1210  */
1211 /*ARGSUSED*/
1212 static int
1213 swread(dev_t dev, struct uio *uio, int ioflag)
1214 {
1215 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1216 
1217 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1218 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1219 }
1220 
1221 /*
1222  * swwrite: the write function for the drum (just a call to physio)
1223  */
1224 /*ARGSUSED*/
1225 static int
1226 swwrite(dev_t dev, struct uio *uio, int ioflag)
1227 {
1228 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1229 
1230 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1231 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1232 }
1233 
1234 const struct bdevsw swap_bdevsw = {
1235 	.d_open = nullopen,
1236 	.d_close = nullclose,
1237 	.d_strategy = swstrategy,
1238 	.d_ioctl = noioctl,
1239 	.d_dump = nodump,
1240 	.d_psize = nosize,
1241 	.d_discard = nodiscard,
1242 	.d_flag = D_OTHER
1243 };
1244 
1245 const struct cdevsw swap_cdevsw = {
1246 	.d_open = nullopen,
1247 	.d_close = nullclose,
1248 	.d_read = swread,
1249 	.d_write = swwrite,
1250 	.d_ioctl = noioctl,
1251 	.d_stop = nostop,
1252 	.d_tty = notty,
1253 	.d_poll = nopoll,
1254 	.d_mmap = nommap,
1255 	.d_kqfilter = nokqfilter,
1256 	.d_discard = nodiscard,
1257 	.d_flag = D_OTHER,
1258 };
1259 
1260 /*
1261  * sw_reg_strategy: handle swap i/o to regular files
1262  */
1263 static void
1264 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1265 {
1266 	struct vnode	*vp;
1267 	struct vndxfer	*vnx;
1268 	daddr_t		nbn;
1269 	char 		*addr;
1270 	off_t		byteoff;
1271 	int		s, off, nra, error, sz, resid;
1272 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1273 
1274 	/*
1275 	 * allocate a vndxfer head for this transfer and point it to
1276 	 * our buffer.
1277 	 */
1278 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1279 	vnx->vx_flags = VX_BUSY;
1280 	vnx->vx_error = 0;
1281 	vnx->vx_pending = 0;
1282 	vnx->vx_bp = bp;
1283 	vnx->vx_sdp = sdp;
1284 
1285 	/*
1286 	 * setup for main loop where we read filesystem blocks into
1287 	 * our buffer.
1288 	 */
1289 	error = 0;
1290 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1291 	addr = bp->b_data;		/* current position in buffer */
1292 	byteoff = dbtob((uint64_t)bn);
1293 
1294 	for (resid = bp->b_resid; resid; resid -= sz) {
1295 		struct vndbuf	*nbp;
1296 
1297 		/*
1298 		 * translate byteoffset into block number.  return values:
1299 		 *   vp = vnode of underlying device
1300 		 *  nbn = new block number (on underlying vnode dev)
1301 		 *  nra = num blocks we can read-ahead (excludes requested
1302 		 *	block)
1303 		 */
1304 		nra = 0;
1305 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1306 				 	&vp, &nbn, &nra);
1307 
1308 		if (error == 0 && nbn == (daddr_t)-1) {
1309 			/*
1310 			 * this used to just set error, but that doesn't
1311 			 * do the right thing.  Instead, it causes random
1312 			 * memory errors.  The panic() should remain until
1313 			 * this condition doesn't destabilize the system.
1314 			 */
1315 #if 1
1316 			panic("%s: swap to sparse file", __func__);
1317 #else
1318 			error = EIO;	/* failure */
1319 #endif
1320 		}
1321 
1322 		/*
1323 		 * punt if there was an error or a hole in the file.
1324 		 * we must wait for any i/o ops we have already started
1325 		 * to finish before returning.
1326 		 *
1327 		 * XXX we could deal with holes here but it would be
1328 		 * a hassle (in the write case).
1329 		 */
1330 		if (error) {
1331 			s = splbio();
1332 			vnx->vx_error = error;	/* pass error up */
1333 			goto out;
1334 		}
1335 
1336 		/*
1337 		 * compute the size ("sz") of this transfer (in bytes).
1338 		 */
1339 		off = byteoff % sdp->swd_bsize;
1340 		sz = (1 + nra) * sdp->swd_bsize - off;
1341 		if (sz > resid)
1342 			sz = resid;
1343 
1344 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1345 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
1346 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1347 
1348 		/*
1349 		 * now get a buf structure.   note that the vb_buf is
1350 		 * at the front of the nbp structure so that you can
1351 		 * cast pointers between the two structure easily.
1352 		 */
1353 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1354 		buf_init(&nbp->vb_buf);
1355 		nbp->vb_buf.b_flags    = bp->b_flags;
1356 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1357 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1358 		nbp->vb_buf.b_bcount   = sz;
1359 		nbp->vb_buf.b_bufsize  = sz;
1360 		nbp->vb_buf.b_error    = 0;
1361 		nbp->vb_buf.b_data     = addr;
1362 		nbp->vb_buf.b_lblkno   = 0;
1363 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1364 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1365 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1366 		nbp->vb_buf.b_vp       = vp;
1367 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1368 		if (vp->v_type == VBLK) {
1369 			nbp->vb_buf.b_dev = vp->v_rdev;
1370 		}
1371 
1372 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1373 
1374 		/*
1375 		 * Just sort by block number
1376 		 */
1377 		s = splbio();
1378 		if (vnx->vx_error != 0) {
1379 			buf_destroy(&nbp->vb_buf);
1380 			pool_put(&vndbuf_pool, nbp);
1381 			goto out;
1382 		}
1383 		vnx->vx_pending++;
1384 
1385 		/* sort it in and start I/O if we are not over our limit */
1386 		/* XXXAD locking */
1387 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1388 		sw_reg_start(sdp);
1389 		splx(s);
1390 
1391 		/*
1392 		 * advance to the next I/O
1393 		 */
1394 		byteoff += sz;
1395 		addr += sz;
1396 	}
1397 
1398 	s = splbio();
1399 
1400 out: /* Arrive here at splbio */
1401 	vnx->vx_flags &= ~VX_BUSY;
1402 	if (vnx->vx_pending == 0) {
1403 		error = vnx->vx_error;
1404 		pool_put(&vndxfer_pool, vnx);
1405 		bp->b_error = error;
1406 		biodone(bp);
1407 	}
1408 	splx(s);
1409 }
1410 
1411 /*
1412  * sw_reg_start: start an I/O request on the requested swapdev
1413  *
1414  * => reqs are sorted by b_rawblkno (above)
1415  */
1416 static void
1417 sw_reg_start(struct swapdev *sdp)
1418 {
1419 	struct buf	*bp;
1420 	struct vnode	*vp;
1421 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1422 
1423 	/* recursion control */
1424 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1425 		return;
1426 
1427 	sdp->swd_flags |= SWF_BUSY;
1428 
1429 	while (sdp->swd_active < sdp->swd_maxactive) {
1430 		bp = bufq_get(sdp->swd_tab);
1431 		if (bp == NULL)
1432 			break;
1433 		sdp->swd_active++;
1434 
1435 		UVMHIST_LOG(pdhist,
1436 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
1437 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1438 		    bp->b_bcount);
1439 		vp = bp->b_vp;
1440 		KASSERT(bp->b_objlock == vp->v_interlock);
1441 		if ((bp->b_flags & B_READ) == 0) {
1442 			mutex_enter(vp->v_interlock);
1443 			vp->v_numoutput++;
1444 			mutex_exit(vp->v_interlock);
1445 		}
1446 		VOP_STRATEGY(vp, bp);
1447 	}
1448 	sdp->swd_flags &= ~SWF_BUSY;
1449 }
1450 
1451 /*
1452  * sw_reg_biodone: one of our i/o's has completed
1453  */
1454 static void
1455 sw_reg_biodone(struct buf *bp)
1456 {
1457 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1458 }
1459 
1460 /*
1461  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1462  *
1463  * => note that we can recover the vndbuf struct by casting the buf ptr
1464  */
1465 static void
1466 sw_reg_iodone(struct work *wk, void *dummy)
1467 {
1468 	struct vndbuf *vbp = (void *)wk;
1469 	struct vndxfer *vnx = vbp->vb_xfer;
1470 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1471 	struct swapdev	*sdp = vnx->vx_sdp;
1472 	int s, resid, error;
1473 	KASSERT(&vbp->vb_buf.b_work == wk);
1474 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1475 
1476 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1477 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1478 	    (uintptr_t)vbp->vb_buf.b_data);
1479 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
1480 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1481 
1482 	/*
1483 	 * protect vbp at splbio and update.
1484 	 */
1485 
1486 	s = splbio();
1487 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1488 	pbp->b_resid -= resid;
1489 	vnx->vx_pending--;
1490 
1491 	if (vbp->vb_buf.b_error != 0) {
1492 		/* pass error upward */
1493 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1494 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
1495 		vnx->vx_error = error;
1496 	}
1497 
1498 	/*
1499 	 * kill vbp structure
1500 	 */
1501 	buf_destroy(&vbp->vb_buf);
1502 	pool_put(&vndbuf_pool, vbp);
1503 
1504 	/*
1505 	 * wrap up this transaction if it has run to completion or, in
1506 	 * case of an error, when all auxiliary buffers have returned.
1507 	 */
1508 	if (vnx->vx_error != 0) {
1509 		/* pass error upward */
1510 		error = vnx->vx_error;
1511 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1512 			pbp->b_error = error;
1513 			biodone(pbp);
1514 			pool_put(&vndxfer_pool, vnx);
1515 		}
1516 	} else if (pbp->b_resid == 0) {
1517 		KASSERT(vnx->vx_pending == 0);
1518 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1519 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
1520 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
1521 			biodone(pbp);
1522 			pool_put(&vndxfer_pool, vnx);
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * done!   start next swapdev I/O if one is pending
1528 	 */
1529 	sdp->swd_active--;
1530 	sw_reg_start(sdp);
1531 	splx(s);
1532 }
1533 
1534 
1535 /*
1536  * uvm_swap_alloc: allocate space on swap
1537  *
1538  * => allocation is done "round robin" down the priority list, as we
1539  *	allocate in a priority we "rotate" the circle queue.
1540  * => space can be freed with uvm_swap_free
1541  * => we return the page slot number in /dev/drum (0 == invalid slot)
1542  * => we lock uvm_swap_data_lock
1543  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1544  */
1545 int
1546 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1547 {
1548 	struct swapdev *sdp;
1549 	struct swappri *spp;
1550 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1551 
1552 	/*
1553 	 * no swap devices configured yet?   definite failure.
1554 	 */
1555 	if (uvmexp.nswapdev < 1)
1556 		return 0;
1557 
1558 	/*
1559 	 * XXXJAK: BEGIN HACK
1560 	 *
1561 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1562 	 * too many slots.
1563 	 */
1564 	if (*nslots > BLIST_MAX_ALLOC) {
1565 		if (__predict_false(lessok == false))
1566 			return 0;
1567 		*nslots = BLIST_MAX_ALLOC;
1568 	}
1569 	/* XXXJAK: END HACK */
1570 
1571 	/*
1572 	 * lock data lock, convert slots into blocks, and enter loop
1573 	 */
1574 	mutex_enter(&uvm_swap_data_lock);
1575 
1576 ReTry:	/* XXXMRG */
1577 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1578 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1579 			uint64_t result;
1580 
1581 			/* if it's not enabled, then we can't swap from it */
1582 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1583 				continue;
1584 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1585 				continue;
1586 			result = blist_alloc(sdp->swd_blist, *nslots);
1587 			if (result == BLIST_NONE) {
1588 				continue;
1589 			}
1590 			KASSERT(result < sdp->swd_drumsize);
1591 
1592 			/*
1593 			 * successful allocation!  now rotate the tailq.
1594 			 */
1595 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1596 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1597 			sdp->swd_npginuse += *nslots;
1598 			uvmexp.swpginuse += *nslots;
1599 			mutex_exit(&uvm_swap_data_lock);
1600 			/* done!  return drum slot number */
1601 			UVMHIST_LOG(pdhist,
1602 			    "success!  returning %jd slots starting at %jd",
1603 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1604 			return (result + sdp->swd_drumoffset);
1605 		}
1606 	}
1607 
1608 	/* XXXMRG: BEGIN HACK */
1609 	if (*nslots > 1 && lessok) {
1610 		*nslots = 1;
1611 		/* XXXMRG: ugh!  blist should support this for us */
1612 		goto ReTry;
1613 	}
1614 	/* XXXMRG: END HACK */
1615 
1616 	mutex_exit(&uvm_swap_data_lock);
1617 	return 0;
1618 }
1619 
1620 /*
1621  * uvm_swapisfull: return true if most of available swap is allocated
1622  * and in use.  we don't count some small portion as it may be inaccessible
1623  * to us at any given moment, for example if there is lock contention or if
1624  * pages are busy.
1625  */
1626 bool
1627 uvm_swapisfull(void)
1628 {
1629 	int swpgonly;
1630 	bool rv;
1631 
1632 	mutex_enter(&uvm_swap_data_lock);
1633 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1634 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1635 	    uvm_swapisfull_factor);
1636 	rv = (swpgonly >= uvmexp.swpgavail);
1637 	mutex_exit(&uvm_swap_data_lock);
1638 
1639 	return (rv);
1640 }
1641 
1642 /*
1643  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1644  *
1645  * => we lock uvm_swap_data_lock
1646  */
1647 void
1648 uvm_swap_markbad(int startslot, int nslots)
1649 {
1650 	struct swapdev *sdp;
1651 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1652 
1653 	mutex_enter(&uvm_swap_data_lock);
1654 	sdp = swapdrum_getsdp(startslot);
1655 	KASSERT(sdp != NULL);
1656 
1657 	/*
1658 	 * we just keep track of how many pages have been marked bad
1659 	 * in this device, to make everything add up in swap_off().
1660 	 * we assume here that the range of slots will all be within
1661 	 * one swap device.
1662 	 */
1663 
1664 	KASSERT(uvmexp.swpgonly >= nslots);
1665 	uvmexp.swpgonly -= nslots;
1666 	sdp->swd_npgbad += nslots;
1667 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1668 	mutex_exit(&uvm_swap_data_lock);
1669 }
1670 
1671 /*
1672  * uvm_swap_free: free swap slots
1673  *
1674  * => this can be all or part of an allocation made by uvm_swap_alloc
1675  * => we lock uvm_swap_data_lock
1676  */
1677 void
1678 uvm_swap_free(int startslot, int nslots)
1679 {
1680 	struct swapdev *sdp;
1681 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1682 
1683 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1684 	    startslot, 0, 0);
1685 
1686 	/*
1687 	 * ignore attempts to free the "bad" slot.
1688 	 */
1689 
1690 	if (startslot == SWSLOT_BAD) {
1691 		return;
1692 	}
1693 
1694 	/*
1695 	 * convert drum slot offset back to sdp, free the blocks
1696 	 * in the extent, and return.   must hold pri lock to do
1697 	 * lookup and access the extent.
1698 	 */
1699 
1700 	mutex_enter(&uvm_swap_data_lock);
1701 	sdp = swapdrum_getsdp(startslot);
1702 	KASSERT(uvmexp.nswapdev >= 1);
1703 	KASSERT(sdp != NULL);
1704 	KASSERT(sdp->swd_npginuse >= nslots);
1705 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1706 	sdp->swd_npginuse -= nslots;
1707 	uvmexp.swpginuse -= nslots;
1708 	mutex_exit(&uvm_swap_data_lock);
1709 }
1710 
1711 /*
1712  * uvm_swap_put: put any number of pages into a contig place on swap
1713  *
1714  * => can be sync or async
1715  */
1716 
1717 int
1718 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1719 {
1720 	int error;
1721 
1722 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1723 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1724 	return error;
1725 }
1726 
1727 /*
1728  * uvm_swap_get: get a single page from swap
1729  *
1730  * => usually a sync op (from fault)
1731  */
1732 
1733 int
1734 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1735 {
1736 	int error;
1737 
1738 	uvmexp.nswget++;
1739 	KASSERT(flags & PGO_SYNCIO);
1740 	if (swslot == SWSLOT_BAD) {
1741 		return EIO;
1742 	}
1743 
1744 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1745 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1746 	if (error == 0) {
1747 
1748 		/*
1749 		 * this page is no longer only in swap.
1750 		 */
1751 
1752 		mutex_enter(&uvm_swap_data_lock);
1753 		KASSERT(uvmexp.swpgonly > 0);
1754 		uvmexp.swpgonly--;
1755 		mutex_exit(&uvm_swap_data_lock);
1756 	}
1757 	return error;
1758 }
1759 
1760 /*
1761  * uvm_swap_io: do an i/o operation to swap
1762  */
1763 
1764 static int
1765 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1766 {
1767 	daddr_t startblk;
1768 	struct	buf *bp;
1769 	vaddr_t kva;
1770 	int	error, mapinflags;
1771 	bool write, async;
1772 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1773 
1774 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1775 	    startslot, npages, flags, 0);
1776 
1777 	write = (flags & B_READ) == 0;
1778 	async = (flags & B_ASYNC) != 0;
1779 
1780 	/*
1781 	 * allocate a buf for the i/o.
1782 	 */
1783 
1784 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1785 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1786 	if (bp == NULL) {
1787 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1788 		return ENOMEM;
1789 	}
1790 
1791 	/*
1792 	 * convert starting drum slot to block number
1793 	 */
1794 
1795 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1796 
1797 	/*
1798 	 * first, map the pages into the kernel.
1799 	 */
1800 
1801 	mapinflags = !write ?
1802 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1803 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1804 	kva = uvm_pagermapin(pps, npages, mapinflags);
1805 
1806 	/*
1807 	 * fill in the bp/sbp.   we currently route our i/o through
1808 	 * /dev/drum's vnode [swapdev_vp].
1809 	 */
1810 
1811 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1812 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1813 	bp->b_proc = &proc0;	/* XXX */
1814 	bp->b_vnbufs.le_next = NOLIST;
1815 	bp->b_data = (void *)kva;
1816 	bp->b_blkno = startblk;
1817 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1818 
1819 	/*
1820 	 * bump v_numoutput (counter of number of active outputs).
1821 	 */
1822 
1823 	if (write) {
1824 		mutex_enter(swapdev_vp->v_interlock);
1825 		swapdev_vp->v_numoutput++;
1826 		mutex_exit(swapdev_vp->v_interlock);
1827 	}
1828 
1829 	/*
1830 	 * for async ops we must set up the iodone handler.
1831 	 */
1832 
1833 	if (async) {
1834 		bp->b_iodone = uvm_aio_biodone;
1835 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1836 		if (curlwp == uvm.pagedaemon_lwp)
1837 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1838 		else
1839 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1840 	} else {
1841 		bp->b_iodone = NULL;
1842 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1843 	}
1844 	UVMHIST_LOG(pdhist,
1845 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1846 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1847 
1848 	/*
1849 	 * now we start the I/O, and if async, return.
1850 	 */
1851 
1852 	VOP_STRATEGY(swapdev_vp, bp);
1853 	if (async)
1854 		return 0;
1855 
1856 	/*
1857 	 * must be sync i/o.   wait for it to finish
1858 	 */
1859 
1860 	error = biowait(bp);
1861 
1862 	/*
1863 	 * kill the pager mapping
1864 	 */
1865 
1866 	uvm_pagermapout(kva, npages);
1867 
1868 	/*
1869 	 * now dispose of the buf and we're done.
1870 	 */
1871 
1872 	if (write) {
1873 		mutex_enter(swapdev_vp->v_interlock);
1874 		vwakeup(bp);
1875 		mutex_exit(swapdev_vp->v_interlock);
1876 	}
1877 	putiobuf(bp);
1878 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
1879 
1880 	return (error);
1881 }
1882