1 /* $NetBSD: uvm_swap.c,v 1.44 2001/01/04 06:07:18 enami Exp $ */ 2 3 /* 4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp 31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp 32 */ 33 34 #include "fs_nfs.h" 35 #include "opt_uvmhist.h" 36 #include "opt_compat_netbsd.h" 37 #include "opt_ddb.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/buf.h> 42 #include <sys/conf.h> 43 #include <sys/proc.h> 44 #include <sys/namei.h> 45 #include <sys/disklabel.h> 46 #include <sys/errno.h> 47 #include <sys/kernel.h> 48 #include <sys/malloc.h> 49 #include <sys/vnode.h> 50 #include <sys/file.h> 51 #include <sys/extent.h> 52 #include <sys/mount.h> 53 #include <sys/pool.h> 54 #include <sys/syscallargs.h> 55 #include <sys/swap.h> 56 57 #include <uvm/uvm.h> 58 59 #include <miscfs/specfs/specdev.h> 60 61 /* 62 * uvm_swap.c: manage configuration and i/o to swap space. 63 */ 64 65 /* 66 * swap space is managed in the following way: 67 * 68 * each swap partition or file is described by a "swapdev" structure. 69 * each "swapdev" structure contains a "swapent" structure which contains 70 * information that is passed up to the user (via system calls). 71 * 72 * each swap partition is assigned a "priority" (int) which controls 73 * swap parition usage. 74 * 75 * the system maintains a global data structure describing all swap 76 * partitions/files. there is a sorted LIST of "swappri" structures 77 * which describe "swapdev"'s at that priority. this LIST is headed 78 * by the "swap_priority" global var. each "swappri" contains a 79 * CIRCLEQ of "swapdev" structures at that priority. 80 * 81 * locking: 82 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl 83 * system call and prevents the swap priority list from changing 84 * while we are in the middle of a system call (e.g. SWAP_STATS). 85 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data 86 * structures including the priority list, the swapdev structures, 87 * and the swapmap extent. 88 * 89 * each swap device has the following info: 90 * - swap device in use (could be disabled, preventing future use) 91 * - swap enabled (allows new allocations on swap) 92 * - map info in /dev/drum 93 * - vnode pointer 94 * for swap files only: 95 * - block size 96 * - max byte count in buffer 97 * - buffer 98 * - credentials to use when doing i/o to file 99 * 100 * userland controls and configures swap with the swapctl(2) system call. 101 * the sys_swapctl performs the following operations: 102 * [1] SWAP_NSWAP: returns the number of swap devices currently configured 103 * [2] SWAP_STATS: given a pointer to an array of swapent structures 104 * (passed in via "arg") of a size passed in via "misc" ... we load 105 * the current swap config into the array. 106 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a 107 * priority in "misc", start swapping on it. 108 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device 109 * [5] SWAP_CTL: changes the priority of a swap device (new priority in 110 * "misc") 111 */ 112 113 /* 114 * swapdev: describes a single swap partition/file 115 * 116 * note the following should be true: 117 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] 118 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] 119 */ 120 struct swapdev { 121 struct oswapent swd_ose; 122 #define swd_dev swd_ose.ose_dev /* device id */ 123 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */ 124 #define swd_priority swd_ose.ose_priority /* our priority */ 125 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */ 126 char *swd_path; /* saved pathname of device */ 127 int swd_pathlen; /* length of pathname */ 128 int swd_npages; /* #pages we can use */ 129 int swd_npginuse; /* #pages in use */ 130 int swd_npgbad; /* #pages bad */ 131 int swd_drumoffset; /* page0 offset in drum */ 132 int swd_drumsize; /* #pages in drum */ 133 struct extent *swd_ex; /* extent for this swapdev */ 134 char swd_exname[12]; /* name of extent above */ 135 struct vnode *swd_vp; /* backing vnode */ 136 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */ 137 138 int swd_bsize; /* blocksize (bytes) */ 139 int swd_maxactive; /* max active i/o reqs */ 140 struct buf_queue swd_tab; /* buffer list */ 141 int swd_active; /* number of active buffers */ 142 struct ucred *swd_cred; /* cred for file access */ 143 }; 144 145 /* 146 * swap device priority entry; the list is kept sorted on `spi_priority'. 147 */ 148 struct swappri { 149 int spi_priority; /* priority */ 150 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev; 151 /* circleq of swapdevs at this priority */ 152 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ 153 }; 154 155 /* 156 * The following two structures are used to keep track of data transfers 157 * on swap devices associated with regular files. 158 * NOTE: this code is more or less a copy of vnd.c; we use the same 159 * structure names here to ease porting.. 160 */ 161 struct vndxfer { 162 struct buf *vx_bp; /* Pointer to parent buffer */ 163 struct swapdev *vx_sdp; 164 int vx_error; 165 int vx_pending; /* # of pending aux buffers */ 166 int vx_flags; 167 #define VX_BUSY 1 168 #define VX_DEAD 2 169 }; 170 171 struct vndbuf { 172 struct buf vb_buf; 173 struct vndxfer *vb_xfer; 174 }; 175 176 177 /* 178 * We keep a of pool vndbuf's and vndxfer structures. 179 */ 180 struct pool *vndxfer_pool; 181 struct pool *vndbuf_pool; 182 183 #define getvndxfer(vnx) do { \ 184 int s = splbio(); \ 185 vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \ 186 splx(s); \ 187 } while (0) 188 189 #define putvndxfer(vnx) { \ 190 pool_put(vndxfer_pool, (void *)(vnx)); \ 191 } 192 193 #define getvndbuf(vbp) do { \ 194 int s = splbio(); \ 195 vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \ 196 splx(s); \ 197 } while (0) 198 199 #define putvndbuf(vbp) { \ 200 pool_put(vndbuf_pool, (void *)(vbp)); \ 201 } 202 203 /* /dev/drum */ 204 bdev_decl(sw); 205 cdev_decl(sw); 206 207 /* 208 * local variables 209 */ 210 static struct extent *swapmap; /* controls the mapping of /dev/drum */ 211 212 /* list of all active swap devices [by priority] */ 213 LIST_HEAD(swap_priority, swappri); 214 static struct swap_priority swap_priority; 215 216 /* locks */ 217 lock_data_t swap_syscall_lock; 218 219 /* 220 * prototypes 221 */ 222 static void swapdrum_add __P((struct swapdev *, int)); 223 static struct swapdev *swapdrum_getsdp __P((int)); 224 225 static struct swapdev *swaplist_find __P((struct vnode *, int)); 226 static void swaplist_insert __P((struct swapdev *, 227 struct swappri *, int)); 228 static void swaplist_trim __P((void)); 229 230 static int swap_on __P((struct proc *, struct swapdev *)); 231 static int swap_off __P((struct proc *, struct swapdev *)); 232 233 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int)); 234 static void sw_reg_iodone __P((struct buf *)); 235 static void sw_reg_start __P((struct swapdev *)); 236 237 static int uvm_swap_io __P((struct vm_page **, int, int, int)); 238 239 /* 240 * uvm_swap_init: init the swap system data structures and locks 241 * 242 * => called at boot time from init_main.c after the filesystems 243 * are brought up (which happens after uvm_init()) 244 */ 245 void 246 uvm_swap_init() 247 { 248 UVMHIST_FUNC("uvm_swap_init"); 249 250 UVMHIST_CALLED(pdhist); 251 /* 252 * first, init the swap list, its counter, and its lock. 253 * then get a handle on the vnode for /dev/drum by using 254 * the its dev_t number ("swapdev", from MD conf.c). 255 */ 256 257 LIST_INIT(&swap_priority); 258 uvmexp.nswapdev = 0; 259 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0); 260 simple_lock_init(&uvm.swap_data_lock); 261 262 if (bdevvp(swapdev, &swapdev_vp)) 263 panic("uvm_swap_init: can't get vnode for swap device"); 264 265 /* 266 * create swap block resource map to map /dev/drum. the range 267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note 268 * that block 0 is reserved (used to indicate an allocation 269 * failure, or no allocation). 270 */ 271 swapmap = extent_create("swapmap", 1, INT_MAX, 272 M_VMSWAP, 0, 0, EX_NOWAIT); 273 if (swapmap == 0) 274 panic("uvm_swap_init: extent_create failed"); 275 276 /* 277 * allocate pools for structures used for swapping to files. 278 */ 279 280 vndxfer_pool = 281 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0, 282 NULL, NULL, 0); 283 if (vndxfer_pool == NULL) 284 panic("swapinit: pool_create failed"); 285 286 vndbuf_pool = 287 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0, 288 NULL, NULL, 0); 289 if (vndbuf_pool == NULL) 290 panic("swapinit: pool_create failed"); 291 /* 292 * done! 293 */ 294 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); 295 } 296 297 /* 298 * swaplist functions: functions that operate on the list of swap 299 * devices on the system. 300 */ 301 302 /* 303 * swaplist_insert: insert swap device "sdp" into the global list 304 * 305 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 306 * => caller must provide a newly malloc'd swappri structure (we will 307 * FREE it if we don't need it... this it to prevent malloc blocking 308 * here while adding swap) 309 */ 310 static void 311 swaplist_insert(sdp, newspp, priority) 312 struct swapdev *sdp; 313 struct swappri *newspp; 314 int priority; 315 { 316 struct swappri *spp, *pspp; 317 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist); 318 319 /* 320 * find entry at or after which to insert the new device. 321 */ 322 for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL; 323 spp = LIST_NEXT(spp, spi_swappri)) { 324 if (priority <= spp->spi_priority) 325 break; 326 pspp = spp; 327 } 328 329 /* 330 * new priority? 331 */ 332 if (spp == NULL || spp->spi_priority != priority) { 333 spp = newspp; /* use newspp! */ 334 UVMHIST_LOG(pdhist, "created new swappri = %d", 335 priority, 0, 0, 0); 336 337 spp->spi_priority = priority; 338 CIRCLEQ_INIT(&spp->spi_swapdev); 339 340 if (pspp) 341 LIST_INSERT_AFTER(pspp, spp, spi_swappri); 342 else 343 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); 344 } else { 345 /* we don't need a new priority structure, free it */ 346 FREE(newspp, M_VMSWAP); 347 } 348 349 /* 350 * priority found (or created). now insert on the priority's 351 * circleq list and bump the total number of swapdevs. 352 */ 353 sdp->swd_priority = priority; 354 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 355 uvmexp.nswapdev++; 356 } 357 358 /* 359 * swaplist_find: find and optionally remove a swap device from the 360 * global list. 361 * 362 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 363 * => we return the swapdev we found (and removed) 364 */ 365 static struct swapdev * 366 swaplist_find(vp, remove) 367 struct vnode *vp; 368 boolean_t remove; 369 { 370 struct swapdev *sdp; 371 struct swappri *spp; 372 373 /* 374 * search the lists for the requested vp 375 */ 376 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 377 spp = LIST_NEXT(spp, spi_swappri)) { 378 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 379 sdp != (void *)&spp->spi_swapdev; 380 sdp = CIRCLEQ_NEXT(sdp, swd_next)) 381 if (sdp->swd_vp == vp) { 382 if (remove) { 383 CIRCLEQ_REMOVE(&spp->spi_swapdev, 384 sdp, swd_next); 385 uvmexp.nswapdev--; 386 } 387 return(sdp); 388 } 389 } 390 return (NULL); 391 } 392 393 394 /* 395 * swaplist_trim: scan priority list for empty priority entries and kill 396 * them. 397 * 398 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 399 */ 400 static void 401 swaplist_trim() 402 { 403 struct swappri *spp, *nextspp; 404 405 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) { 406 nextspp = LIST_NEXT(spp, spi_swappri); 407 if (CIRCLEQ_FIRST(&spp->spi_swapdev) != 408 (void *)&spp->spi_swapdev) 409 continue; 410 LIST_REMOVE(spp, spi_swappri); 411 free(spp, M_VMSWAP); 412 } 413 } 414 415 /* 416 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area. 417 * 418 * => caller must hold swap_syscall_lock 419 * => uvm.swap_data_lock should be unlocked (we may sleep) 420 */ 421 static void 422 swapdrum_add(sdp, npages) 423 struct swapdev *sdp; 424 int npages; 425 { 426 u_long result; 427 428 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY, 429 EX_WAITOK, &result)) 430 panic("swapdrum_add"); 431 432 sdp->swd_drumoffset = result; 433 sdp->swd_drumsize = npages; 434 } 435 436 /* 437 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back 438 * to the "swapdev" that maps that section of the drum. 439 * 440 * => each swapdev takes one big contig chunk of the drum 441 * => caller must hold uvm.swap_data_lock 442 */ 443 static struct swapdev * 444 swapdrum_getsdp(pgno) 445 int pgno; 446 { 447 struct swapdev *sdp; 448 struct swappri *spp; 449 450 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 451 spp = LIST_NEXT(spp, spi_swappri)) 452 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 453 sdp != (void *)&spp->spi_swapdev; 454 sdp = CIRCLEQ_NEXT(sdp, swd_next)) 455 if (pgno >= sdp->swd_drumoffset && 456 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { 457 return sdp; 458 } 459 return NULL; 460 } 461 462 463 /* 464 * sys_swapctl: main entry point for swapctl(2) system call 465 * [with two helper functions: swap_on and swap_off] 466 */ 467 int 468 sys_swapctl(p, v, retval) 469 struct proc *p; 470 void *v; 471 register_t *retval; 472 { 473 struct sys_swapctl_args /* { 474 syscallarg(int) cmd; 475 syscallarg(void *) arg; 476 syscallarg(int) misc; 477 } */ *uap = (struct sys_swapctl_args *)v; 478 struct vnode *vp; 479 struct nameidata nd; 480 struct swappri *spp; 481 struct swapdev *sdp; 482 struct swapent *sep; 483 char userpath[PATH_MAX + 1]; 484 size_t len; 485 int count, error, misc; 486 int priority; 487 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist); 488 489 misc = SCARG(uap, misc); 490 491 /* 492 * ensure serialized syscall access by grabbing the swap_syscall_lock 493 */ 494 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL); 495 496 /* 497 * we handle the non-priv NSWAP and STATS request first. 498 * 499 * SWAP_NSWAP: return number of config'd swap devices 500 * [can also be obtained with uvmexp sysctl] 501 */ 502 if (SCARG(uap, cmd) == SWAP_NSWAP) { 503 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev, 504 0, 0, 0); 505 *retval = uvmexp.nswapdev; 506 error = 0; 507 goto out; 508 } 509 510 /* 511 * SWAP_STATS: get stats on current # of configured swap devs 512 * 513 * note that the swap_priority list can't change as long 514 * as we are holding the swap_syscall_lock. we don't want 515 * to grab the uvm.swap_data_lock because we may fault&sleep during 516 * copyout() and we don't want to be holding that lock then! 517 */ 518 if (SCARG(uap, cmd) == SWAP_STATS 519 #if defined(COMPAT_13) 520 || SCARG(uap, cmd) == SWAP_OSTATS 521 #endif 522 ) { 523 sep = (struct swapent *)SCARG(uap, arg); 524 count = 0; 525 526 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 527 spp = LIST_NEXT(spp, spi_swappri)) { 528 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 529 sdp != (void *)&spp->spi_swapdev && misc-- > 0; 530 sdp = CIRCLEQ_NEXT(sdp, swd_next)) { 531 /* 532 * backwards compatibility for system call. 533 * note that we use 'struct oswapent' as an 534 * overlay into both 'struct swapdev' and 535 * the userland 'struct swapent', as we 536 * want to retain backwards compatibility 537 * with NetBSD 1.3. 538 */ 539 sdp->swd_ose.ose_inuse = 540 btodb((u_int64_t)sdp->swd_npginuse << 541 PAGE_SHIFT); 542 error = copyout(&sdp->swd_ose, sep, 543 sizeof(struct oswapent)); 544 545 /* now copy out the path if necessary */ 546 #if defined(COMPAT_13) 547 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS) 548 #else 549 if (error == 0) 550 #endif 551 error = copyout(sdp->swd_path, 552 &sep->se_path, sdp->swd_pathlen); 553 554 if (error) 555 goto out; 556 count++; 557 #if defined(COMPAT_13) 558 if (SCARG(uap, cmd) == SWAP_OSTATS) 559 ((struct oswapent *)sep)++; 560 else 561 #endif 562 sep++; 563 } 564 } 565 566 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); 567 568 *retval = count; 569 error = 0; 570 goto out; 571 } 572 573 /* 574 * all other requests require superuser privs. verify. 575 */ 576 if ((error = suser(p->p_ucred, &p->p_acflag))) 577 goto out; 578 579 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) { 580 dev_t *devp = (dev_t *)SCARG(uap, arg); 581 582 error = copyout(&dumpdev, devp, sizeof(dumpdev)); 583 goto out; 584 } 585 586 /* 587 * at this point we expect a path name in arg. we will 588 * use namei() to gain a vnode reference (vref), and lock 589 * the vnode (VOP_LOCK). 590 * 591 * XXX: a NULL arg means use the root vnode pointer (e.g. for 592 * miniroot) 593 */ 594 if (SCARG(uap, arg) == NULL) { 595 vp = rootvp; /* miniroot */ 596 if (vget(vp, LK_EXCLUSIVE)) { 597 error = EBUSY; 598 goto out; 599 } 600 if (SCARG(uap, cmd) == SWAP_ON && 601 copystr("miniroot", userpath, sizeof userpath, &len)) 602 panic("swapctl: miniroot copy failed"); 603 } else { 604 int space; 605 char *where; 606 607 if (SCARG(uap, cmd) == SWAP_ON) { 608 if ((error = copyinstr(SCARG(uap, arg), userpath, 609 sizeof userpath, &len))) 610 goto out; 611 space = UIO_SYSSPACE; 612 where = userpath; 613 } else { 614 space = UIO_USERSPACE; 615 where = (char *)SCARG(uap, arg); 616 } 617 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p); 618 if ((error = namei(&nd))) 619 goto out; 620 vp = nd.ni_vp; 621 } 622 /* note: "vp" is referenced and locked */ 623 624 error = 0; /* assume no error */ 625 switch(SCARG(uap, cmd)) { 626 627 case SWAP_DUMPDEV: 628 if (vp->v_type != VBLK) { 629 error = ENOTBLK; 630 goto out; 631 } 632 dumpdev = vp->v_rdev; 633 634 break; 635 636 case SWAP_CTL: 637 /* 638 * get new priority, remove old entry (if any) and then 639 * reinsert it in the correct place. finally, prune out 640 * any empty priority structures. 641 */ 642 priority = SCARG(uap, misc); 643 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 644 simple_lock(&uvm.swap_data_lock); 645 if ((sdp = swaplist_find(vp, 1)) == NULL) { 646 error = ENOENT; 647 } else { 648 swaplist_insert(sdp, spp, priority); 649 swaplist_trim(); 650 } 651 simple_unlock(&uvm.swap_data_lock); 652 if (error) 653 free(spp, M_VMSWAP); 654 break; 655 656 case SWAP_ON: 657 658 /* 659 * check for duplicates. if none found, then insert a 660 * dummy entry on the list to prevent someone else from 661 * trying to enable this device while we are working on 662 * it. 663 */ 664 665 priority = SCARG(uap, misc); 666 simple_lock(&uvm.swap_data_lock); 667 if ((sdp = swaplist_find(vp, 0)) != NULL) { 668 error = EBUSY; 669 simple_unlock(&uvm.swap_data_lock); 670 break; 671 } 672 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK); 673 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 674 memset(sdp, 0, sizeof(*sdp)); 675 sdp->swd_flags = SWF_FAKE; /* placeholder only */ 676 sdp->swd_vp = vp; 677 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; 678 BUFQ_INIT(&sdp->swd_tab); 679 680 /* 681 * XXX Is NFS elaboration necessary? 682 */ 683 if (vp->v_type == VREG) { 684 sdp->swd_cred = crdup(p->p_ucred); 685 } 686 687 swaplist_insert(sdp, spp, priority); 688 simple_unlock(&uvm.swap_data_lock); 689 690 sdp->swd_pathlen = len; 691 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK); 692 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0) 693 panic("swapctl: copystr"); 694 695 /* 696 * we've now got a FAKE placeholder in the swap list. 697 * now attempt to enable swap on it. if we fail, undo 698 * what we've done and kill the fake entry we just inserted. 699 * if swap_on is a success, it will clear the SWF_FAKE flag 700 */ 701 702 if ((error = swap_on(p, sdp)) != 0) { 703 simple_lock(&uvm.swap_data_lock); 704 (void) swaplist_find(vp, 1); /* kill fake entry */ 705 swaplist_trim(); 706 simple_unlock(&uvm.swap_data_lock); 707 if (vp->v_type == VREG) { 708 crfree(sdp->swd_cred); 709 } 710 free(sdp->swd_path, M_VMSWAP); 711 free(sdp, M_VMSWAP); 712 break; 713 } 714 break; 715 716 case SWAP_OFF: 717 simple_lock(&uvm.swap_data_lock); 718 if ((sdp = swaplist_find(vp, 0)) == NULL) { 719 simple_unlock(&uvm.swap_data_lock); 720 error = ENXIO; 721 break; 722 } 723 724 /* 725 * If a device isn't in use or enabled, we 726 * can't stop swapping from it (again). 727 */ 728 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { 729 simple_unlock(&uvm.swap_data_lock); 730 error = EBUSY; 731 break; 732 } 733 734 /* 735 * do the real work. 736 */ 737 if ((error = swap_off(p, sdp)) != 0) 738 goto out; 739 740 break; 741 742 default: 743 error = EINVAL; 744 } 745 746 /* 747 * done! release the ref gained by namei() and unlock. 748 */ 749 vput(vp); 750 751 out: 752 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL); 753 754 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0); 755 return (error); 756 } 757 758 /* 759 * swap_on: attempt to enable a swapdev for swapping. note that the 760 * swapdev is already on the global list, but disabled (marked 761 * SWF_FAKE). 762 * 763 * => we avoid the start of the disk (to protect disk labels) 764 * => we also avoid the miniroot, if we are swapping to root. 765 * => caller should leave uvm.swap_data_lock unlocked, we may lock it 766 * if needed. 767 */ 768 static int 769 swap_on(p, sdp) 770 struct proc *p; 771 struct swapdev *sdp; 772 { 773 static int count = 0; /* static */ 774 struct vnode *vp; 775 int error, npages, nblocks, size; 776 long addr; 777 struct vattr va; 778 #ifdef NFS 779 extern int (**nfsv2_vnodeop_p) __P((void *)); 780 #endif /* NFS */ 781 dev_t dev; 782 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist); 783 784 /* 785 * we want to enable swapping on sdp. the swd_vp contains 786 * the vnode we want (locked and ref'd), and the swd_dev 787 * contains the dev_t of the file, if it a block device. 788 */ 789 790 vp = sdp->swd_vp; 791 dev = sdp->swd_dev; 792 793 /* 794 * open the swap file (mostly useful for block device files to 795 * let device driver know what is up). 796 * 797 * we skip the open/close for root on swap because the root 798 * has already been opened when root was mounted (mountroot). 799 */ 800 if (vp != rootvp) { 801 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p))) 802 return (error); 803 } 804 805 /* XXX this only works for block devices */ 806 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0); 807 808 /* 809 * we now need to determine the size of the swap area. for 810 * block specials we can call the d_psize function. 811 * for normal files, we must stat [get attrs]. 812 * 813 * we put the result in nblks. 814 * for normal files, we also want the filesystem block size 815 * (which we get with statfs). 816 */ 817 switch (vp->v_type) { 818 case VBLK: 819 if (bdevsw[major(dev)].d_psize == 0 || 820 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) { 821 error = ENXIO; 822 goto bad; 823 } 824 break; 825 826 case VREG: 827 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) 828 goto bad; 829 nblocks = (int)btodb(va.va_size); 830 if ((error = 831 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0) 832 goto bad; 833 834 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize; 835 /* 836 * limit the max # of outstanding I/O requests we issue 837 * at any one time. take it easy on NFS servers. 838 */ 839 #ifdef NFS 840 if (vp->v_op == nfsv2_vnodeop_p) 841 sdp->swd_maxactive = 2; /* XXX */ 842 else 843 #endif /* NFS */ 844 sdp->swd_maxactive = 8; /* XXX */ 845 break; 846 847 default: 848 error = ENXIO; 849 goto bad; 850 } 851 852 /* 853 * save nblocks in a safe place and convert to pages. 854 */ 855 856 sdp->swd_ose.ose_nblks = nblocks; 857 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT; 858 859 /* 860 * for block special files, we want to make sure that leave 861 * the disklabel and bootblocks alone, so we arrange to skip 862 * over them (arbitrarily choosing to skip PAGE_SIZE bytes). 863 * note that because of this the "size" can be less than the 864 * actual number of blocks on the device. 865 */ 866 if (vp->v_type == VBLK) { 867 /* we use pages 1 to (size - 1) [inclusive] */ 868 size = npages - 1; 869 addr = 1; 870 } else { 871 /* we use pages 0 to (size - 1) [inclusive] */ 872 size = npages; 873 addr = 0; 874 } 875 876 /* 877 * make sure we have enough blocks for a reasonable sized swap 878 * area. we want at least one page. 879 */ 880 881 if (size < 1) { 882 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); 883 error = EINVAL; 884 goto bad; 885 } 886 887 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0); 888 889 /* 890 * now we need to allocate an extent to manage this swap device 891 */ 892 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x", 893 count++); 894 895 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */ 896 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP, 897 0, 0, EX_WAITOK); 898 /* allocate the `saved' region from the extent so it won't be used */ 899 if (addr) { 900 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK)) 901 panic("disklabel region"); 902 } 903 904 /* 905 * if the vnode we are swapping to is the root vnode 906 * (i.e. we are swapping to the miniroot) then we want 907 * to make sure we don't overwrite it. do a statfs to 908 * find its size and skip over it. 909 */ 910 if (vp == rootvp) { 911 struct mount *mp; 912 struct statfs *sp; 913 int rootblocks, rootpages; 914 915 mp = rootvnode->v_mount; 916 sp = &mp->mnt_stat; 917 rootblocks = sp->f_blocks * btodb(sp->f_bsize); 918 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; 919 if (rootpages > size) 920 panic("swap_on: miniroot larger than swap?"); 921 922 if (extent_alloc_region(sdp->swd_ex, addr, 923 rootpages, EX_WAITOK)) 924 panic("swap_on: unable to preserve miniroot"); 925 926 size -= rootpages; 927 printf("Preserved %d pages of miniroot ", rootpages); 928 printf("leaving %d pages of swap\n", size); 929 } 930 931 /* 932 * try to add anons to reflect the new swap space. 933 */ 934 935 error = uvm_anon_add(size); 936 if (error) { 937 goto bad; 938 } 939 940 /* 941 * add a ref to vp to reflect usage as a swap device. 942 */ 943 vref(vp); 944 945 /* 946 * now add the new swapdev to the drum and enable. 947 */ 948 simple_lock(&uvm.swap_data_lock); 949 swapdrum_add(sdp, npages); 950 sdp->swd_npages = size; 951 sdp->swd_flags &= ~SWF_FAKE; /* going live */ 952 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); 953 uvmexp.swpages += size; 954 simple_unlock(&uvm.swap_data_lock); 955 return (0); 956 957 /* 958 * failure: clean up and return error. 959 */ 960 961 bad: 962 if (sdp->swd_ex) { 963 extent_destroy(sdp->swd_ex); 964 } 965 if (vp != rootvp) { 966 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p); 967 } 968 return (error); 969 } 970 971 /* 972 * swap_off: stop swapping on swapdev 973 * 974 * => swap data should be locked, we will unlock. 975 */ 976 static int 977 swap_off(p, sdp) 978 struct proc *p; 979 struct swapdev *sdp; 980 { 981 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist); 982 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0); 983 984 /* disable the swap area being removed */ 985 sdp->swd_flags &= ~SWF_ENABLE; 986 simple_unlock(&uvm.swap_data_lock); 987 988 /* 989 * the idea is to find all the pages that are paged out to this 990 * device, and page them all in. in uvm, swap-backed pageable 991 * memory can take two forms: aobjs and anons. call the 992 * swapoff hook for each subsystem to bring in pages. 993 */ 994 995 if (uao_swap_off(sdp->swd_drumoffset, 996 sdp->swd_drumoffset + sdp->swd_drumsize) || 997 anon_swap_off(sdp->swd_drumoffset, 998 sdp->swd_drumoffset + sdp->swd_drumsize)) { 999 1000 simple_lock(&uvm.swap_data_lock); 1001 sdp->swd_flags |= SWF_ENABLE; 1002 simple_unlock(&uvm.swap_data_lock); 1003 return ENOMEM; 1004 } 1005 1006 #ifdef DIAGNOSTIC 1007 if (sdp->swd_npginuse != sdp->swd_npgbad) { 1008 panic("swap_off: sdp %p - %d pages still in use (%d bad)\n", 1009 sdp, sdp->swd_npginuse, sdp->swd_npgbad); 1010 } 1011 #endif 1012 1013 /* 1014 * done with the vnode and saved creds. 1015 * drop our ref on the vnode before calling VOP_CLOSE() 1016 * so that spec_close() can tell if this is the last close. 1017 */ 1018 if (sdp->swd_vp->v_type == VREG) { 1019 crfree(sdp->swd_cred); 1020 } 1021 vrele(sdp->swd_vp); 1022 if (sdp->swd_vp != rootvp) { 1023 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p); 1024 } 1025 1026 /* remove anons from the system */ 1027 uvm_anon_remove(sdp->swd_npages); 1028 1029 simple_lock(&uvm.swap_data_lock); 1030 uvmexp.swpages -= sdp->swd_npages; 1031 1032 if (swaplist_find(sdp->swd_vp, 1) == NULL) 1033 panic("swap_off: swapdev not in list\n"); 1034 swaplist_trim(); 1035 1036 /* 1037 * free all resources! 1038 */ 1039 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize, 1040 EX_WAITOK); 1041 extent_destroy(sdp->swd_ex); 1042 free(sdp, M_VMSWAP); 1043 simple_unlock(&uvm.swap_data_lock); 1044 return (0); 1045 } 1046 1047 /* 1048 * /dev/drum interface and i/o functions 1049 */ 1050 1051 /* 1052 * swread: the read function for the drum (just a call to physio) 1053 */ 1054 /*ARGSUSED*/ 1055 int 1056 swread(dev, uio, ioflag) 1057 dev_t dev; 1058 struct uio *uio; 1059 int ioflag; 1060 { 1061 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist); 1062 1063 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1064 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); 1065 } 1066 1067 /* 1068 * swwrite: the write function for the drum (just a call to physio) 1069 */ 1070 /*ARGSUSED*/ 1071 int 1072 swwrite(dev, uio, ioflag) 1073 dev_t dev; 1074 struct uio *uio; 1075 int ioflag; 1076 { 1077 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist); 1078 1079 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1080 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); 1081 } 1082 1083 /* 1084 * swstrategy: perform I/O on the drum 1085 * 1086 * => we must map the i/o request from the drum to the correct swapdev. 1087 */ 1088 void 1089 swstrategy(bp) 1090 struct buf *bp; 1091 { 1092 struct swapdev *sdp; 1093 struct vnode *vp; 1094 int s, pageno, bn; 1095 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist); 1096 1097 /* 1098 * convert block number to swapdev. note that swapdev can't 1099 * be yanked out from under us because we are holding resources 1100 * in it (i.e. the blocks we are doing I/O on). 1101 */ 1102 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT; 1103 simple_lock(&uvm.swap_data_lock); 1104 sdp = swapdrum_getsdp(pageno); 1105 simple_unlock(&uvm.swap_data_lock); 1106 if (sdp == NULL) { 1107 bp->b_error = EINVAL; 1108 bp->b_flags |= B_ERROR; 1109 biodone(bp); 1110 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); 1111 return; 1112 } 1113 1114 /* 1115 * convert drum page number to block number on this swapdev. 1116 */ 1117 1118 pageno -= sdp->swd_drumoffset; /* page # on swapdev */ 1119 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */ 1120 1121 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld", 1122 ((bp->b_flags & B_READ) == 0) ? "write" : "read", 1123 sdp->swd_drumoffset, bn, bp->b_bcount); 1124 1125 /* 1126 * for block devices we finish up here. 1127 * for regular files we have to do more work which we delegate 1128 * to sw_reg_strategy(). 1129 */ 1130 1131 switch (sdp->swd_vp->v_type) { 1132 default: 1133 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type); 1134 1135 case VBLK: 1136 1137 /* 1138 * must convert "bp" from an I/O on /dev/drum to an I/O 1139 * on the swapdev (sdp). 1140 */ 1141 s = splbio(); 1142 bp->b_blkno = bn; /* swapdev block number */ 1143 vp = sdp->swd_vp; /* swapdev vnode pointer */ 1144 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ 1145 VHOLD(vp); /* "hold" swapdev vp for i/o */ 1146 1147 /* 1148 * if we are doing a write, we have to redirect the i/o on 1149 * drum's v_numoutput counter to the swapdevs. 1150 */ 1151 if ((bp->b_flags & B_READ) == 0) { 1152 vwakeup(bp); /* kills one 'v_numoutput' on drum */ 1153 vp->v_numoutput++; /* put it on swapdev */ 1154 } 1155 1156 /* 1157 * dissassocate buffer with /dev/drum vnode 1158 * [could be null if buf was from physio] 1159 */ 1160 if (bp->b_vp != NULL) 1161 brelvp(bp); 1162 1163 /* 1164 * finally plug in swapdev vnode and start I/O 1165 */ 1166 bp->b_vp = vp; 1167 splx(s); 1168 VOP_STRATEGY(bp); 1169 return; 1170 1171 case VREG: 1172 /* 1173 * delegate to sw_reg_strategy function. 1174 */ 1175 sw_reg_strategy(sdp, bp, bn); 1176 return; 1177 } 1178 /* NOTREACHED */ 1179 } 1180 1181 /* 1182 * sw_reg_strategy: handle swap i/o to regular files 1183 */ 1184 static void 1185 sw_reg_strategy(sdp, bp, bn) 1186 struct swapdev *sdp; 1187 struct buf *bp; 1188 int bn; 1189 { 1190 struct vnode *vp; 1191 struct vndxfer *vnx; 1192 daddr_t nbn; 1193 caddr_t addr; 1194 off_t byteoff; 1195 int s, off, nra, error, sz, resid; 1196 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist); 1197 1198 /* 1199 * allocate a vndxfer head for this transfer and point it to 1200 * our buffer. 1201 */ 1202 getvndxfer(vnx); 1203 vnx->vx_flags = VX_BUSY; 1204 vnx->vx_error = 0; 1205 vnx->vx_pending = 0; 1206 vnx->vx_bp = bp; 1207 vnx->vx_sdp = sdp; 1208 1209 /* 1210 * setup for main loop where we read filesystem blocks into 1211 * our buffer. 1212 */ 1213 error = 0; 1214 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */ 1215 addr = bp->b_data; /* current position in buffer */ 1216 byteoff = dbtob((u_int64_t)bn); 1217 1218 for (resid = bp->b_resid; resid; resid -= sz) { 1219 struct vndbuf *nbp; 1220 1221 /* 1222 * translate byteoffset into block number. return values: 1223 * vp = vnode of underlying device 1224 * nbn = new block number (on underlying vnode dev) 1225 * nra = num blocks we can read-ahead (excludes requested 1226 * block) 1227 */ 1228 nra = 0; 1229 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, 1230 &vp, &nbn, &nra); 1231 1232 if (error == 0 && nbn == (daddr_t)-1) { 1233 /* 1234 * this used to just set error, but that doesn't 1235 * do the right thing. Instead, it causes random 1236 * memory errors. The panic() should remain until 1237 * this condition doesn't destabilize the system. 1238 */ 1239 #if 1 1240 panic("sw_reg_strategy: swap to sparse file"); 1241 #else 1242 error = EIO; /* failure */ 1243 #endif 1244 } 1245 1246 /* 1247 * punt if there was an error or a hole in the file. 1248 * we must wait for any i/o ops we have already started 1249 * to finish before returning. 1250 * 1251 * XXX we could deal with holes here but it would be 1252 * a hassle (in the write case). 1253 */ 1254 if (error) { 1255 s = splbio(); 1256 vnx->vx_error = error; /* pass error up */ 1257 goto out; 1258 } 1259 1260 /* 1261 * compute the size ("sz") of this transfer (in bytes). 1262 */ 1263 off = byteoff % sdp->swd_bsize; 1264 sz = (1 + nra) * sdp->swd_bsize - off; 1265 if (sz > resid) 1266 sz = resid; 1267 1268 UVMHIST_LOG(pdhist, "sw_reg_strategy: " 1269 "vp %p/%p offset 0x%x/0x%x", 1270 sdp->swd_vp, vp, byteoff, nbn); 1271 1272 /* 1273 * now get a buf structure. note that the vb_buf is 1274 * at the front of the nbp structure so that you can 1275 * cast pointers between the two structure easily. 1276 */ 1277 getvndbuf(nbp); 1278 nbp->vb_buf.b_flags = bp->b_flags | B_CALL; 1279 nbp->vb_buf.b_bcount = sz; 1280 nbp->vb_buf.b_bufsize = sz; 1281 nbp->vb_buf.b_error = 0; 1282 nbp->vb_buf.b_data = addr; 1283 nbp->vb_buf.b_lblkno = 0; 1284 nbp->vb_buf.b_blkno = nbn + btodb(off); 1285 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; 1286 nbp->vb_buf.b_iodone = sw_reg_iodone; 1287 nbp->vb_buf.b_vp = NULL; 1288 LIST_INIT(&nbp->vb_buf.b_dep); 1289 1290 nbp->vb_xfer = vnx; /* patch it back in to vnx */ 1291 1292 /* 1293 * Just sort by block number 1294 */ 1295 s = splbio(); 1296 if (vnx->vx_error != 0) { 1297 putvndbuf(nbp); 1298 goto out; 1299 } 1300 vnx->vx_pending++; 1301 1302 /* assoc new buffer with underlying vnode */ 1303 bgetvp(vp, &nbp->vb_buf); 1304 1305 /* sort it in and start I/O if we are not over our limit */ 1306 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf); 1307 sw_reg_start(sdp); 1308 splx(s); 1309 1310 /* 1311 * advance to the next I/O 1312 */ 1313 byteoff += sz; 1314 addr += sz; 1315 } 1316 1317 s = splbio(); 1318 1319 out: /* Arrive here at splbio */ 1320 vnx->vx_flags &= ~VX_BUSY; 1321 if (vnx->vx_pending == 0) { 1322 if (vnx->vx_error != 0) { 1323 bp->b_error = vnx->vx_error; 1324 bp->b_flags |= B_ERROR; 1325 } 1326 putvndxfer(vnx); 1327 biodone(bp); 1328 } 1329 splx(s); 1330 } 1331 1332 /* 1333 * sw_reg_start: start an I/O request on the requested swapdev 1334 * 1335 * => reqs are sorted by disksort (above) 1336 */ 1337 static void 1338 sw_reg_start(sdp) 1339 struct swapdev *sdp; 1340 { 1341 struct buf *bp; 1342 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist); 1343 1344 /* recursion control */ 1345 if ((sdp->swd_flags & SWF_BUSY) != 0) 1346 return; 1347 1348 sdp->swd_flags |= SWF_BUSY; 1349 1350 while (sdp->swd_active < sdp->swd_maxactive) { 1351 bp = BUFQ_FIRST(&sdp->swd_tab); 1352 if (bp == NULL) 1353 break; 1354 BUFQ_REMOVE(&sdp->swd_tab, bp); 1355 sdp->swd_active++; 1356 1357 UVMHIST_LOG(pdhist, 1358 "sw_reg_start: bp %p vp %p blkno %p cnt %lx", 1359 bp, bp->b_vp, bp->b_blkno, bp->b_bcount); 1360 if ((bp->b_flags & B_READ) == 0) 1361 bp->b_vp->v_numoutput++; 1362 1363 VOP_STRATEGY(bp); 1364 } 1365 sdp->swd_flags &= ~SWF_BUSY; 1366 } 1367 1368 /* 1369 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup 1370 * 1371 * => note that we can recover the vndbuf struct by casting the buf ptr 1372 */ 1373 static void 1374 sw_reg_iodone(bp) 1375 struct buf *bp; 1376 { 1377 struct vndbuf *vbp = (struct vndbuf *) bp; 1378 struct vndxfer *vnx = vbp->vb_xfer; 1379 struct buf *pbp = vnx->vx_bp; /* parent buffer */ 1380 struct swapdev *sdp = vnx->vx_sdp; 1381 int s, resid; 1382 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist); 1383 1384 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p", 1385 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data); 1386 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx", 1387 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); 1388 1389 /* 1390 * protect vbp at splbio and update. 1391 */ 1392 1393 s = splbio(); 1394 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; 1395 pbp->b_resid -= resid; 1396 vnx->vx_pending--; 1397 1398 if (vbp->vb_buf.b_error) { 1399 UVMHIST_LOG(pdhist, " got error=%d !", 1400 vbp->vb_buf.b_error, 0, 0, 0); 1401 1402 /* pass error upward */ 1403 vnx->vx_error = vbp->vb_buf.b_error; 1404 } 1405 1406 /* 1407 * disassociate this buffer from the vnode. 1408 */ 1409 brelvp(&vbp->vb_buf); 1410 1411 /* 1412 * kill vbp structure 1413 */ 1414 putvndbuf(vbp); 1415 1416 /* 1417 * wrap up this transaction if it has run to completion or, in 1418 * case of an error, when all auxiliary buffers have returned. 1419 */ 1420 if (vnx->vx_error != 0) { 1421 /* pass error upward */ 1422 pbp->b_flags |= B_ERROR; 1423 pbp->b_error = vnx->vx_error; 1424 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { 1425 putvndxfer(vnx); 1426 biodone(pbp); 1427 } 1428 } else if (pbp->b_resid == 0) { 1429 #ifdef DIAGNOSTIC 1430 if (vnx->vx_pending != 0) 1431 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending); 1432 #endif 1433 1434 if ((vnx->vx_flags & VX_BUSY) == 0) { 1435 UVMHIST_LOG(pdhist, " iodone error=%d !", 1436 pbp, vnx->vx_error, 0, 0); 1437 putvndxfer(vnx); 1438 biodone(pbp); 1439 } 1440 } 1441 1442 /* 1443 * done! start next swapdev I/O if one is pending 1444 */ 1445 sdp->swd_active--; 1446 sw_reg_start(sdp); 1447 splx(s); 1448 } 1449 1450 1451 /* 1452 * uvm_swap_alloc: allocate space on swap 1453 * 1454 * => allocation is done "round robin" down the priority list, as we 1455 * allocate in a priority we "rotate" the circle queue. 1456 * => space can be freed with uvm_swap_free 1457 * => we return the page slot number in /dev/drum (0 == invalid slot) 1458 * => we lock uvm.swap_data_lock 1459 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM 1460 */ 1461 int 1462 uvm_swap_alloc(nslots, lessok) 1463 int *nslots; /* IN/OUT */ 1464 boolean_t lessok; 1465 { 1466 struct swapdev *sdp; 1467 struct swappri *spp; 1468 u_long result; 1469 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist); 1470 1471 /* 1472 * no swap devices configured yet? definite failure. 1473 */ 1474 if (uvmexp.nswapdev < 1) 1475 return 0; 1476 1477 /* 1478 * lock data lock, convert slots into blocks, and enter loop 1479 */ 1480 simple_lock(&uvm.swap_data_lock); 1481 1482 ReTry: /* XXXMRG */ 1483 for (spp = LIST_FIRST(&swap_priority); spp != NULL; 1484 spp = LIST_NEXT(spp, spi_swappri)) { 1485 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 1486 sdp != (void *)&spp->spi_swapdev; 1487 sdp = CIRCLEQ_NEXT(sdp,swd_next)) { 1488 /* if it's not enabled, then we can't swap from it */ 1489 if ((sdp->swd_flags & SWF_ENABLE) == 0) 1490 continue; 1491 if (sdp->swd_npginuse + *nslots > sdp->swd_npages) 1492 continue; 1493 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 1494 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT, 1495 &result) != 0) { 1496 continue; 1497 } 1498 1499 /* 1500 * successful allocation! now rotate the circleq. 1501 */ 1502 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1503 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 1504 sdp->swd_npginuse += *nslots; 1505 uvmexp.swpginuse += *nslots; 1506 simple_unlock(&uvm.swap_data_lock); 1507 /* done! return drum slot number */ 1508 UVMHIST_LOG(pdhist, 1509 "success! returning %d slots starting at %d", 1510 *nslots, result + sdp->swd_drumoffset, 0, 0); 1511 return(result + sdp->swd_drumoffset); 1512 } 1513 } 1514 1515 /* XXXMRG: BEGIN HACK */ 1516 if (*nslots > 1 && lessok) { 1517 *nslots = 1; 1518 goto ReTry; /* XXXMRG: ugh! extent should support this for us */ 1519 } 1520 /* XXXMRG: END HACK */ 1521 1522 simple_unlock(&uvm.swap_data_lock); 1523 return 0; /* failed */ 1524 } 1525 1526 /* 1527 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors 1528 * 1529 * => we lock uvm.swap_data_lock 1530 */ 1531 void 1532 uvm_swap_markbad(startslot, nslots) 1533 int startslot; 1534 int nslots; 1535 { 1536 struct swapdev *sdp; 1537 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist); 1538 1539 simple_lock(&uvm.swap_data_lock); 1540 sdp = swapdrum_getsdp(startslot); 1541 1542 /* 1543 * we just keep track of how many pages have been marked bad 1544 * in this device, to make everything add up in swap_off(). 1545 * we assume here that the range of slots will all be within 1546 * one swap device. 1547 */ 1548 1549 sdp->swd_npgbad += nslots; 1550 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0); 1551 simple_unlock(&uvm.swap_data_lock); 1552 } 1553 1554 /* 1555 * uvm_swap_free: free swap slots 1556 * 1557 * => this can be all or part of an allocation made by uvm_swap_alloc 1558 * => we lock uvm.swap_data_lock 1559 */ 1560 void 1561 uvm_swap_free(startslot, nslots) 1562 int startslot; 1563 int nslots; 1564 { 1565 struct swapdev *sdp; 1566 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist); 1567 1568 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots, 1569 startslot, 0, 0); 1570 1571 /* 1572 * ignore attempts to free the "bad" slot. 1573 */ 1574 if (startslot == SWSLOT_BAD) { 1575 return; 1576 } 1577 1578 /* 1579 * convert drum slot offset back to sdp, free the blocks 1580 * in the extent, and return. must hold pri lock to do 1581 * lookup and access the extent. 1582 */ 1583 simple_lock(&uvm.swap_data_lock); 1584 sdp = swapdrum_getsdp(startslot); 1585 1586 #ifdef DIAGNOSTIC 1587 if (uvmexp.nswapdev < 1) 1588 panic("uvm_swap_free: uvmexp.nswapdev < 1\n"); 1589 if (sdp == NULL) { 1590 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot, 1591 nslots); 1592 panic("uvm_swap_free: unmapped address\n"); 1593 } 1594 #endif 1595 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots, 1596 EX_MALLOCOK|EX_NOWAIT) != 0) { 1597 printf("warning: resource shortage: %d pages of swap lost\n", 1598 nslots); 1599 } 1600 1601 sdp->swd_npginuse -= nslots; 1602 uvmexp.swpginuse -= nslots; 1603 #ifdef DIAGNOSTIC 1604 if (sdp->swd_npginuse < 0) 1605 panic("uvm_swap_free: inuse < 0"); 1606 #endif 1607 simple_unlock(&uvm.swap_data_lock); 1608 } 1609 1610 /* 1611 * uvm_swap_put: put any number of pages into a contig place on swap 1612 * 1613 * => can be sync or async 1614 * => XXXMRG: consider making it an inline or macro 1615 */ 1616 int 1617 uvm_swap_put(swslot, ppsp, npages, flags) 1618 int swslot; 1619 struct vm_page **ppsp; 1620 int npages; 1621 int flags; 1622 { 1623 int result; 1624 1625 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE | 1626 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1627 1628 return (result); 1629 } 1630 1631 /* 1632 * uvm_swap_get: get a single page from swap 1633 * 1634 * => usually a sync op (from fault) 1635 * => XXXMRG: consider making it an inline or macro 1636 */ 1637 int 1638 uvm_swap_get(page, swslot, flags) 1639 struct vm_page *page; 1640 int swslot, flags; 1641 { 1642 int result; 1643 1644 uvmexp.nswget++; 1645 #ifdef DIAGNOSTIC 1646 if ((flags & PGO_SYNCIO) == 0) 1647 printf("uvm_swap_get: ASYNC get requested?\n"); 1648 #endif 1649 1650 if (swslot == SWSLOT_BAD) { 1651 return VM_PAGER_ERROR; 1652 } 1653 1654 /* 1655 * this page is (about to be) no longer only in swap. 1656 */ 1657 simple_lock(&uvm.swap_data_lock); 1658 uvmexp.swpgonly--; 1659 simple_unlock(&uvm.swap_data_lock); 1660 1661 result = uvm_swap_io(&page, swslot, 1, B_READ | 1662 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1663 1664 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) { 1665 /* 1666 * oops, the read failed so it really is still only in swap. 1667 */ 1668 simple_lock(&uvm.swap_data_lock); 1669 uvmexp.swpgonly++; 1670 simple_unlock(&uvm.swap_data_lock); 1671 } 1672 1673 return (result); 1674 } 1675 1676 /* 1677 * uvm_swap_io: do an i/o operation to swap 1678 */ 1679 1680 static int 1681 uvm_swap_io(pps, startslot, npages, flags) 1682 struct vm_page **pps; 1683 int startslot, npages, flags; 1684 { 1685 daddr_t startblk; 1686 struct buf *bp; 1687 vaddr_t kva; 1688 int result, s, mapinflags, pflag; 1689 boolean_t write, async; 1690 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist); 1691 1692 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d", 1693 startslot, npages, flags, 0); 1694 1695 write = (flags & B_READ) == 0; 1696 async = (flags & B_ASYNC) != 0; 1697 1698 /* 1699 * convert starting drum slot to block number 1700 */ 1701 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT); 1702 1703 /* 1704 * first, map the pages into the kernel (XXX: currently required 1705 * by buffer system). 1706 */ 1707 1708 mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE; 1709 if (!async) 1710 mapinflags |= UVMPAGER_MAPIN_WAITOK; 1711 kva = uvm_pagermapin(pps, npages, mapinflags); 1712 if (kva == 0) 1713 return (VM_PAGER_AGAIN); 1714 1715 /* 1716 * now allocate a buf for the i/o. 1717 * [make sure we don't put the pagedaemon to sleep...] 1718 */ 1719 s = splbio(); 1720 pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK; 1721 bp = pool_get(&bufpool, pflag); 1722 splx(s); 1723 1724 /* 1725 * if we failed to get a buf, return "try again" 1726 */ 1727 if (bp == NULL) 1728 return (VM_PAGER_AGAIN); 1729 1730 /* 1731 * fill in the bp/sbp. we currently route our i/o through 1732 * /dev/drum's vnode [swapdev_vp]. 1733 */ 1734 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC)); 1735 bp->b_proc = &proc0; /* XXX */ 1736 bp->b_vnbufs.le_next = NOLIST; 1737 bp->b_data = (caddr_t)kva; 1738 bp->b_blkno = startblk; 1739 s = splbio(); 1740 VHOLD(swapdev_vp); 1741 bp->b_vp = swapdev_vp; 1742 splx(s); 1743 /* XXXCDC: isn't swapdev_vp always a VCHR? */ 1744 /* XXXMRG: probably -- this is obviously something inherited... */ 1745 if (swapdev_vp->v_type == VBLK) 1746 bp->b_dev = swapdev_vp->v_rdev; 1747 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT; 1748 LIST_INIT(&bp->b_dep); 1749 1750 /* 1751 * bump v_numoutput (counter of number of active outputs). 1752 */ 1753 if (write) { 1754 s = splbio(); 1755 swapdev_vp->v_numoutput++; 1756 splx(s); 1757 } 1758 1759 /* 1760 * for async ops we must set up the iodone handler. 1761 */ 1762 if (async) { 1763 /* XXXUBC pagedaemon */ 1764 bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ? 1765 B_PDAEMON : 0); 1766 bp->b_iodone = uvm_aio_biodone; 1767 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); 1768 } 1769 UVMHIST_LOG(pdhist, 1770 "about to start io: data = %p blkno = 0x%x, bcount = %ld", 1771 bp->b_data, bp->b_blkno, bp->b_bcount, 0); 1772 1773 /* 1774 * now we start the I/O, and if async, return. 1775 */ 1776 VOP_STRATEGY(bp); 1777 if (async) 1778 return (VM_PAGER_PEND); 1779 1780 /* 1781 * must be sync i/o. wait for it to finish 1782 */ 1783 (void) biowait(bp); 1784 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK; 1785 1786 /* 1787 * kill the pager mapping 1788 */ 1789 uvm_pagermapout(kva, npages); 1790 1791 /* 1792 * now dispose of the buf 1793 */ 1794 s = splbio(); 1795 if (bp->b_vp) 1796 brelvp(bp); 1797 if (write) 1798 vwakeup(bp); 1799 pool_put(&bufpool, bp); 1800 splx(s); 1801 1802 /* 1803 * finally return. 1804 */ 1805 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0); 1806 return (result); 1807 } 1808