xref: /netbsd-src/sys/uvm/uvm_swap.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /*	$NetBSD: uvm_swap.c,v 1.170 2014/06/28 15:52:45 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.170 2014/06/28 15:52:45 maxv Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * TAILQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats() function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* tailq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180  * dev_t and has no se_path[] member.
181  */
182 struct swapent13 {
183 	int32_t	se13_dev;		/* device id */
184 	int	se13_flags;		/* flags */
185 	int	se13_nblks;		/* total blocks */
186 	int	se13_inuse;		/* blocks in use */
187 	int	se13_priority;		/* priority of this device */
188 };
189 
190 /*
191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192  * dev_t.
193  */
194 struct swapent50 {
195 	int32_t	se50_dev;		/* device id */
196 	int	se50_flags;		/* flags */
197 	int	se50_nblks;		/* total blocks */
198 	int	se50_inuse;		/* blocks in use */
199 	int	se50_priority;		/* priority of this device */
200 	char	se50_path[PATH_MAX+1];	/* path name */
201 };
202 
203 /*
204  * We keep a of pool vndbuf's and vndxfer structures.
205  */
206 static struct pool vndxfer_pool, vndbuf_pool;
207 
208 /*
209  * local variables
210  */
211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
212 
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216 
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219 
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223 
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226 
227 /*
228  * prototypes
229  */
230 static struct swapdev	*swapdrum_getsdp(int);
231 
232 static struct swapdev	*swaplist_find(struct vnode *, bool);
233 static void		 swaplist_insert(struct swapdev *,
234 					 struct swappri *, int);
235 static void		 swaplist_trim(void);
236 
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239 
240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 static void sw_reg_biodone(struct buf *);
242 static void sw_reg_iodone(struct work *wk, void *dummy);
243 static void sw_reg_start(struct swapdev *);
244 
245 static int uvm_swap_io(struct vm_page **, int, int, int);
246 
247 /*
248  * uvm_swap_init: init the swap system data structures and locks
249  *
250  * => called at boot time from init_main.c after the filesystems
251  *	are brought up (which happens after uvm_init())
252  */
253 void
254 uvm_swap_init(void)
255 {
256 	UVMHIST_FUNC("uvm_swap_init");
257 
258 	UVMHIST_CALLED(pdhist);
259 	/*
260 	 * first, init the swap list, its counter, and its lock.
261 	 * then get a handle on the vnode for /dev/drum by using
262 	 * the its dev_t number ("swapdev", from MD conf.c).
263 	 */
264 
265 	LIST_INIT(&swap_priority);
266 	uvmexp.nswapdev = 0;
267 	rw_init(&swap_syscall_lock);
268 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269 
270 	if (bdevvp(swapdev, &swapdev_vp))
271 		panic("%s: can't get vnode for swap device", __func__);
272 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 		panic("%s: can't lock swap device", __func__);
274 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 		panic("%s: can't open swap device", __func__);
276 	VOP_UNLOCK(swapdev_vp);
277 
278 	/*
279 	 * create swap block resource map to map /dev/drum.   the range
280 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
281 	 * that block 0 is reserved (used to indicate an allocation
282 	 * failure, or no allocation).
283 	 */
284 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 	    VM_NOSLEEP, IPL_NONE);
286 	if (swapmap == 0) {
287 		panic("%s: vmem_create failed", __func__);
288 	}
289 
290 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 	    NULL, IPL_BIO);
292 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 	    NULL, IPL_BIO);
294 
295 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 }
297 
298 /*
299  * swaplist functions: functions that operate on the list of swap
300  * devices on the system.
301  */
302 
303 /*
304  * swaplist_insert: insert swap device "sdp" into the global list
305  *
306  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307  * => caller must provide a newly allocated swappri structure (we will
308  *	FREE it if we don't need it... this it to prevent allocation
309  *	blocking here while adding swap)
310  */
311 static void
312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 {
314 	struct swappri *spp, *pspp;
315 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316 
317 	/*
318 	 * find entry at or after which to insert the new device.
319 	 */
320 	pspp = NULL;
321 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 		if (priority <= spp->spi_priority)
323 			break;
324 		pspp = spp;
325 	}
326 
327 	/*
328 	 * new priority?
329 	 */
330 	if (spp == NULL || spp->spi_priority != priority) {
331 		spp = newspp;  /* use newspp! */
332 		UVMHIST_LOG(pdhist, "created new swappri = %d",
333 			    priority, 0, 0, 0);
334 
335 		spp->spi_priority = priority;
336 		TAILQ_INIT(&spp->spi_swapdev);
337 
338 		if (pspp)
339 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 		else
341 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 	} else {
343 	  	/* we don't need a new priority structure, free it */
344 		kmem_free(newspp, sizeof(*newspp));
345 	}
346 
347 	/*
348 	 * priority found (or created).   now insert on the priority's
349 	 * tailq list and bump the total number of swapdevs.
350 	 */
351 	sdp->swd_priority = priority;
352 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 	uvmexp.nswapdev++;
354 }
355 
356 /*
357  * swaplist_find: find and optionally remove a swap device from the
358  *	global list.
359  *
360  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361  * => we return the swapdev we found (and removed)
362  */
363 static struct swapdev *
364 swaplist_find(struct vnode *vp, bool remove)
365 {
366 	struct swapdev *sdp;
367 	struct swappri *spp;
368 
369 	/*
370 	 * search the lists for the requested vp
371 	 */
372 
373 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 			if (sdp->swd_vp == vp) {
376 				if (remove) {
377 					TAILQ_REMOVE(&spp->spi_swapdev,
378 					    sdp, swd_next);
379 					uvmexp.nswapdev--;
380 				}
381 				return(sdp);
382 			}
383 		}
384 	}
385 	return (NULL);
386 }
387 
388 /*
389  * swaplist_trim: scan priority list for empty priority entries and kill
390  *	them.
391  *
392  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393  */
394 static void
395 swaplist_trim(void)
396 {
397 	struct swappri *spp, *nextspp;
398 
399 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 			continue;
402 		LIST_REMOVE(spp, spi_swappri);
403 		kmem_free(spp, sizeof(*spp));
404 	}
405 }
406 
407 /*
408  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409  *	to the "swapdev" that maps that section of the drum.
410  *
411  * => each swapdev takes one big contig chunk of the drum
412  * => caller must hold uvm_swap_data_lock
413  */
414 static struct swapdev *
415 swapdrum_getsdp(int pgno)
416 {
417 	struct swapdev *sdp;
418 	struct swappri *spp;
419 
420 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 			if (sdp->swd_flags & SWF_FAKE)
423 				continue;
424 			if (pgno >= sdp->swd_drumoffset &&
425 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 				return sdp;
427 			}
428 		}
429 	}
430 	return NULL;
431 }
432 
433 
434 /*
435  * sys_swapctl: main entry point for swapctl(2) system call
436  * 	[with two helper functions: swap_on and swap_off]
437  */
438 int
439 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
440 {
441 	/* {
442 		syscallarg(int) cmd;
443 		syscallarg(void *) arg;
444 		syscallarg(int) misc;
445 	} */
446 	struct vnode *vp;
447 	struct nameidata nd;
448 	struct swappri *spp;
449 	struct swapdev *sdp;
450 	struct swapent *sep;
451 #define SWAP_PATH_MAX (PATH_MAX + 1)
452 	char	*userpath;
453 	size_t	len = 0;
454 	int	error, misc;
455 	int	priority;
456 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
457 
458 	/*
459 	 * we handle the non-priv NSWAP and STATS request first.
460 	 *
461 	 * SWAP_NSWAP: return number of config'd swap devices
462 	 * [can also be obtained with uvmexp sysctl]
463 	 */
464 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 		const int nswapdev = uvmexp.nswapdev;
466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
467 		*retval = nswapdev;
468 		return 0;
469 	}
470 
471 	misc = SCARG(uap, misc);
472 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
473 
474 	/*
475 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
476 	 */
477 	rw_enter(&swap_syscall_lock, RW_WRITER);
478 
479 	/*
480 	 * SWAP_STATS: get stats on current # of configured swap devs
481 	 *
482 	 * note that the swap_priority list can't change as long
483 	 * as we are holding the swap_syscall_lock.  we don't want
484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
485 	 * copyout() and we don't want to be holding that lock then!
486 	 */
487 	if (SCARG(uap, cmd) == SWAP_STATS
488 #if defined(COMPAT_50)
489 	    || SCARG(uap, cmd) == SWAP_STATS50
490 #endif
491 #if defined(COMPAT_13)
492 	    || SCARG(uap, cmd) == SWAP_STATS13
493 #endif
494 	    ) {
495 		if (misc < 0) {
496 			error = EINVAL;
497 			goto out;
498 		}
499 		if (misc == 0 || uvmexp.nswapdev == 0) {
500 			error = 0;
501 			goto out;
502 		}
503 		/* Make sure userland cannot exhaust kernel memory */
504 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
505 			misc = uvmexp.nswapdev;
506 		KASSERT(misc > 0);
507 #if defined(COMPAT_13)
508 		if (SCARG(uap, cmd) == SWAP_STATS13)
509 			len = sizeof(struct swapent13) * misc;
510 		else
511 #endif
512 #if defined(COMPAT_50)
513 		if (SCARG(uap, cmd) == SWAP_STATS50)
514 			len = sizeof(struct swapent50) * misc;
515 		else
516 #endif
517 			len = sizeof(struct swapent) * misc;
518 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
519 
520 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
521 		error = copyout(sep, SCARG(uap, arg), len);
522 
523 		kmem_free(sep, len);
524 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
525 		goto out;
526 	}
527 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
528 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
529 
530 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
531 		goto out;
532 	}
533 
534 	/*
535 	 * all other requests require superuser privs.   verify.
536 	 */
537 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
538 	    0, NULL, NULL, NULL)))
539 		goto out;
540 
541 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
542 		/* drop the current dump device */
543 		dumpdev = NODEV;
544 		dumpcdev = NODEV;
545 		cpu_dumpconf();
546 		goto out;
547 	}
548 
549 	/*
550 	 * at this point we expect a path name in arg.   we will
551 	 * use namei() to gain a vnode reference (vref), and lock
552 	 * the vnode (VOP_LOCK).
553 	 *
554 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
555 	 * miniroot)
556 	 */
557 	if (SCARG(uap, arg) == NULL) {
558 		vp = rootvp;		/* miniroot */
559 		vref(vp);
560 		if (vn_lock(vp, LK_EXCLUSIVE)) {
561 			vrele(vp);
562 			error = EBUSY;
563 			goto out;
564 		}
565 		if (SCARG(uap, cmd) == SWAP_ON &&
566 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
567 			panic("swapctl: miniroot copy failed");
568 	} else {
569 		struct pathbuf *pb;
570 
571 		/*
572 		 * This used to allow copying in one extra byte
573 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
574 		 * This was completely pointless because if anyone
575 		 * used that extra byte namei would fail with
576 		 * ENAMETOOLONG anyway, so I've removed the excess
577 		 * logic. - dholland 20100215
578 		 */
579 
580 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
581 		if (error) {
582 			goto out;
583 		}
584 		if (SCARG(uap, cmd) == SWAP_ON) {
585 			/* get a copy of the string */
586 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
587 			len = strlen(userpath) + 1;
588 		}
589 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
590 		if ((error = namei(&nd))) {
591 			pathbuf_destroy(pb);
592 			goto out;
593 		}
594 		vp = nd.ni_vp;
595 		pathbuf_destroy(pb);
596 	}
597 	/* note: "vp" is referenced and locked */
598 
599 	error = 0;		/* assume no error */
600 	switch(SCARG(uap, cmd)) {
601 
602 	case SWAP_DUMPDEV:
603 		if (vp->v_type != VBLK) {
604 			error = ENOTBLK;
605 			break;
606 		}
607 		if (bdevsw_lookup(vp->v_rdev)) {
608 			dumpdev = vp->v_rdev;
609 			dumpcdev = devsw_blk2chr(dumpdev);
610 		} else
611 			dumpdev = NODEV;
612 		cpu_dumpconf();
613 		break;
614 
615 	case SWAP_CTL:
616 		/*
617 		 * get new priority, remove old entry (if any) and then
618 		 * reinsert it in the correct place.  finally, prune out
619 		 * any empty priority structures.
620 		 */
621 		priority = SCARG(uap, misc);
622 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
623 		mutex_enter(&uvm_swap_data_lock);
624 		if ((sdp = swaplist_find(vp, true)) == NULL) {
625 			error = ENOENT;
626 		} else {
627 			swaplist_insert(sdp, spp, priority);
628 			swaplist_trim();
629 		}
630 		mutex_exit(&uvm_swap_data_lock);
631 		if (error)
632 			kmem_free(spp, sizeof(*spp));
633 		break;
634 
635 	case SWAP_ON:
636 
637 		/*
638 		 * check for duplicates.   if none found, then insert a
639 		 * dummy entry on the list to prevent someone else from
640 		 * trying to enable this device while we are working on
641 		 * it.
642 		 */
643 
644 		priority = SCARG(uap, misc);
645 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
646 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
647 		sdp->swd_flags = SWF_FAKE;
648 		sdp->swd_vp = vp;
649 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
650 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
651 		mutex_enter(&uvm_swap_data_lock);
652 		if (swaplist_find(vp, false) != NULL) {
653 			error = EBUSY;
654 			mutex_exit(&uvm_swap_data_lock);
655 			bufq_free(sdp->swd_tab);
656 			kmem_free(sdp, sizeof(*sdp));
657 			kmem_free(spp, sizeof(*spp));
658 			break;
659 		}
660 		swaplist_insert(sdp, spp, priority);
661 		mutex_exit(&uvm_swap_data_lock);
662 
663 		KASSERT(len > 0);
664 		sdp->swd_pathlen = len;
665 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
666 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
667 			panic("swapctl: copystr");
668 
669 		/*
670 		 * we've now got a FAKE placeholder in the swap list.
671 		 * now attempt to enable swap on it.  if we fail, undo
672 		 * what we've done and kill the fake entry we just inserted.
673 		 * if swap_on is a success, it will clear the SWF_FAKE flag
674 		 */
675 
676 		if ((error = swap_on(l, sdp)) != 0) {
677 			mutex_enter(&uvm_swap_data_lock);
678 			(void) swaplist_find(vp, true);  /* kill fake entry */
679 			swaplist_trim();
680 			mutex_exit(&uvm_swap_data_lock);
681 			bufq_free(sdp->swd_tab);
682 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
683 			kmem_free(sdp, sizeof(*sdp));
684 			break;
685 		}
686 		break;
687 
688 	case SWAP_OFF:
689 		mutex_enter(&uvm_swap_data_lock);
690 		if ((sdp = swaplist_find(vp, false)) == NULL) {
691 			mutex_exit(&uvm_swap_data_lock);
692 			error = ENXIO;
693 			break;
694 		}
695 
696 		/*
697 		 * If a device isn't in use or enabled, we
698 		 * can't stop swapping from it (again).
699 		 */
700 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
701 			mutex_exit(&uvm_swap_data_lock);
702 			error = EBUSY;
703 			break;
704 		}
705 
706 		/*
707 		 * do the real work.
708 		 */
709 		error = swap_off(l, sdp);
710 		break;
711 
712 	default:
713 		error = EINVAL;
714 	}
715 
716 	/*
717 	 * done!  release the ref gained by namei() and unlock.
718 	 */
719 	vput(vp);
720 out:
721 	rw_exit(&swap_syscall_lock);
722 	kmem_free(userpath, SWAP_PATH_MAX);
723 
724 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
725 	return (error);
726 }
727 
728 /*
729  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
730  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
731  * emulation to use it directly without going through sys_swapctl().
732  * The problem with using sys_swapctl() there is that it involves
733  * copying the swapent array to the stackgap, and this array's size
734  * is not known at build time. Hence it would not be possible to
735  * ensure it would fit in the stackgap in any case.
736  */
737 void
738 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
739 {
740 	struct swappri *spp;
741 	struct swapdev *sdp;
742 	int count = 0;
743 
744 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
745 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
746 			int inuse;
747 
748 			if (sec-- <= 0)
749 				break;
750 
751 			/*
752 			 * backwards compatibility for system call.
753 			 * For NetBSD 1.3 and 5.0, we have to use
754 			 * the 32 bit dev_t.  For 5.0 and -current
755 			 * we have to add the path.
756 			 */
757 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
758 			    PAGE_SHIFT);
759 
760 #if defined(COMPAT_13) || defined(COMPAT_50)
761 			if (cmd == SWAP_STATS) {
762 #endif
763 				sep->se_dev = sdp->swd_dev;
764 				sep->se_flags = sdp->swd_flags;
765 				sep->se_nblks = sdp->swd_nblks;
766 				sep->se_inuse = inuse;
767 				sep->se_priority = sdp->swd_priority;
768 				KASSERT(sdp->swd_pathlen <
769 				    sizeof(sep->se_path));
770 				strcpy(sep->se_path, sdp->swd_path);
771 				sep++;
772 #if defined(COMPAT_13)
773 			} else if (cmd == SWAP_STATS13) {
774 				struct swapent13 *sep13 =
775 				    (struct swapent13 *)sep;
776 
777 				sep13->se13_dev = sdp->swd_dev;
778 				sep13->se13_flags = sdp->swd_flags;
779 				sep13->se13_nblks = sdp->swd_nblks;
780 				sep13->se13_inuse = inuse;
781 				sep13->se13_priority = sdp->swd_priority;
782 				sep = (struct swapent *)(sep13 + 1);
783 #endif
784 #if defined(COMPAT_50)
785 			} else if (cmd == SWAP_STATS50) {
786 				struct swapent50 *sep50 =
787 				    (struct swapent50 *)sep;
788 
789 				sep50->se50_dev = sdp->swd_dev;
790 				sep50->se50_flags = sdp->swd_flags;
791 				sep50->se50_nblks = sdp->swd_nblks;
792 				sep50->se50_inuse = inuse;
793 				sep50->se50_priority = sdp->swd_priority;
794 				KASSERT(sdp->swd_pathlen <
795 				    sizeof(sep50->se50_path));
796 				strcpy(sep50->se50_path, sdp->swd_path);
797 				sep = (struct swapent *)(sep50 + 1);
798 #endif
799 #if defined(COMPAT_13) || defined(COMPAT_50)
800 			}
801 #endif
802 			count++;
803 		}
804 	}
805 	*retval = count;
806 }
807 
808 /*
809  * swap_on: attempt to enable a swapdev for swapping.   note that the
810  *	swapdev is already on the global list, but disabled (marked
811  *	SWF_FAKE).
812  *
813  * => we avoid the start of the disk (to protect disk labels)
814  * => we also avoid the miniroot, if we are swapping to root.
815  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
816  *	if needed.
817  */
818 static int
819 swap_on(struct lwp *l, struct swapdev *sdp)
820 {
821 	struct vnode *vp;
822 	int error, npages, nblocks, size;
823 	long addr;
824 	vmem_addr_t result;
825 	struct vattr va;
826 	dev_t dev;
827 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
828 
829 	/*
830 	 * we want to enable swapping on sdp.   the swd_vp contains
831 	 * the vnode we want (locked and ref'd), and the swd_dev
832 	 * contains the dev_t of the file, if it a block device.
833 	 */
834 
835 	vp = sdp->swd_vp;
836 	dev = sdp->swd_dev;
837 
838 	/*
839 	 * open the swap file (mostly useful for block device files to
840 	 * let device driver know what is up).
841 	 *
842 	 * we skip the open/close for root on swap because the root
843 	 * has already been opened when root was mounted (mountroot).
844 	 */
845 	if (vp != rootvp) {
846 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
847 			return (error);
848 	}
849 
850 	/* XXX this only works for block devices */
851 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
852 
853 	/*
854 	 * we now need to determine the size of the swap area.   for
855 	 * block specials we can call the d_psize function.
856 	 * for normal files, we must stat [get attrs].
857 	 *
858 	 * we put the result in nblks.
859 	 * for normal files, we also want the filesystem block size
860 	 * (which we get with statfs).
861 	 */
862 	switch (vp->v_type) {
863 	case VBLK:
864 		if ((nblocks = bdev_size(dev)) == -1) {
865 			error = ENXIO;
866 			goto bad;
867 		}
868 		break;
869 
870 	case VREG:
871 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
872 			goto bad;
873 		nblocks = (int)btodb(va.va_size);
874 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
875 		/*
876 		 * limit the max # of outstanding I/O requests we issue
877 		 * at any one time.   take it easy on NFS servers.
878 		 */
879 		if (vp->v_tag == VT_NFS)
880 			sdp->swd_maxactive = 2; /* XXX */
881 		else
882 			sdp->swd_maxactive = 8; /* XXX */
883 		break;
884 
885 	default:
886 		error = ENXIO;
887 		goto bad;
888 	}
889 
890 	/*
891 	 * save nblocks in a safe place and convert to pages.
892 	 */
893 
894 	sdp->swd_nblks = nblocks;
895 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
896 
897 	/*
898 	 * for block special files, we want to make sure that leave
899 	 * the disklabel and bootblocks alone, so we arrange to skip
900 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
901 	 * note that because of this the "size" can be less than the
902 	 * actual number of blocks on the device.
903 	 */
904 	if (vp->v_type == VBLK) {
905 		/* we use pages 1 to (size - 1) [inclusive] */
906 		size = npages - 1;
907 		addr = 1;
908 	} else {
909 		/* we use pages 0 to (size - 1) [inclusive] */
910 		size = npages;
911 		addr = 0;
912 	}
913 
914 	/*
915 	 * make sure we have enough blocks for a reasonable sized swap
916 	 * area.   we want at least one page.
917 	 */
918 
919 	if (size < 1) {
920 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
921 		error = EINVAL;
922 		goto bad;
923 	}
924 
925 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
926 
927 	/*
928 	 * now we need to allocate an extent to manage this swap device
929 	 */
930 
931 	sdp->swd_blist = blist_create(npages);
932 	/* mark all expect the `saved' region free. */
933 	blist_free(sdp->swd_blist, addr, size);
934 
935 	/*
936 	 * if the vnode we are swapping to is the root vnode
937 	 * (i.e. we are swapping to the miniroot) then we want
938 	 * to make sure we don't overwrite it.   do a statfs to
939 	 * find its size and skip over it.
940 	 */
941 	if (vp == rootvp) {
942 		struct mount *mp;
943 		struct statvfs *sp;
944 		int rootblocks, rootpages;
945 
946 		mp = rootvnode->v_mount;
947 		sp = &mp->mnt_stat;
948 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
949 		/*
950 		 * XXX: sp->f_blocks isn't the total number of
951 		 * blocks in the filesystem, it's the number of
952 		 * data blocks.  so, our rootblocks almost
953 		 * definitely underestimates the total size
954 		 * of the filesystem - how badly depends on the
955 		 * details of the filesystem type.  there isn't
956 		 * an obvious way to deal with this cleanly
957 		 * and perfectly, so for now we just pad our
958 		 * rootblocks estimate with an extra 5 percent.
959 		 */
960 		rootblocks += (rootblocks >> 5) +
961 			(rootblocks >> 6) +
962 			(rootblocks >> 7);
963 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
964 		if (rootpages > size)
965 			panic("swap_on: miniroot larger than swap?");
966 
967 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
968 			panic("swap_on: unable to preserve miniroot");
969 		}
970 
971 		size -= rootpages;
972 		printf("Preserved %d pages of miniroot ", rootpages);
973 		printf("leaving %d pages of swap\n", size);
974 	}
975 
976 	/*
977 	 * add a ref to vp to reflect usage as a swap device.
978 	 */
979 	vref(vp);
980 
981 	/*
982 	 * now add the new swapdev to the drum and enable.
983 	 */
984 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
985 	if (error != 0)
986 		panic("swapdrum_add");
987 	/*
988 	 * If this is the first regular swap create the workqueue.
989 	 * => Protected by swap_syscall_lock.
990 	 */
991 	if (vp->v_type != VBLK) {
992 		if (sw_reg_count++ == 0) {
993 			KASSERT(sw_reg_workqueue == NULL);
994 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
995 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
996 				panic("%s: workqueue_create failed", __func__);
997 		}
998 	}
999 
1000 	sdp->swd_drumoffset = (int)result;
1001 	sdp->swd_drumsize = npages;
1002 	sdp->swd_npages = size;
1003 	mutex_enter(&uvm_swap_data_lock);
1004 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1005 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1006 	uvmexp.swpages += size;
1007 	uvmexp.swpgavail += size;
1008 	mutex_exit(&uvm_swap_data_lock);
1009 	return (0);
1010 
1011 	/*
1012 	 * failure: clean up and return error.
1013 	 */
1014 
1015 bad:
1016 	if (sdp->swd_blist) {
1017 		blist_destroy(sdp->swd_blist);
1018 	}
1019 	if (vp != rootvp) {
1020 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1021 	}
1022 	return (error);
1023 }
1024 
1025 /*
1026  * swap_off: stop swapping on swapdev
1027  *
1028  * => swap data should be locked, we will unlock.
1029  */
1030 static int
1031 swap_off(struct lwp *l, struct swapdev *sdp)
1032 {
1033 	int npages = sdp->swd_npages;
1034 	int error = 0;
1035 
1036 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1037 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1038 
1039 	/* disable the swap area being removed */
1040 	sdp->swd_flags &= ~SWF_ENABLE;
1041 	uvmexp.swpgavail -= npages;
1042 	mutex_exit(&uvm_swap_data_lock);
1043 
1044 	/*
1045 	 * the idea is to find all the pages that are paged out to this
1046 	 * device, and page them all in.  in uvm, swap-backed pageable
1047 	 * memory can take two forms: aobjs and anons.  call the
1048 	 * swapoff hook for each subsystem to bring in pages.
1049 	 */
1050 
1051 	if (uao_swap_off(sdp->swd_drumoffset,
1052 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1053 	    amap_swap_off(sdp->swd_drumoffset,
1054 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1055 		error = ENOMEM;
1056 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1057 		error = EBUSY;
1058 	}
1059 
1060 	if (error) {
1061 		mutex_enter(&uvm_swap_data_lock);
1062 		sdp->swd_flags |= SWF_ENABLE;
1063 		uvmexp.swpgavail += npages;
1064 		mutex_exit(&uvm_swap_data_lock);
1065 
1066 		return error;
1067 	}
1068 
1069 	/*
1070 	 * If this is the last regular swap destroy the workqueue.
1071 	 * => Protected by swap_syscall_lock.
1072 	 */
1073 	if (sdp->swd_vp->v_type != VBLK) {
1074 		KASSERT(sw_reg_count > 0);
1075 		KASSERT(sw_reg_workqueue != NULL);
1076 		if (--sw_reg_count == 0) {
1077 			workqueue_destroy(sw_reg_workqueue);
1078 			sw_reg_workqueue = NULL;
1079 		}
1080 	}
1081 
1082 	/*
1083 	 * done with the vnode.
1084 	 * drop our ref on the vnode before calling VOP_CLOSE()
1085 	 * so that spec_close() can tell if this is the last close.
1086 	 */
1087 	vrele(sdp->swd_vp);
1088 	if (sdp->swd_vp != rootvp) {
1089 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1090 	}
1091 
1092 	mutex_enter(&uvm_swap_data_lock);
1093 	uvmexp.swpages -= npages;
1094 	uvmexp.swpginuse -= sdp->swd_npgbad;
1095 
1096 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1097 		panic("%s: swapdev not in list", __func__);
1098 	swaplist_trim();
1099 	mutex_exit(&uvm_swap_data_lock);
1100 
1101 	/*
1102 	 * free all resources!
1103 	 */
1104 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1105 	blist_destroy(sdp->swd_blist);
1106 	bufq_free(sdp->swd_tab);
1107 	kmem_free(sdp, sizeof(*sdp));
1108 	return (0);
1109 }
1110 
1111 void
1112 uvm_swap_shutdown(struct lwp *l)
1113 {
1114 	struct swapdev *sdp;
1115 	struct swappri *spp;
1116 	struct vnode *vp;
1117 	int error;
1118 
1119 	printf("turning of swap...");
1120 	rw_enter(&swap_syscall_lock, RW_WRITER);
1121 	mutex_enter(&uvm_swap_data_lock);
1122 again:
1123 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1124 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1125 			if (sdp->swd_flags & SWF_FAKE)
1126 				continue;
1127 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1128 				continue;
1129 #ifdef DEBUG
1130 			printf("\nturning off swap on %s...",
1131 			    sdp->swd_path);
1132 #endif
1133 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1134 				error = EBUSY;
1135 				vp = NULL;
1136 			} else
1137 				error = 0;
1138 			if (!error) {
1139 				error = swap_off(l, sdp);
1140 				mutex_enter(&uvm_swap_data_lock);
1141 			}
1142 			if (error) {
1143 				printf("stopping swap on %s failed "
1144 				    "with error %d\n", sdp->swd_path, error);
1145 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1146 				    swd_next);
1147 				uvmexp.nswapdev--;
1148 				swaplist_trim();
1149 				if (vp)
1150 					vput(vp);
1151 			}
1152 			goto again;
1153 		}
1154 	printf(" done\n");
1155 	mutex_exit(&uvm_swap_data_lock);
1156 	rw_exit(&swap_syscall_lock);
1157 }
1158 
1159 
1160 /*
1161  * /dev/drum interface and i/o functions
1162  */
1163 
1164 /*
1165  * swstrategy: perform I/O on the drum
1166  *
1167  * => we must map the i/o request from the drum to the correct swapdev.
1168  */
1169 static void
1170 swstrategy(struct buf *bp)
1171 {
1172 	struct swapdev *sdp;
1173 	struct vnode *vp;
1174 	int pageno, bn;
1175 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1176 
1177 	/*
1178 	 * convert block number to swapdev.   note that swapdev can't
1179 	 * be yanked out from under us because we are holding resources
1180 	 * in it (i.e. the blocks we are doing I/O on).
1181 	 */
1182 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1183 	mutex_enter(&uvm_swap_data_lock);
1184 	sdp = swapdrum_getsdp(pageno);
1185 	mutex_exit(&uvm_swap_data_lock);
1186 	if (sdp == NULL) {
1187 		bp->b_error = EINVAL;
1188 		bp->b_resid = bp->b_bcount;
1189 		biodone(bp);
1190 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1191 		return;
1192 	}
1193 
1194 	/*
1195 	 * convert drum page number to block number on this swapdev.
1196 	 */
1197 
1198 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1199 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1200 
1201 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1202 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1203 		sdp->swd_drumoffset, bn, bp->b_bcount);
1204 
1205 	/*
1206 	 * for block devices we finish up here.
1207 	 * for regular files we have to do more work which we delegate
1208 	 * to sw_reg_strategy().
1209 	 */
1210 
1211 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1212 	switch (vp->v_type) {
1213 	default:
1214 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1215 
1216 	case VBLK:
1217 
1218 		/*
1219 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1220 		 * on the swapdev (sdp).
1221 		 */
1222 		bp->b_blkno = bn;		/* swapdev block number */
1223 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1224 
1225 		/*
1226 		 * if we are doing a write, we have to redirect the i/o on
1227 		 * drum's v_numoutput counter to the swapdevs.
1228 		 */
1229 		if ((bp->b_flags & B_READ) == 0) {
1230 			mutex_enter(bp->b_objlock);
1231 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1232 			mutex_exit(bp->b_objlock);
1233 			mutex_enter(vp->v_interlock);
1234 			vp->v_numoutput++;	/* put it on swapdev */
1235 			mutex_exit(vp->v_interlock);
1236 		}
1237 
1238 		/*
1239 		 * finally plug in swapdev vnode and start I/O
1240 		 */
1241 		bp->b_vp = vp;
1242 		bp->b_objlock = vp->v_interlock;
1243 		VOP_STRATEGY(vp, bp);
1244 		return;
1245 
1246 	case VREG:
1247 		/*
1248 		 * delegate to sw_reg_strategy function.
1249 		 */
1250 		sw_reg_strategy(sdp, bp, bn);
1251 		return;
1252 	}
1253 	/* NOTREACHED */
1254 }
1255 
1256 /*
1257  * swread: the read function for the drum (just a call to physio)
1258  */
1259 /*ARGSUSED*/
1260 static int
1261 swread(dev_t dev, struct uio *uio, int ioflag)
1262 {
1263 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1264 
1265 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1266 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1267 }
1268 
1269 /*
1270  * swwrite: the write function for the drum (just a call to physio)
1271  */
1272 /*ARGSUSED*/
1273 static int
1274 swwrite(dev_t dev, struct uio *uio, int ioflag)
1275 {
1276 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1277 
1278 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1279 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1280 }
1281 
1282 const struct bdevsw swap_bdevsw = {
1283 	.d_open = nullopen,
1284 	.d_close = nullclose,
1285 	.d_strategy = swstrategy,
1286 	.d_ioctl = noioctl,
1287 	.d_dump = nodump,
1288 	.d_psize = nosize,
1289 	.d_flag = D_OTHER
1290 };
1291 
1292 const struct cdevsw swap_cdevsw = {
1293 	.d_open = nullopen,
1294 	.d_close = nullclose,
1295 	.d_read = swread,
1296 	.d_write = swwrite,
1297 	.d_ioctl = noioctl,
1298 	.d_stop = nostop,
1299 	.d_tty = notty,
1300 	.d_poll = nopoll,
1301 	.d_mmap = nommap,
1302 	.d_kqfilter = nokqfilter,
1303 	.d_flag = D_OTHER,
1304 };
1305 
1306 /*
1307  * sw_reg_strategy: handle swap i/o to regular files
1308  */
1309 static void
1310 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1311 {
1312 	struct vnode	*vp;
1313 	struct vndxfer	*vnx;
1314 	daddr_t		nbn;
1315 	char 		*addr;
1316 	off_t		byteoff;
1317 	int		s, off, nra, error, sz, resid;
1318 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1319 
1320 	/*
1321 	 * allocate a vndxfer head for this transfer and point it to
1322 	 * our buffer.
1323 	 */
1324 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1325 	vnx->vx_flags = VX_BUSY;
1326 	vnx->vx_error = 0;
1327 	vnx->vx_pending = 0;
1328 	vnx->vx_bp = bp;
1329 	vnx->vx_sdp = sdp;
1330 
1331 	/*
1332 	 * setup for main loop where we read filesystem blocks into
1333 	 * our buffer.
1334 	 */
1335 	error = 0;
1336 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1337 	addr = bp->b_data;		/* current position in buffer */
1338 	byteoff = dbtob((uint64_t)bn);
1339 
1340 	for (resid = bp->b_resid; resid; resid -= sz) {
1341 		struct vndbuf	*nbp;
1342 
1343 		/*
1344 		 * translate byteoffset into block number.  return values:
1345 		 *   vp = vnode of underlying device
1346 		 *  nbn = new block number (on underlying vnode dev)
1347 		 *  nra = num blocks we can read-ahead (excludes requested
1348 		 *	block)
1349 		 */
1350 		nra = 0;
1351 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1352 				 	&vp, &nbn, &nra);
1353 
1354 		if (error == 0 && nbn == (daddr_t)-1) {
1355 			/*
1356 			 * this used to just set error, but that doesn't
1357 			 * do the right thing.  Instead, it causes random
1358 			 * memory errors.  The panic() should remain until
1359 			 * this condition doesn't destabilize the system.
1360 			 */
1361 #if 1
1362 			panic("%s: swap to sparse file", __func__);
1363 #else
1364 			error = EIO;	/* failure */
1365 #endif
1366 		}
1367 
1368 		/*
1369 		 * punt if there was an error or a hole in the file.
1370 		 * we must wait for any i/o ops we have already started
1371 		 * to finish before returning.
1372 		 *
1373 		 * XXX we could deal with holes here but it would be
1374 		 * a hassle (in the write case).
1375 		 */
1376 		if (error) {
1377 			s = splbio();
1378 			vnx->vx_error = error;	/* pass error up */
1379 			goto out;
1380 		}
1381 
1382 		/*
1383 		 * compute the size ("sz") of this transfer (in bytes).
1384 		 */
1385 		off = byteoff % sdp->swd_bsize;
1386 		sz = (1 + nra) * sdp->swd_bsize - off;
1387 		if (sz > resid)
1388 			sz = resid;
1389 
1390 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1391 			    "vp %p/%p offset 0x%x/0x%x",
1392 			    sdp->swd_vp, vp, byteoff, nbn);
1393 
1394 		/*
1395 		 * now get a buf structure.   note that the vb_buf is
1396 		 * at the front of the nbp structure so that you can
1397 		 * cast pointers between the two structure easily.
1398 		 */
1399 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1400 		buf_init(&nbp->vb_buf);
1401 		nbp->vb_buf.b_flags    = bp->b_flags;
1402 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1403 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1404 		nbp->vb_buf.b_bcount   = sz;
1405 		nbp->vb_buf.b_bufsize  = sz;
1406 		nbp->vb_buf.b_error    = 0;
1407 		nbp->vb_buf.b_data     = addr;
1408 		nbp->vb_buf.b_lblkno   = 0;
1409 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1410 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1411 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1412 		nbp->vb_buf.b_vp       = vp;
1413 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1414 		if (vp->v_type == VBLK) {
1415 			nbp->vb_buf.b_dev = vp->v_rdev;
1416 		}
1417 
1418 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1419 
1420 		/*
1421 		 * Just sort by block number
1422 		 */
1423 		s = splbio();
1424 		if (vnx->vx_error != 0) {
1425 			buf_destroy(&nbp->vb_buf);
1426 			pool_put(&vndbuf_pool, nbp);
1427 			goto out;
1428 		}
1429 		vnx->vx_pending++;
1430 
1431 		/* sort it in and start I/O if we are not over our limit */
1432 		/* XXXAD locking */
1433 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1434 		sw_reg_start(sdp);
1435 		splx(s);
1436 
1437 		/*
1438 		 * advance to the next I/O
1439 		 */
1440 		byteoff += sz;
1441 		addr += sz;
1442 	}
1443 
1444 	s = splbio();
1445 
1446 out: /* Arrive here at splbio */
1447 	vnx->vx_flags &= ~VX_BUSY;
1448 	if (vnx->vx_pending == 0) {
1449 		error = vnx->vx_error;
1450 		pool_put(&vndxfer_pool, vnx);
1451 		bp->b_error = error;
1452 		biodone(bp);
1453 	}
1454 	splx(s);
1455 }
1456 
1457 /*
1458  * sw_reg_start: start an I/O request on the requested swapdev
1459  *
1460  * => reqs are sorted by b_rawblkno (above)
1461  */
1462 static void
1463 sw_reg_start(struct swapdev *sdp)
1464 {
1465 	struct buf	*bp;
1466 	struct vnode	*vp;
1467 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1468 
1469 	/* recursion control */
1470 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1471 		return;
1472 
1473 	sdp->swd_flags |= SWF_BUSY;
1474 
1475 	while (sdp->swd_active < sdp->swd_maxactive) {
1476 		bp = bufq_get(sdp->swd_tab);
1477 		if (bp == NULL)
1478 			break;
1479 		sdp->swd_active++;
1480 
1481 		UVMHIST_LOG(pdhist,
1482 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1483 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1484 		vp = bp->b_vp;
1485 		KASSERT(bp->b_objlock == vp->v_interlock);
1486 		if ((bp->b_flags & B_READ) == 0) {
1487 			mutex_enter(vp->v_interlock);
1488 			vp->v_numoutput++;
1489 			mutex_exit(vp->v_interlock);
1490 		}
1491 		VOP_STRATEGY(vp, bp);
1492 	}
1493 	sdp->swd_flags &= ~SWF_BUSY;
1494 }
1495 
1496 /*
1497  * sw_reg_biodone: one of our i/o's has completed
1498  */
1499 static void
1500 sw_reg_biodone(struct buf *bp)
1501 {
1502 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1503 }
1504 
1505 /*
1506  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1507  *
1508  * => note that we can recover the vndbuf struct by casting the buf ptr
1509  */
1510 static void
1511 sw_reg_iodone(struct work *wk, void *dummy)
1512 {
1513 	struct vndbuf *vbp = (void *)wk;
1514 	struct vndxfer *vnx = vbp->vb_xfer;
1515 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1516 	struct swapdev	*sdp = vnx->vx_sdp;
1517 	int s, resid, error;
1518 	KASSERT(&vbp->vb_buf.b_work == wk);
1519 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1520 
1521 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1522 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1523 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1524 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1525 
1526 	/*
1527 	 * protect vbp at splbio and update.
1528 	 */
1529 
1530 	s = splbio();
1531 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1532 	pbp->b_resid -= resid;
1533 	vnx->vx_pending--;
1534 
1535 	if (vbp->vb_buf.b_error != 0) {
1536 		/* pass error upward */
1537 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1538 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1539 		vnx->vx_error = error;
1540 	}
1541 
1542 	/*
1543 	 * kill vbp structure
1544 	 */
1545 	buf_destroy(&vbp->vb_buf);
1546 	pool_put(&vndbuf_pool, vbp);
1547 
1548 	/*
1549 	 * wrap up this transaction if it has run to completion or, in
1550 	 * case of an error, when all auxiliary buffers have returned.
1551 	 */
1552 	if (vnx->vx_error != 0) {
1553 		/* pass error upward */
1554 		error = vnx->vx_error;
1555 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1556 			pbp->b_error = error;
1557 			biodone(pbp);
1558 			pool_put(&vndxfer_pool, vnx);
1559 		}
1560 	} else if (pbp->b_resid == 0) {
1561 		KASSERT(vnx->vx_pending == 0);
1562 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1563 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1564 			    pbp, vnx->vx_error, 0, 0);
1565 			biodone(pbp);
1566 			pool_put(&vndxfer_pool, vnx);
1567 		}
1568 	}
1569 
1570 	/*
1571 	 * done!   start next swapdev I/O if one is pending
1572 	 */
1573 	sdp->swd_active--;
1574 	sw_reg_start(sdp);
1575 	splx(s);
1576 }
1577 
1578 
1579 /*
1580  * uvm_swap_alloc: allocate space on swap
1581  *
1582  * => allocation is done "round robin" down the priority list, as we
1583  *	allocate in a priority we "rotate" the circle queue.
1584  * => space can be freed with uvm_swap_free
1585  * => we return the page slot number in /dev/drum (0 == invalid slot)
1586  * => we lock uvm_swap_data_lock
1587  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1588  */
1589 int
1590 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1591 {
1592 	struct swapdev *sdp;
1593 	struct swappri *spp;
1594 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1595 
1596 	/*
1597 	 * no swap devices configured yet?   definite failure.
1598 	 */
1599 	if (uvmexp.nswapdev < 1)
1600 		return 0;
1601 
1602 	/*
1603 	 * XXXJAK: BEGIN HACK
1604 	 *
1605 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1606 	 * too many slots.
1607 	 */
1608 	if (*nslots > BLIST_MAX_ALLOC) {
1609 		if (__predict_false(lessok == false))
1610 			return 0;
1611 		*nslots = BLIST_MAX_ALLOC;
1612 	}
1613 	/* XXXJAK: END HACK */
1614 
1615 	/*
1616 	 * lock data lock, convert slots into blocks, and enter loop
1617 	 */
1618 	mutex_enter(&uvm_swap_data_lock);
1619 
1620 ReTry:	/* XXXMRG */
1621 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1622 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1623 			uint64_t result;
1624 
1625 			/* if it's not enabled, then we can't swap from it */
1626 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1627 				continue;
1628 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1629 				continue;
1630 			result = blist_alloc(sdp->swd_blist, *nslots);
1631 			if (result == BLIST_NONE) {
1632 				continue;
1633 			}
1634 			KASSERT(result < sdp->swd_drumsize);
1635 
1636 			/*
1637 			 * successful allocation!  now rotate the tailq.
1638 			 */
1639 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1640 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1641 			sdp->swd_npginuse += *nslots;
1642 			uvmexp.swpginuse += *nslots;
1643 			mutex_exit(&uvm_swap_data_lock);
1644 			/* done!  return drum slot number */
1645 			UVMHIST_LOG(pdhist,
1646 			    "success!  returning %d slots starting at %d",
1647 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1648 			return (result + sdp->swd_drumoffset);
1649 		}
1650 	}
1651 
1652 	/* XXXMRG: BEGIN HACK */
1653 	if (*nslots > 1 && lessok) {
1654 		*nslots = 1;
1655 		/* XXXMRG: ugh!  blist should support this for us */
1656 		goto ReTry;
1657 	}
1658 	/* XXXMRG: END HACK */
1659 
1660 	mutex_exit(&uvm_swap_data_lock);
1661 	return 0;
1662 }
1663 
1664 /*
1665  * uvm_swapisfull: return true if most of available swap is allocated
1666  * and in use.  we don't count some small portion as it may be inaccessible
1667  * to us at any given moment, for example if there is lock contention or if
1668  * pages are busy.
1669  */
1670 bool
1671 uvm_swapisfull(void)
1672 {
1673 	int swpgonly;
1674 	bool rv;
1675 
1676 	mutex_enter(&uvm_swap_data_lock);
1677 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1678 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1679 	    uvm_swapisfull_factor);
1680 	rv = (swpgonly >= uvmexp.swpgavail);
1681 	mutex_exit(&uvm_swap_data_lock);
1682 
1683 	return (rv);
1684 }
1685 
1686 /*
1687  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1688  *
1689  * => we lock uvm_swap_data_lock
1690  */
1691 void
1692 uvm_swap_markbad(int startslot, int nslots)
1693 {
1694 	struct swapdev *sdp;
1695 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1696 
1697 	mutex_enter(&uvm_swap_data_lock);
1698 	sdp = swapdrum_getsdp(startslot);
1699 	KASSERT(sdp != NULL);
1700 
1701 	/*
1702 	 * we just keep track of how many pages have been marked bad
1703 	 * in this device, to make everything add up in swap_off().
1704 	 * we assume here that the range of slots will all be within
1705 	 * one swap device.
1706 	 */
1707 
1708 	KASSERT(uvmexp.swpgonly >= nslots);
1709 	uvmexp.swpgonly -= nslots;
1710 	sdp->swd_npgbad += nslots;
1711 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1712 	mutex_exit(&uvm_swap_data_lock);
1713 }
1714 
1715 /*
1716  * uvm_swap_free: free swap slots
1717  *
1718  * => this can be all or part of an allocation made by uvm_swap_alloc
1719  * => we lock uvm_swap_data_lock
1720  */
1721 void
1722 uvm_swap_free(int startslot, int nslots)
1723 {
1724 	struct swapdev *sdp;
1725 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1726 
1727 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1728 	    startslot, 0, 0);
1729 
1730 	/*
1731 	 * ignore attempts to free the "bad" slot.
1732 	 */
1733 
1734 	if (startslot == SWSLOT_BAD) {
1735 		return;
1736 	}
1737 
1738 	/*
1739 	 * convert drum slot offset back to sdp, free the blocks
1740 	 * in the extent, and return.   must hold pri lock to do
1741 	 * lookup and access the extent.
1742 	 */
1743 
1744 	mutex_enter(&uvm_swap_data_lock);
1745 	sdp = swapdrum_getsdp(startslot);
1746 	KASSERT(uvmexp.nswapdev >= 1);
1747 	KASSERT(sdp != NULL);
1748 	KASSERT(sdp->swd_npginuse >= nslots);
1749 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1750 	sdp->swd_npginuse -= nslots;
1751 	uvmexp.swpginuse -= nslots;
1752 	mutex_exit(&uvm_swap_data_lock);
1753 }
1754 
1755 /*
1756  * uvm_swap_put: put any number of pages into a contig place on swap
1757  *
1758  * => can be sync or async
1759  */
1760 
1761 int
1762 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1763 {
1764 	int error;
1765 
1766 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1767 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1768 	return error;
1769 }
1770 
1771 /*
1772  * uvm_swap_get: get a single page from swap
1773  *
1774  * => usually a sync op (from fault)
1775  */
1776 
1777 int
1778 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1779 {
1780 	int error;
1781 
1782 	uvmexp.nswget++;
1783 	KASSERT(flags & PGO_SYNCIO);
1784 	if (swslot == SWSLOT_BAD) {
1785 		return EIO;
1786 	}
1787 
1788 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1789 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1790 	if (error == 0) {
1791 
1792 		/*
1793 		 * this page is no longer only in swap.
1794 		 */
1795 
1796 		mutex_enter(&uvm_swap_data_lock);
1797 		KASSERT(uvmexp.swpgonly > 0);
1798 		uvmexp.swpgonly--;
1799 		mutex_exit(&uvm_swap_data_lock);
1800 	}
1801 	return error;
1802 }
1803 
1804 /*
1805  * uvm_swap_io: do an i/o operation to swap
1806  */
1807 
1808 static int
1809 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1810 {
1811 	daddr_t startblk;
1812 	struct	buf *bp;
1813 	vaddr_t kva;
1814 	int	error, mapinflags;
1815 	bool write, async;
1816 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1817 
1818 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1819 	    startslot, npages, flags, 0);
1820 
1821 	write = (flags & B_READ) == 0;
1822 	async = (flags & B_ASYNC) != 0;
1823 
1824 	/*
1825 	 * allocate a buf for the i/o.
1826 	 */
1827 
1828 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1829 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1830 	if (bp == NULL) {
1831 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1832 		return ENOMEM;
1833 	}
1834 
1835 	/*
1836 	 * convert starting drum slot to block number
1837 	 */
1838 
1839 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1840 
1841 	/*
1842 	 * first, map the pages into the kernel.
1843 	 */
1844 
1845 	mapinflags = !write ?
1846 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1847 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1848 	kva = uvm_pagermapin(pps, npages, mapinflags);
1849 
1850 	/*
1851 	 * fill in the bp/sbp.   we currently route our i/o through
1852 	 * /dev/drum's vnode [swapdev_vp].
1853 	 */
1854 
1855 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1856 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1857 	bp->b_proc = &proc0;	/* XXX */
1858 	bp->b_vnbufs.le_next = NOLIST;
1859 	bp->b_data = (void *)kva;
1860 	bp->b_blkno = startblk;
1861 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1862 
1863 	/*
1864 	 * bump v_numoutput (counter of number of active outputs).
1865 	 */
1866 
1867 	if (write) {
1868 		mutex_enter(swapdev_vp->v_interlock);
1869 		swapdev_vp->v_numoutput++;
1870 		mutex_exit(swapdev_vp->v_interlock);
1871 	}
1872 
1873 	/*
1874 	 * for async ops we must set up the iodone handler.
1875 	 */
1876 
1877 	if (async) {
1878 		bp->b_iodone = uvm_aio_biodone;
1879 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1880 		if (curlwp == uvm.pagedaemon_lwp)
1881 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1882 		else
1883 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1884 	} else {
1885 		bp->b_iodone = NULL;
1886 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1887 	}
1888 	UVMHIST_LOG(pdhist,
1889 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1890 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1891 
1892 	/*
1893 	 * now we start the I/O, and if async, return.
1894 	 */
1895 
1896 	VOP_STRATEGY(swapdev_vp, bp);
1897 	if (async)
1898 		return 0;
1899 
1900 	/*
1901 	 * must be sync i/o.   wait for it to finish
1902 	 */
1903 
1904 	error = biowait(bp);
1905 
1906 	/*
1907 	 * kill the pager mapping
1908 	 */
1909 
1910 	uvm_pagermapout(kva, npages);
1911 
1912 	/*
1913 	 * now dispose of the buf and we're done.
1914 	 */
1915 
1916 	if (write) {
1917 		mutex_enter(swapdev_vp->v_interlock);
1918 		vwakeup(bp);
1919 		mutex_exit(swapdev_vp->v_interlock);
1920 	}
1921 	putiobuf(bp);
1922 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1923 
1924 	return (error);
1925 }
1926