xref: /netbsd-src/sys/uvm/uvm_swap.c (revision aaf4ece63a859a04e37cf3a7229b5fab0157cc06)
1 /*	$NetBSD: uvm_swap.c,v 1.98 2006/01/04 10:13:06 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.98 2006/01/04 10:13:06 yamt Exp $");
36 
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 
63 #include <uvm/uvm.h>
64 
65 #include <miscfs/specfs/specdev.h>
66 
67 /*
68  * uvm_swap.c: manage configuration and i/o to swap space.
69  */
70 
71 /*
72  * swap space is managed in the following way:
73  *
74  * each swap partition or file is described by a "swapdev" structure.
75  * each "swapdev" structure contains a "swapent" structure which contains
76  * information that is passed up to the user (via system calls).
77  *
78  * each swap partition is assigned a "priority" (int) which controls
79  * swap parition usage.
80  *
81  * the system maintains a global data structure describing all swap
82  * partitions/files.   there is a sorted LIST of "swappri" structures
83  * which describe "swapdev"'s at that priority.   this LIST is headed
84  * by the "swap_priority" global var.    each "swappri" contains a
85  * CIRCLEQ of "swapdev" structures at that priority.
86  *
87  * locking:
88  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89  *    system call and prevents the swap priority list from changing
90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
91  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92  *    structures including the priority list, the swapdev structures,
93  *    and the swapmap extent.
94  *
95  * each swap device has the following info:
96  *  - swap device in use (could be disabled, preventing future use)
97  *  - swap enabled (allows new allocations on swap)
98  *  - map info in /dev/drum
99  *  - vnode pointer
100  * for swap files only:
101  *  - block size
102  *  - max byte count in buffer
103  *  - buffer
104  *
105  * userland controls and configures swap with the swapctl(2) system call.
106  * the sys_swapctl performs the following operations:
107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
109  *	(passed in via "arg") of a size passed in via "misc" ... we load
110  *	the current swap config into the array. The actual work is done
111  *	in the uvm_swap_stats(9) function.
112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113  *	priority in "misc", start swapping on it.
114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
116  *	"misc")
117  */
118 
119 /*
120  * swapdev: describes a single swap partition/file
121  *
122  * note the following should be true:
123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125  */
126 struct swapdev {
127 	struct oswapent swd_ose;
128 #define	swd_dev		swd_ose.ose_dev		/* device id */
129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
132 	char			*swd_path;	/* saved pathname of device */
133 	int			swd_pathlen;	/* length of pathname */
134 	int			swd_npages;	/* #pages we can use */
135 	int			swd_npginuse;	/* #pages in use */
136 	int			swd_npgbad;	/* #pages bad */
137 	int			swd_drumoffset;	/* page0 offset in drum */
138 	int			swd_drumsize;	/* #pages in drum */
139 	blist_t			swd_blist;	/* blist for this swapdev */
140 	struct vnode		*swd_vp;	/* backing vnode */
141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
142 
143 	int			swd_bsize;	/* blocksize (bytes) */
144 	int			swd_maxactive;	/* max active i/o reqs */
145 	struct bufq_state	*swd_tab;	/* buffer list */
146 	int			swd_active;	/* number of active buffers */
147 };
148 
149 /*
150  * swap device priority entry; the list is kept sorted on `spi_priority'.
151  */
152 struct swappri {
153 	int			spi_priority;     /* priority */
154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
155 	/* circleq of swapdevs at this priority */
156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
157 };
158 
159 /*
160  * The following two structures are used to keep track of data transfers
161  * on swap devices associated with regular files.
162  * NOTE: this code is more or less a copy of vnd.c; we use the same
163  * structure names here to ease porting..
164  */
165 struct vndxfer {
166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
167 	struct swapdev	*vx_sdp;
168 	int		vx_error;
169 	int		vx_pending;	/* # of pending aux buffers */
170 	int		vx_flags;
171 #define VX_BUSY		1
172 #define VX_DEAD		2
173 };
174 
175 struct vndbuf {
176 	struct buf	vb_buf;
177 	struct vndxfer	*vb_xfer;
178 };
179 
180 
181 /*
182  * We keep a of pool vndbuf's and vndxfer structures.
183  */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186 
187 #define	getvndxfer(vnx)	do {						\
188 	int sp = splbio();						\
189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
190 	splx(sp);							\
191 } while (/*CONSTCOND*/ 0)
192 
193 #define putvndxfer(vnx) {						\
194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
195 }
196 
197 #define	getvndbuf(vbp)	do {						\
198 	int sp = splbio();						\
199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
200 	splx(sp);							\
201 } while (/*CONSTCOND*/ 0)
202 
203 #define putvndbuf(vbp) {						\
204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
205 }
206 
207 /*
208  * local variables
209  */
210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
211 
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213 
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217 
218 /* locks */
219 static struct lock swap_syscall_lock;
220 
221 /*
222  * prototypes
223  */
224 static struct swapdev	*swapdrum_getsdp(int);
225 
226 static struct swapdev	*swaplist_find(struct vnode *, int);
227 static void		 swaplist_insert(struct swapdev *,
228 					 struct swappri *, int);
229 static void		 swaplist_trim(void);
230 
231 static int swap_on(struct lwp *, struct swapdev *);
232 static int swap_off(struct lwp *, struct swapdev *);
233 
234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
235 
236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
237 static void sw_reg_iodone(struct buf *);
238 static void sw_reg_start(struct swapdev *);
239 
240 static int uvm_swap_io(struct vm_page **, int, int, int);
241 
242 /*
243  * uvm_swap_init: init the swap system data structures and locks
244  *
245  * => called at boot time from init_main.c after the filesystems
246  *	are brought up (which happens after uvm_init())
247  */
248 void
249 uvm_swap_init(void)
250 {
251 	UVMHIST_FUNC("uvm_swap_init");
252 
253 	UVMHIST_CALLED(pdhist);
254 	/*
255 	 * first, init the swap list, its counter, and its lock.
256 	 * then get a handle on the vnode for /dev/drum by using
257 	 * the its dev_t number ("swapdev", from MD conf.c).
258 	 */
259 
260 	LIST_INIT(&swap_priority);
261 	uvmexp.nswapdev = 0;
262 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
263 	simple_lock_init(&uvm.swap_data_lock);
264 
265 	if (bdevvp(swapdev, &swapdev_vp))
266 		panic("uvm_swap_init: can't get vnode for swap device");
267 
268 	/*
269 	 * create swap block resource map to map /dev/drum.   the range
270 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
271 	 * that block 0 is reserved (used to indicate an allocation
272 	 * failure, or no allocation).
273 	 */
274 	swapmap = extent_create("swapmap", 1, INT_MAX,
275 				M_VMSWAP, 0, 0, EX_NOWAIT);
276 	if (swapmap == 0)
277 		panic("uvm_swap_init: extent_create failed");
278 
279 	/*
280 	 * done!
281 	 */
282 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
283 }
284 
285 /*
286  * swaplist functions: functions that operate on the list of swap
287  * devices on the system.
288  */
289 
290 /*
291  * swaplist_insert: insert swap device "sdp" into the global list
292  *
293  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
294  * => caller must provide a newly malloc'd swappri structure (we will
295  *	FREE it if we don't need it... this it to prevent malloc blocking
296  *	here while adding swap)
297  */
298 static void
299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
300 {
301 	struct swappri *spp, *pspp;
302 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
303 
304 	/*
305 	 * find entry at or after which to insert the new device.
306 	 */
307 	pspp = NULL;
308 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
309 		if (priority <= spp->spi_priority)
310 			break;
311 		pspp = spp;
312 	}
313 
314 	/*
315 	 * new priority?
316 	 */
317 	if (spp == NULL || spp->spi_priority != priority) {
318 		spp = newspp;  /* use newspp! */
319 		UVMHIST_LOG(pdhist, "created new swappri = %d",
320 			    priority, 0, 0, 0);
321 
322 		spp->spi_priority = priority;
323 		CIRCLEQ_INIT(&spp->spi_swapdev);
324 
325 		if (pspp)
326 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
327 		else
328 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
329 	} else {
330 	  	/* we don't need a new priority structure, free it */
331 		FREE(newspp, M_VMSWAP);
332 	}
333 
334 	/*
335 	 * priority found (or created).   now insert on the priority's
336 	 * circleq list and bump the total number of swapdevs.
337 	 */
338 	sdp->swd_priority = priority;
339 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
340 	uvmexp.nswapdev++;
341 }
342 
343 /*
344  * swaplist_find: find and optionally remove a swap device from the
345  *	global list.
346  *
347  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
348  * => we return the swapdev we found (and removed)
349  */
350 static struct swapdev *
351 swaplist_find(struct vnode *vp, boolean_t remove)
352 {
353 	struct swapdev *sdp;
354 	struct swappri *spp;
355 
356 	/*
357 	 * search the lists for the requested vp
358 	 */
359 
360 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
361 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
362 			if (sdp->swd_vp == vp) {
363 				if (remove) {
364 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
365 					    sdp, swd_next);
366 					uvmexp.nswapdev--;
367 				}
368 				return(sdp);
369 			}
370 		}
371 	}
372 	return (NULL);
373 }
374 
375 
376 /*
377  * swaplist_trim: scan priority list for empty priority entries and kill
378  *	them.
379  *
380  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
381  */
382 static void
383 swaplist_trim(void)
384 {
385 	struct swappri *spp, *nextspp;
386 
387 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
388 		nextspp = LIST_NEXT(spp, spi_swappri);
389 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
390 		    (void *)&spp->spi_swapdev)
391 			continue;
392 		LIST_REMOVE(spp, spi_swappri);
393 		free(spp, M_VMSWAP);
394 	}
395 }
396 
397 /*
398  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
399  *	to the "swapdev" that maps that section of the drum.
400  *
401  * => each swapdev takes one big contig chunk of the drum
402  * => caller must hold uvm.swap_data_lock
403  */
404 static struct swapdev *
405 swapdrum_getsdp(int pgno)
406 {
407 	struct swapdev *sdp;
408 	struct swappri *spp;
409 
410 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
411 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
412 			if (sdp->swd_flags & SWF_FAKE)
413 				continue;
414 			if (pgno >= sdp->swd_drumoffset &&
415 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
416 				return sdp;
417 			}
418 		}
419 	}
420 	return NULL;
421 }
422 
423 
424 /*
425  * sys_swapctl: main entry point for swapctl(2) system call
426  * 	[with two helper functions: swap_on and swap_off]
427  */
428 int
429 sys_swapctl(struct lwp *l, void *v, register_t *retval)
430 {
431 	struct sys_swapctl_args /* {
432 		syscallarg(int) cmd;
433 		syscallarg(void *) arg;
434 		syscallarg(int) misc;
435 	} */ *uap = (struct sys_swapctl_args *)v;
436 	struct proc *p = l->l_proc;
437 	struct vnode *vp;
438 	struct nameidata nd;
439 	struct swappri *spp;
440 	struct swapdev *sdp;
441 	struct swapent *sep;
442 	char	userpath[PATH_MAX + 1];
443 	size_t	len;
444 	int	error, misc;
445 	int	priority;
446 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
447 
448 	misc = SCARG(uap, misc);
449 
450 	/*
451 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
452 	 */
453 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
454 
455 	/*
456 	 * we handle the non-priv NSWAP and STATS request first.
457 	 *
458 	 * SWAP_NSWAP: return number of config'd swap devices
459 	 * [can also be obtained with uvmexp sysctl]
460 	 */
461 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
462 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
463 		    0, 0, 0);
464 		*retval = uvmexp.nswapdev;
465 		error = 0;
466 		goto out;
467 	}
468 
469 	/*
470 	 * SWAP_STATS: get stats on current # of configured swap devs
471 	 *
472 	 * note that the swap_priority list can't change as long
473 	 * as we are holding the swap_syscall_lock.  we don't want
474 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
475 	 * copyout() and we don't want to be holding that lock then!
476 	 */
477 	if (SCARG(uap, cmd) == SWAP_STATS
478 #if defined(COMPAT_13)
479 	    || SCARG(uap, cmd) == SWAP_OSTATS
480 #endif
481 	    ) {
482 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
483 			misc = uvmexp.nswapdev;
484 #if defined(COMPAT_13)
485 		if (SCARG(uap, cmd) == SWAP_OSTATS)
486 			len = sizeof(struct oswapent) * misc;
487 		else
488 #endif
489 			len = sizeof(struct swapent) * misc;
490 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
491 
492 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
493 		error = copyout(sep, SCARG(uap, arg), len);
494 
495 		free(sep, M_TEMP);
496 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
497 		goto out;
498 	}
499 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
500 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
501 
502 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
503 		goto out;
504 	}
505 
506 	/*
507 	 * all other requests require superuser privs.   verify.
508 	 */
509 	if ((error = suser(p->p_ucred, &p->p_acflag)))
510 		goto out;
511 
512 	/*
513 	 * at this point we expect a path name in arg.   we will
514 	 * use namei() to gain a vnode reference (vref), and lock
515 	 * the vnode (VOP_LOCK).
516 	 *
517 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
518 	 * miniroot)
519 	 */
520 	if (SCARG(uap, arg) == NULL) {
521 		vp = rootvp;		/* miniroot */
522 		if (vget(vp, LK_EXCLUSIVE)) {
523 			error = EBUSY;
524 			goto out;
525 		}
526 		if (SCARG(uap, cmd) == SWAP_ON &&
527 		    copystr("miniroot", userpath, sizeof userpath, &len))
528 			panic("swapctl: miniroot copy failed");
529 	} else {
530 		int	space;
531 		char	*where;
532 
533 		if (SCARG(uap, cmd) == SWAP_ON) {
534 			if ((error = copyinstr(SCARG(uap, arg), userpath,
535 			    sizeof userpath, &len)))
536 				goto out;
537 			space = UIO_SYSSPACE;
538 			where = userpath;
539 		} else {
540 			space = UIO_USERSPACE;
541 			where = (char *)SCARG(uap, arg);
542 		}
543 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
544 		if ((error = namei(&nd)))
545 			goto out;
546 		vp = nd.ni_vp;
547 	}
548 	/* note: "vp" is referenced and locked */
549 
550 	error = 0;		/* assume no error */
551 	switch(SCARG(uap, cmd)) {
552 
553 	case SWAP_DUMPDEV:
554 		if (vp->v_type != VBLK) {
555 			error = ENOTBLK;
556 			break;
557 		}
558 		dumpdev = vp->v_rdev;
559 		cpu_dumpconf();
560 		break;
561 
562 	case SWAP_CTL:
563 		/*
564 		 * get new priority, remove old entry (if any) and then
565 		 * reinsert it in the correct place.  finally, prune out
566 		 * any empty priority structures.
567 		 */
568 		priority = SCARG(uap, misc);
569 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
570 		simple_lock(&uvm.swap_data_lock);
571 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
572 			error = ENOENT;
573 		} else {
574 			swaplist_insert(sdp, spp, priority);
575 			swaplist_trim();
576 		}
577 		simple_unlock(&uvm.swap_data_lock);
578 		if (error)
579 			free(spp, M_VMSWAP);
580 		break;
581 
582 	case SWAP_ON:
583 
584 		/*
585 		 * check for duplicates.   if none found, then insert a
586 		 * dummy entry on the list to prevent someone else from
587 		 * trying to enable this device while we are working on
588 		 * it.
589 		 */
590 
591 		priority = SCARG(uap, misc);
592 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
593 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
594 		memset(sdp, 0, sizeof(*sdp));
595 		sdp->swd_flags = SWF_FAKE;
596 		sdp->swd_vp = vp;
597 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
598 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
599 		simple_lock(&uvm.swap_data_lock);
600 		if (swaplist_find(vp, 0) != NULL) {
601 			error = EBUSY;
602 			simple_unlock(&uvm.swap_data_lock);
603 			bufq_free(sdp->swd_tab);
604 			free(sdp, M_VMSWAP);
605 			free(spp, M_VMSWAP);
606 			break;
607 		}
608 		swaplist_insert(sdp, spp, priority);
609 		simple_unlock(&uvm.swap_data_lock);
610 
611 		sdp->swd_pathlen = len;
612 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
613 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
614 			panic("swapctl: copystr");
615 
616 		/*
617 		 * we've now got a FAKE placeholder in the swap list.
618 		 * now attempt to enable swap on it.  if we fail, undo
619 		 * what we've done and kill the fake entry we just inserted.
620 		 * if swap_on is a success, it will clear the SWF_FAKE flag
621 		 */
622 
623 		if ((error = swap_on(l, sdp)) != 0) {
624 			simple_lock(&uvm.swap_data_lock);
625 			(void) swaplist_find(vp, 1);  /* kill fake entry */
626 			swaplist_trim();
627 			simple_unlock(&uvm.swap_data_lock);
628 			bufq_free(sdp->swd_tab);
629 			free(sdp->swd_path, M_VMSWAP);
630 			free(sdp, M_VMSWAP);
631 			break;
632 		}
633 		break;
634 
635 	case SWAP_OFF:
636 		simple_lock(&uvm.swap_data_lock);
637 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
638 			simple_unlock(&uvm.swap_data_lock);
639 			error = ENXIO;
640 			break;
641 		}
642 
643 		/*
644 		 * If a device isn't in use or enabled, we
645 		 * can't stop swapping from it (again).
646 		 */
647 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
648 			simple_unlock(&uvm.swap_data_lock);
649 			error = EBUSY;
650 			break;
651 		}
652 
653 		/*
654 		 * do the real work.
655 		 */
656 		error = swap_off(l, sdp);
657 		break;
658 
659 	default:
660 		error = EINVAL;
661 	}
662 
663 	/*
664 	 * done!  release the ref gained by namei() and unlock.
665 	 */
666 	vput(vp);
667 
668 out:
669 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
670 
671 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
672 	return (error);
673 }
674 
675 /*
676  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
677  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
678  * emulation to use it directly without going through sys_swapctl().
679  * The problem with using sys_swapctl() there is that it involves
680  * copying the swapent array to the stackgap, and this array's size
681  * is not known at build time. Hence it would not be possible to
682  * ensure it would fit in the stackgap in any case.
683  */
684 void
685 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
686 {
687 
688 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
689 	uvm_swap_stats_locked(cmd, sep, sec, retval);
690 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
691 }
692 
693 static void
694 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
695 {
696 	struct swappri *spp;
697 	struct swapdev *sdp;
698 	int count = 0;
699 
700 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
701 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
702 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
703 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
704 		  	/*
705 			 * backwards compatibility for system call.
706 			 * note that we use 'struct oswapent' as an
707 			 * overlay into both 'struct swapdev' and
708 			 * the userland 'struct swapent', as we
709 			 * want to retain backwards compatibility
710 			 * with NetBSD 1.3.
711 			 */
712 			sdp->swd_ose.ose_inuse =
713 			    btodb((u_int64_t)sdp->swd_npginuse <<
714 			    PAGE_SHIFT);
715 			(void)memcpy(sep, &sdp->swd_ose,
716 			    sizeof(struct oswapent));
717 
718 			/* now copy out the path if necessary */
719 #if defined(COMPAT_13)
720 			if (cmd == SWAP_STATS)
721 #endif
722 				(void)memcpy(&sep->se_path, sdp->swd_path,
723 				    sdp->swd_pathlen);
724 
725 			count++;
726 #if defined(COMPAT_13)
727 			if (cmd == SWAP_OSTATS)
728 				sep = (struct swapent *)
729 				    ((struct oswapent *)sep + 1);
730 			else
731 #endif
732 				sep++;
733 		}
734 	}
735 
736 	*retval = count;
737 	return;
738 }
739 
740 /*
741  * swap_on: attempt to enable a swapdev for swapping.   note that the
742  *	swapdev is already on the global list, but disabled (marked
743  *	SWF_FAKE).
744  *
745  * => we avoid the start of the disk (to protect disk labels)
746  * => we also avoid the miniroot, if we are swapping to root.
747  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
748  *	if needed.
749  */
750 static int
751 swap_on(struct lwp *l, struct swapdev *sdp)
752 {
753 	struct vnode *vp;
754 	struct proc *p = l->l_proc;
755 	int error, npages, nblocks, size;
756 	long addr;
757 	u_long result;
758 	struct vattr va;
759 #ifdef NFS
760 	extern int (**nfsv2_vnodeop_p)(void *);
761 #endif /* NFS */
762 	const struct bdevsw *bdev;
763 	dev_t dev;
764 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
765 
766 	/*
767 	 * we want to enable swapping on sdp.   the swd_vp contains
768 	 * the vnode we want (locked and ref'd), and the swd_dev
769 	 * contains the dev_t of the file, if it a block device.
770 	 */
771 
772 	vp = sdp->swd_vp;
773 	dev = sdp->swd_dev;
774 
775 	/*
776 	 * open the swap file (mostly useful for block device files to
777 	 * let device driver know what is up).
778 	 *
779 	 * we skip the open/close for root on swap because the root
780 	 * has already been opened when root was mounted (mountroot).
781 	 */
782 	if (vp != rootvp) {
783 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, l)))
784 			return (error);
785 	}
786 
787 	/* XXX this only works for block devices */
788 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
789 
790 	/*
791 	 * we now need to determine the size of the swap area.   for
792 	 * block specials we can call the d_psize function.
793 	 * for normal files, we must stat [get attrs].
794 	 *
795 	 * we put the result in nblks.
796 	 * for normal files, we also want the filesystem block size
797 	 * (which we get with statfs).
798 	 */
799 	switch (vp->v_type) {
800 	case VBLK:
801 		bdev = bdevsw_lookup(dev);
802 		if (bdev == NULL || bdev->d_psize == NULL ||
803 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
804 			error = ENXIO;
805 			goto bad;
806 		}
807 		break;
808 
809 	case VREG:
810 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, l)))
811 			goto bad;
812 		nblocks = (int)btodb(va.va_size);
813 		if ((error =
814 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
815 			goto bad;
816 
817 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
818 		/*
819 		 * limit the max # of outstanding I/O requests we issue
820 		 * at any one time.   take it easy on NFS servers.
821 		 */
822 #ifdef NFS
823 		if (vp->v_op == nfsv2_vnodeop_p)
824 			sdp->swd_maxactive = 2; /* XXX */
825 		else
826 #endif /* NFS */
827 			sdp->swd_maxactive = 8; /* XXX */
828 		break;
829 
830 	default:
831 		error = ENXIO;
832 		goto bad;
833 	}
834 
835 	/*
836 	 * save nblocks in a safe place and convert to pages.
837 	 */
838 
839 	sdp->swd_ose.ose_nblks = nblocks;
840 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
841 
842 	/*
843 	 * for block special files, we want to make sure that leave
844 	 * the disklabel and bootblocks alone, so we arrange to skip
845 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
846 	 * note that because of this the "size" can be less than the
847 	 * actual number of blocks on the device.
848 	 */
849 	if (vp->v_type == VBLK) {
850 		/* we use pages 1 to (size - 1) [inclusive] */
851 		size = npages - 1;
852 		addr = 1;
853 	} else {
854 		/* we use pages 0 to (size - 1) [inclusive] */
855 		size = npages;
856 		addr = 0;
857 	}
858 
859 	/*
860 	 * make sure we have enough blocks for a reasonable sized swap
861 	 * area.   we want at least one page.
862 	 */
863 
864 	if (size < 1) {
865 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
866 		error = EINVAL;
867 		goto bad;
868 	}
869 
870 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
871 
872 	/*
873 	 * now we need to allocate an extent to manage this swap device
874 	 */
875 
876 	sdp->swd_blist = blist_create(npages);
877 	/* mark all expect the `saved' region free. */
878 	blist_free(sdp->swd_blist, addr, size);
879 
880 	/*
881 	 * if the vnode we are swapping to is the root vnode
882 	 * (i.e. we are swapping to the miniroot) then we want
883 	 * to make sure we don't overwrite it.   do a statfs to
884 	 * find its size and skip over it.
885 	 */
886 	if (vp == rootvp) {
887 		struct mount *mp;
888 		struct statvfs *sp;
889 		int rootblocks, rootpages;
890 
891 		mp = rootvnode->v_mount;
892 		sp = &mp->mnt_stat;
893 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
894 		/*
895 		 * XXX: sp->f_blocks isn't the total number of
896 		 * blocks in the filesystem, it's the number of
897 		 * data blocks.  so, our rootblocks almost
898 		 * definitely underestimates the total size
899 		 * of the filesystem - how badly depends on the
900 		 * details of the filesystem type.  there isn't
901 		 * an obvious way to deal with this cleanly
902 		 * and perfectly, so for now we just pad our
903 		 * rootblocks estimate with an extra 5 percent.
904 		 */
905 		rootblocks += (rootblocks >> 5) +
906 			(rootblocks >> 6) +
907 			(rootblocks >> 7);
908 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
909 		if (rootpages > size)
910 			panic("swap_on: miniroot larger than swap?");
911 
912 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
913 			panic("swap_on: unable to preserve miniroot");
914 		}
915 
916 		size -= rootpages;
917 		printf("Preserved %d pages of miniroot ", rootpages);
918 		printf("leaving %d pages of swap\n", size);
919 	}
920 
921 	/*
922 	 * add a ref to vp to reflect usage as a swap device.
923 	 */
924 	vref(vp);
925 
926 	/*
927 	 * now add the new swapdev to the drum and enable.
928 	 */
929 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
930 	    EX_WAITOK, &result))
931 		panic("swapdrum_add");
932 
933 	sdp->swd_drumoffset = (int)result;
934 	sdp->swd_drumsize = npages;
935 	sdp->swd_npages = size;
936 	simple_lock(&uvm.swap_data_lock);
937 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
938 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
939 	uvmexp.swpages += size;
940 	uvmexp.swpgavail += size;
941 	simple_unlock(&uvm.swap_data_lock);
942 	return (0);
943 
944 	/*
945 	 * failure: clean up and return error.
946 	 */
947 
948 bad:
949 	if (sdp->swd_blist) {
950 		blist_destroy(sdp->swd_blist);
951 	}
952 	if (vp != rootvp) {
953 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, l);
954 	}
955 	return (error);
956 }
957 
958 /*
959  * swap_off: stop swapping on swapdev
960  *
961  * => swap data should be locked, we will unlock.
962  */
963 static int
964 swap_off(struct lwp *l, struct swapdev *sdp)
965 {
966 	struct proc *p = l->l_proc;
967 	int npages = sdp->swd_npages;
968 	int error = 0;
969 
970 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
971 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
972 
973 	/* disable the swap area being removed */
974 	sdp->swd_flags &= ~SWF_ENABLE;
975 	uvmexp.swpgavail -= npages;
976 	simple_unlock(&uvm.swap_data_lock);
977 
978 	/*
979 	 * the idea is to find all the pages that are paged out to this
980 	 * device, and page them all in.  in uvm, swap-backed pageable
981 	 * memory can take two forms: aobjs and anons.  call the
982 	 * swapoff hook for each subsystem to bring in pages.
983 	 */
984 
985 	if (uao_swap_off(sdp->swd_drumoffset,
986 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
987 	    amap_swap_off(sdp->swd_drumoffset,
988 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
989 		error = ENOMEM;
990 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
991 		error = EBUSY;
992 	}
993 
994 	if (error) {
995 		simple_lock(&uvm.swap_data_lock);
996 		sdp->swd_flags |= SWF_ENABLE;
997 		uvmexp.swpgavail += npages;
998 		simple_unlock(&uvm.swap_data_lock);
999 
1000 		return error;
1001 	}
1002 
1003 	/*
1004 	 * done with the vnode.
1005 	 * drop our ref on the vnode before calling VOP_CLOSE()
1006 	 * so that spec_close() can tell if this is the last close.
1007 	 */
1008 	vrele(sdp->swd_vp);
1009 	if (sdp->swd_vp != rootvp) {
1010 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, l);
1011 	}
1012 
1013 	simple_lock(&uvm.swap_data_lock);
1014 	uvmexp.swpages -= npages;
1015 	uvmexp.swpginuse -= sdp->swd_npgbad;
1016 
1017 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1018 		panic("swap_off: swapdev not in list");
1019 	swaplist_trim();
1020 	simple_unlock(&uvm.swap_data_lock);
1021 
1022 	/*
1023 	 * free all resources!
1024 	 */
1025 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1026 		    EX_WAITOK);
1027 	blist_destroy(sdp->swd_blist);
1028 	bufq_free(sdp->swd_tab);
1029 	free(sdp, M_VMSWAP);
1030 	return (0);
1031 }
1032 
1033 /*
1034  * /dev/drum interface and i/o functions
1035  */
1036 
1037 /*
1038  * swstrategy: perform I/O on the drum
1039  *
1040  * => we must map the i/o request from the drum to the correct swapdev.
1041  */
1042 static void
1043 swstrategy(struct buf *bp)
1044 {
1045 	struct swapdev *sdp;
1046 	struct vnode *vp;
1047 	int s, pageno, bn;
1048 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1049 
1050 	/*
1051 	 * convert block number to swapdev.   note that swapdev can't
1052 	 * be yanked out from under us because we are holding resources
1053 	 * in it (i.e. the blocks we are doing I/O on).
1054 	 */
1055 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1056 	simple_lock(&uvm.swap_data_lock);
1057 	sdp = swapdrum_getsdp(pageno);
1058 	simple_unlock(&uvm.swap_data_lock);
1059 	if (sdp == NULL) {
1060 		bp->b_error = EINVAL;
1061 		bp->b_flags |= B_ERROR;
1062 		biodone(bp);
1063 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1064 		return;
1065 	}
1066 
1067 	/*
1068 	 * convert drum page number to block number on this swapdev.
1069 	 */
1070 
1071 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1072 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1073 
1074 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1075 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1076 		sdp->swd_drumoffset, bn, bp->b_bcount);
1077 
1078 	/*
1079 	 * for block devices we finish up here.
1080 	 * for regular files we have to do more work which we delegate
1081 	 * to sw_reg_strategy().
1082 	 */
1083 
1084 	switch (sdp->swd_vp->v_type) {
1085 	default:
1086 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1087 
1088 	case VBLK:
1089 
1090 		/*
1091 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1092 		 * on the swapdev (sdp).
1093 		 */
1094 		s = splbio();
1095 		bp->b_blkno = bn;		/* swapdev block number */
1096 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1097 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1098 
1099 		/*
1100 		 * if we are doing a write, we have to redirect the i/o on
1101 		 * drum's v_numoutput counter to the swapdevs.
1102 		 */
1103 		if ((bp->b_flags & B_READ) == 0) {
1104 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1105 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
1106 		}
1107 
1108 		/*
1109 		 * finally plug in swapdev vnode and start I/O
1110 		 */
1111 		bp->b_vp = vp;
1112 		splx(s);
1113 		VOP_STRATEGY(vp, bp);
1114 		return;
1115 
1116 	case VREG:
1117 		/*
1118 		 * delegate to sw_reg_strategy function.
1119 		 */
1120 		sw_reg_strategy(sdp, bp, bn);
1121 		return;
1122 	}
1123 	/* NOTREACHED */
1124 }
1125 
1126 /*
1127  * swread: the read function for the drum (just a call to physio)
1128  */
1129 /*ARGSUSED*/
1130 static int
1131 swread(dev_t dev, struct uio *uio, int ioflag)
1132 {
1133 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1134 
1135 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1136 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1137 }
1138 
1139 /*
1140  * swwrite: the write function for the drum (just a call to physio)
1141  */
1142 /*ARGSUSED*/
1143 static int
1144 swwrite(dev_t dev, struct uio *uio, int ioflag)
1145 {
1146 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1147 
1148 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1149 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1150 }
1151 
1152 const struct bdevsw swap_bdevsw = {
1153 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
1154 };
1155 
1156 const struct cdevsw swap_cdevsw = {
1157 	nullopen, nullclose, swread, swwrite, noioctl,
1158 	    nostop, notty, nopoll, nommap, nokqfilter
1159 };
1160 
1161 /*
1162  * sw_reg_strategy: handle swap i/o to regular files
1163  */
1164 static void
1165 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1166 {
1167 	struct vnode	*vp;
1168 	struct vndxfer	*vnx;
1169 	daddr_t		nbn;
1170 	caddr_t		addr;
1171 	off_t		byteoff;
1172 	int		s, off, nra, error, sz, resid;
1173 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1174 
1175 	/*
1176 	 * allocate a vndxfer head for this transfer and point it to
1177 	 * our buffer.
1178 	 */
1179 	getvndxfer(vnx);
1180 	vnx->vx_flags = VX_BUSY;
1181 	vnx->vx_error = 0;
1182 	vnx->vx_pending = 0;
1183 	vnx->vx_bp = bp;
1184 	vnx->vx_sdp = sdp;
1185 
1186 	/*
1187 	 * setup for main loop where we read filesystem blocks into
1188 	 * our buffer.
1189 	 */
1190 	error = 0;
1191 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1192 	addr = bp->b_data;		/* current position in buffer */
1193 	byteoff = dbtob((u_int64_t)bn);
1194 
1195 	for (resid = bp->b_resid; resid; resid -= sz) {
1196 		struct vndbuf	*nbp;
1197 
1198 		/*
1199 		 * translate byteoffset into block number.  return values:
1200 		 *   vp = vnode of underlying device
1201 		 *  nbn = new block number (on underlying vnode dev)
1202 		 *  nra = num blocks we can read-ahead (excludes requested
1203 		 *	block)
1204 		 */
1205 		nra = 0;
1206 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1207 				 	&vp, &nbn, &nra);
1208 
1209 		if (error == 0 && nbn == (daddr_t)-1) {
1210 			/*
1211 			 * this used to just set error, but that doesn't
1212 			 * do the right thing.  Instead, it causes random
1213 			 * memory errors.  The panic() should remain until
1214 			 * this condition doesn't destabilize the system.
1215 			 */
1216 #if 1
1217 			panic("sw_reg_strategy: swap to sparse file");
1218 #else
1219 			error = EIO;	/* failure */
1220 #endif
1221 		}
1222 
1223 		/*
1224 		 * punt if there was an error or a hole in the file.
1225 		 * we must wait for any i/o ops we have already started
1226 		 * to finish before returning.
1227 		 *
1228 		 * XXX we could deal with holes here but it would be
1229 		 * a hassle (in the write case).
1230 		 */
1231 		if (error) {
1232 			s = splbio();
1233 			vnx->vx_error = error;	/* pass error up */
1234 			goto out;
1235 		}
1236 
1237 		/*
1238 		 * compute the size ("sz") of this transfer (in bytes).
1239 		 */
1240 		off = byteoff % sdp->swd_bsize;
1241 		sz = (1 + nra) * sdp->swd_bsize - off;
1242 		if (sz > resid)
1243 			sz = resid;
1244 
1245 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1246 			    "vp %p/%p offset 0x%x/0x%x",
1247 			    sdp->swd_vp, vp, byteoff, nbn);
1248 
1249 		/*
1250 		 * now get a buf structure.   note that the vb_buf is
1251 		 * at the front of the nbp structure so that you can
1252 		 * cast pointers between the two structure easily.
1253 		 */
1254 		getvndbuf(nbp);
1255 		BUF_INIT(&nbp->vb_buf);
1256 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1257 		nbp->vb_buf.b_bcount   = sz;
1258 		nbp->vb_buf.b_bufsize  = sz;
1259 		nbp->vb_buf.b_error    = 0;
1260 		nbp->vb_buf.b_data     = addr;
1261 		nbp->vb_buf.b_lblkno   = 0;
1262 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1263 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1264 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1265 		nbp->vb_buf.b_vp       = vp;
1266 		if (vp->v_type == VBLK) {
1267 			nbp->vb_buf.b_dev = vp->v_rdev;
1268 		}
1269 
1270 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1271 
1272 		/*
1273 		 * Just sort by block number
1274 		 */
1275 		s = splbio();
1276 		if (vnx->vx_error != 0) {
1277 			putvndbuf(nbp);
1278 			goto out;
1279 		}
1280 		vnx->vx_pending++;
1281 
1282 		/* sort it in and start I/O if we are not over our limit */
1283 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1284 		sw_reg_start(sdp);
1285 		splx(s);
1286 
1287 		/*
1288 		 * advance to the next I/O
1289 		 */
1290 		byteoff += sz;
1291 		addr += sz;
1292 	}
1293 
1294 	s = splbio();
1295 
1296 out: /* Arrive here at splbio */
1297 	vnx->vx_flags &= ~VX_BUSY;
1298 	if (vnx->vx_pending == 0) {
1299 		if (vnx->vx_error != 0) {
1300 			bp->b_error = vnx->vx_error;
1301 			bp->b_flags |= B_ERROR;
1302 		}
1303 		putvndxfer(vnx);
1304 		biodone(bp);
1305 	}
1306 	splx(s);
1307 }
1308 
1309 /*
1310  * sw_reg_start: start an I/O request on the requested swapdev
1311  *
1312  * => reqs are sorted by b_rawblkno (above)
1313  */
1314 static void
1315 sw_reg_start(struct swapdev *sdp)
1316 {
1317 	struct buf	*bp;
1318 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1319 
1320 	/* recursion control */
1321 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1322 		return;
1323 
1324 	sdp->swd_flags |= SWF_BUSY;
1325 
1326 	while (sdp->swd_active < sdp->swd_maxactive) {
1327 		bp = BUFQ_GET(sdp->swd_tab);
1328 		if (bp == NULL)
1329 			break;
1330 		sdp->swd_active++;
1331 
1332 		UVMHIST_LOG(pdhist,
1333 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1334 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1335 		if ((bp->b_flags & B_READ) == 0)
1336 			V_INCR_NUMOUTPUT(bp->b_vp);
1337 
1338 		VOP_STRATEGY(bp->b_vp, bp);
1339 	}
1340 	sdp->swd_flags &= ~SWF_BUSY;
1341 }
1342 
1343 /*
1344  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1345  *
1346  * => note that we can recover the vndbuf struct by casting the buf ptr
1347  */
1348 static void
1349 sw_reg_iodone(struct buf *bp)
1350 {
1351 	struct vndbuf *vbp = (struct vndbuf *) bp;
1352 	struct vndxfer *vnx = vbp->vb_xfer;
1353 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1354 	struct swapdev	*sdp = vnx->vx_sdp;
1355 	int s, resid, error;
1356 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1357 
1358 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1359 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1360 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1361 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1362 
1363 	/*
1364 	 * protect vbp at splbio and update.
1365 	 */
1366 
1367 	s = splbio();
1368 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1369 	pbp->b_resid -= resid;
1370 	vnx->vx_pending--;
1371 
1372 	if (vbp->vb_buf.b_flags & B_ERROR) {
1373 		/* pass error upward */
1374 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1375 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1376 		vnx->vx_error = error;
1377 	}
1378 
1379 	/*
1380 	 * kill vbp structure
1381 	 */
1382 	putvndbuf(vbp);
1383 
1384 	/*
1385 	 * wrap up this transaction if it has run to completion or, in
1386 	 * case of an error, when all auxiliary buffers have returned.
1387 	 */
1388 	if (vnx->vx_error != 0) {
1389 		/* pass error upward */
1390 		pbp->b_flags |= B_ERROR;
1391 		pbp->b_error = vnx->vx_error;
1392 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1393 			putvndxfer(vnx);
1394 			biodone(pbp);
1395 		}
1396 	} else if (pbp->b_resid == 0) {
1397 		KASSERT(vnx->vx_pending == 0);
1398 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1399 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1400 			    pbp, vnx->vx_error, 0, 0);
1401 			putvndxfer(vnx);
1402 			biodone(pbp);
1403 		}
1404 	}
1405 
1406 	/*
1407 	 * done!   start next swapdev I/O if one is pending
1408 	 */
1409 	sdp->swd_active--;
1410 	sw_reg_start(sdp);
1411 	splx(s);
1412 }
1413 
1414 
1415 /*
1416  * uvm_swap_alloc: allocate space on swap
1417  *
1418  * => allocation is done "round robin" down the priority list, as we
1419  *	allocate in a priority we "rotate" the circle queue.
1420  * => space can be freed with uvm_swap_free
1421  * => we return the page slot number in /dev/drum (0 == invalid slot)
1422  * => we lock uvm.swap_data_lock
1423  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1424  */
1425 int
1426 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1427 {
1428 	struct swapdev *sdp;
1429 	struct swappri *spp;
1430 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1431 
1432 	/*
1433 	 * no swap devices configured yet?   definite failure.
1434 	 */
1435 	if (uvmexp.nswapdev < 1)
1436 		return 0;
1437 
1438 	/*
1439 	 * lock data lock, convert slots into blocks, and enter loop
1440 	 */
1441 	simple_lock(&uvm.swap_data_lock);
1442 
1443 ReTry:	/* XXXMRG */
1444 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1445 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1446 			uint64_t result;
1447 
1448 			/* if it's not enabled, then we can't swap from it */
1449 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1450 				continue;
1451 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1452 				continue;
1453 			result = blist_alloc(sdp->swd_blist, *nslots);
1454 			if (result == BLIST_NONE) {
1455 				continue;
1456 			}
1457 			KASSERT(result < sdp->swd_drumsize);
1458 
1459 			/*
1460 			 * successful allocation!  now rotate the circleq.
1461 			 */
1462 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1463 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1464 			sdp->swd_npginuse += *nslots;
1465 			uvmexp.swpginuse += *nslots;
1466 			simple_unlock(&uvm.swap_data_lock);
1467 			/* done!  return drum slot number */
1468 			UVMHIST_LOG(pdhist,
1469 			    "success!  returning %d slots starting at %d",
1470 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1471 			return (result + sdp->swd_drumoffset);
1472 		}
1473 	}
1474 
1475 	/* XXXMRG: BEGIN HACK */
1476 	if (*nslots > 1 && lessok) {
1477 		*nslots = 1;
1478 		/* XXXMRG: ugh!  blist should support this for us */
1479 		goto ReTry;
1480 	}
1481 	/* XXXMRG: END HACK */
1482 
1483 	simple_unlock(&uvm.swap_data_lock);
1484 	return 0;
1485 }
1486 
1487 boolean_t
1488 uvm_swapisfull(void)
1489 {
1490 	boolean_t rv;
1491 
1492 	simple_lock(&uvm.swap_data_lock);
1493 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1494 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1495 	simple_unlock(&uvm.swap_data_lock);
1496 
1497 	return (rv);
1498 }
1499 
1500 /*
1501  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1502  *
1503  * => we lock uvm.swap_data_lock
1504  */
1505 void
1506 uvm_swap_markbad(int startslot, int nslots)
1507 {
1508 	struct swapdev *sdp;
1509 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1510 
1511 	simple_lock(&uvm.swap_data_lock);
1512 	sdp = swapdrum_getsdp(startslot);
1513 	KASSERT(sdp != NULL);
1514 
1515 	/*
1516 	 * we just keep track of how many pages have been marked bad
1517 	 * in this device, to make everything add up in swap_off().
1518 	 * we assume here that the range of slots will all be within
1519 	 * one swap device.
1520 	 */
1521 
1522 	KASSERT(uvmexp.swpgonly >= nslots);
1523 	uvmexp.swpgonly -= nslots;
1524 	sdp->swd_npgbad += nslots;
1525 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1526 	simple_unlock(&uvm.swap_data_lock);
1527 }
1528 
1529 /*
1530  * uvm_swap_free: free swap slots
1531  *
1532  * => this can be all or part of an allocation made by uvm_swap_alloc
1533  * => we lock uvm.swap_data_lock
1534  */
1535 void
1536 uvm_swap_free(int startslot, int nslots)
1537 {
1538 	struct swapdev *sdp;
1539 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1540 
1541 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1542 	    startslot, 0, 0);
1543 
1544 	/*
1545 	 * ignore attempts to free the "bad" slot.
1546 	 */
1547 
1548 	if (startslot == SWSLOT_BAD) {
1549 		return;
1550 	}
1551 
1552 	/*
1553 	 * convert drum slot offset back to sdp, free the blocks
1554 	 * in the extent, and return.   must hold pri lock to do
1555 	 * lookup and access the extent.
1556 	 */
1557 
1558 	simple_lock(&uvm.swap_data_lock);
1559 	sdp = swapdrum_getsdp(startslot);
1560 	KASSERT(uvmexp.nswapdev >= 1);
1561 	KASSERT(sdp != NULL);
1562 	KASSERT(sdp->swd_npginuse >= nslots);
1563 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1564 	sdp->swd_npginuse -= nslots;
1565 	uvmexp.swpginuse -= nslots;
1566 	simple_unlock(&uvm.swap_data_lock);
1567 }
1568 
1569 /*
1570  * uvm_swap_put: put any number of pages into a contig place on swap
1571  *
1572  * => can be sync or async
1573  */
1574 
1575 int
1576 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1577 {
1578 	int error;
1579 
1580 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1581 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1582 	return error;
1583 }
1584 
1585 /*
1586  * uvm_swap_get: get a single page from swap
1587  *
1588  * => usually a sync op (from fault)
1589  */
1590 
1591 int
1592 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1593 {
1594 	int error;
1595 
1596 	uvmexp.nswget++;
1597 	KASSERT(flags & PGO_SYNCIO);
1598 	if (swslot == SWSLOT_BAD) {
1599 		return EIO;
1600 	}
1601 
1602 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1603 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1604 	if (error == 0) {
1605 
1606 		/*
1607 		 * this page is no longer only in swap.
1608 		 */
1609 
1610 		simple_lock(&uvm.swap_data_lock);
1611 		KASSERT(uvmexp.swpgonly > 0);
1612 		uvmexp.swpgonly--;
1613 		simple_unlock(&uvm.swap_data_lock);
1614 	}
1615 	return error;
1616 }
1617 
1618 /*
1619  * uvm_swap_io: do an i/o operation to swap
1620  */
1621 
1622 static int
1623 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1624 {
1625 	daddr_t startblk;
1626 	struct	buf *bp;
1627 	vaddr_t kva;
1628 	int	error, s, mapinflags;
1629 	boolean_t write, async;
1630 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1631 
1632 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1633 	    startslot, npages, flags, 0);
1634 
1635 	write = (flags & B_READ) == 0;
1636 	async = (flags & B_ASYNC) != 0;
1637 
1638 	/*
1639 	 * convert starting drum slot to block number
1640 	 */
1641 
1642 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1643 
1644 	/*
1645 	 * first, map the pages into the kernel.
1646 	 */
1647 
1648 	mapinflags = !write ?
1649 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1650 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1651 	kva = uvm_pagermapin(pps, npages, mapinflags);
1652 
1653 	/*
1654 	 * now allocate a buf for the i/o.
1655 	 */
1656 
1657 	bp = getiobuf();
1658 
1659 	/*
1660 	 * fill in the bp/sbp.   we currently route our i/o through
1661 	 * /dev/drum's vnode [swapdev_vp].
1662 	 */
1663 
1664 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1665 	bp->b_proc = &proc0;	/* XXX */
1666 	bp->b_vnbufs.le_next = NOLIST;
1667 	bp->b_data = (caddr_t)kva;
1668 	bp->b_blkno = startblk;
1669 	bp->b_vp = swapdev_vp;
1670 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1671 
1672 	/*
1673 	 * bump v_numoutput (counter of number of active outputs).
1674 	 */
1675 
1676 	if (write) {
1677 		s = splbio();
1678 		V_INCR_NUMOUTPUT(swapdev_vp);
1679 		splx(s);
1680 	}
1681 
1682 	/*
1683 	 * for async ops we must set up the iodone handler.
1684 	 */
1685 
1686 	if (async) {
1687 		bp->b_flags |= B_CALL;
1688 		bp->b_iodone = uvm_aio_biodone;
1689 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1690 		if (curproc == uvm.pagedaemon_proc)
1691 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1692 		else
1693 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1694 	} else {
1695 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1696 	}
1697 	UVMHIST_LOG(pdhist,
1698 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1699 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1700 
1701 	/*
1702 	 * now we start the I/O, and if async, return.
1703 	 */
1704 
1705 	VOP_STRATEGY(swapdev_vp, bp);
1706 	if (async)
1707 		return 0;
1708 
1709 	/*
1710 	 * must be sync i/o.   wait for it to finish
1711 	 */
1712 
1713 	error = biowait(bp);
1714 
1715 	/*
1716 	 * kill the pager mapping
1717 	 */
1718 
1719 	uvm_pagermapout(kva, npages);
1720 
1721 	/*
1722 	 * now dispose of the buf and we're done.
1723 	 */
1724 
1725 	s = splbio();
1726 	if (write)
1727 		vwakeup(bp);
1728 	putiobuf(bp);
1729 	splx(s);
1730 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1731 	return (error);
1732 }
1733