xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: uvm_swap.c,v 1.132 2007/12/08 19:29:57 pooka Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.132 2007/12/08 19:29:57 pooka Exp $");
36 
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63 #include <sys/workqueue.h>
64 
65 #include <uvm/uvm.h>
66 
67 #include <miscfs/specfs/specdev.h>
68 
69 /*
70  * uvm_swap.c: manage configuration and i/o to swap space.
71  */
72 
73 /*
74  * swap space is managed in the following way:
75  *
76  * each swap partition or file is described by a "swapdev" structure.
77  * each "swapdev" structure contains a "swapent" structure which contains
78  * information that is passed up to the user (via system calls).
79  *
80  * each swap partition is assigned a "priority" (int) which controls
81  * swap parition usage.
82  *
83  * the system maintains a global data structure describing all swap
84  * partitions/files.   there is a sorted LIST of "swappri" structures
85  * which describe "swapdev"'s at that priority.   this LIST is headed
86  * by the "swap_priority" global var.    each "swappri" contains a
87  * CIRCLEQ of "swapdev" structures at that priority.
88  *
89  * locking:
90  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
91  *    system call and prevents the swap priority list from changing
92  *    while we are in the middle of a system call (e.g. SWAP_STATS).
93  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
94  *    structures including the priority list, the swapdev structures,
95  *    and the swapmap arena.
96  *
97  * each swap device has the following info:
98  *  - swap device in use (could be disabled, preventing future use)
99  *  - swap enabled (allows new allocations on swap)
100  *  - map info in /dev/drum
101  *  - vnode pointer
102  * for swap files only:
103  *  - block size
104  *  - max byte count in buffer
105  *  - buffer
106  *
107  * userland controls and configures swap with the swapctl(2) system call.
108  * the sys_swapctl performs the following operations:
109  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
110  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
111  *	(passed in via "arg") of a size passed in via "misc" ... we load
112  *	the current swap config into the array. The actual work is done
113  *	in the uvm_swap_stats(9) function.
114  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115  *	priority in "misc", start swapping on it.
116  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
118  *	"misc")
119  */
120 
121 /*
122  * swapdev: describes a single swap partition/file
123  *
124  * note the following should be true:
125  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
126  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
127  */
128 struct swapdev {
129 	struct oswapent swd_ose;
130 #define	swd_dev		swd_ose.ose_dev		/* device id */
131 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
132 #define	swd_priority	swd_ose.ose_priority	/* our priority */
133 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
134 	char			*swd_path;	/* saved pathname of device */
135 	int			swd_pathlen;	/* length of pathname */
136 	int			swd_npages;	/* #pages we can use */
137 	int			swd_npginuse;	/* #pages in use */
138 	int			swd_npgbad;	/* #pages bad */
139 	int			swd_drumoffset;	/* page0 offset in drum */
140 	int			swd_drumsize;	/* #pages in drum */
141 	blist_t			swd_blist;	/* blist for this swapdev */
142 	struct vnode		*swd_vp;	/* backing vnode */
143 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
144 
145 	int			swd_bsize;	/* blocksize (bytes) */
146 	int			swd_maxactive;	/* max active i/o reqs */
147 	struct bufq_state	*swd_tab;	/* buffer list */
148 	int			swd_active;	/* number of active buffers */
149 };
150 
151 /*
152  * swap device priority entry; the list is kept sorted on `spi_priority'.
153  */
154 struct swappri {
155 	int			spi_priority;     /* priority */
156 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
157 	/* circleq of swapdevs at this priority */
158 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
159 };
160 
161 /*
162  * The following two structures are used to keep track of data transfers
163  * on swap devices associated with regular files.
164  * NOTE: this code is more or less a copy of vnd.c; we use the same
165  * structure names here to ease porting..
166  */
167 struct vndxfer {
168 	struct buf	*vx_bp;		/* Pointer to parent buffer */
169 	struct swapdev	*vx_sdp;
170 	int		vx_error;
171 	int		vx_pending;	/* # of pending aux buffers */
172 	int		vx_flags;
173 #define VX_BUSY		1
174 #define VX_DEAD		2
175 };
176 
177 struct vndbuf {
178 	struct buf	vb_buf;
179 	struct vndxfer	*vb_xfer;
180 };
181 
182 
183 /*
184  * We keep a of pool vndbuf's and vndxfer structures.
185  */
186 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
187     IPL_BIO);
188 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
189     IPL_BIO);
190 
191 #define	getvndxfer(vnx)	do {						\
192 	int sp = splbio();						\
193 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
194 	splx(sp);							\
195 } while (/*CONSTCOND*/ 0)
196 
197 #define putvndxfer(vnx) {						\
198 	pool_put(&vndxfer_pool, (void *)(vnx));				\
199 }
200 
201 #define	getvndbuf(vbp)	do {						\
202 	int sp = splbio();						\
203 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
204 	splx(sp);							\
205 } while (/*CONSTCOND*/ 0)
206 
207 #define putvndbuf(vbp) {						\
208 	pool_put(&vndbuf_pool, (void *)(vbp));				\
209 }
210 
211 /*
212  * local variables
213  */
214 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
215 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
216 
217 /* list of all active swap devices [by priority] */
218 LIST_HEAD(swap_priority, swappri);
219 static struct swap_priority swap_priority;
220 
221 /* locks */
222 static krwlock_t swap_syscall_lock;
223 
224 /* workqueue and use counter for swap to regular files */
225 static int sw_reg_count = 0;
226 static struct workqueue *sw_reg_workqueue;
227 
228 /*
229  * prototypes
230  */
231 static struct swapdev	*swapdrum_getsdp(int);
232 
233 static struct swapdev	*swaplist_find(struct vnode *, bool);
234 static void		 swaplist_insert(struct swapdev *,
235 					 struct swappri *, int);
236 static void		 swaplist_trim(void);
237 
238 static int swap_on(struct lwp *, struct swapdev *);
239 static int swap_off(struct lwp *, struct swapdev *);
240 
241 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
242 
243 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
244 static void sw_reg_biodone(struct buf *);
245 static void sw_reg_iodone(struct work *wk, void *dummy);
246 static void sw_reg_start(struct swapdev *);
247 
248 static int uvm_swap_io(struct vm_page **, int, int, int);
249 
250 /*
251  * uvm_swap_init: init the swap system data structures and locks
252  *
253  * => called at boot time from init_main.c after the filesystems
254  *	are brought up (which happens after uvm_init())
255  */
256 void
257 uvm_swap_init(void)
258 {
259 	UVMHIST_FUNC("uvm_swap_init");
260 
261 	UVMHIST_CALLED(pdhist);
262 	/*
263 	 * first, init the swap list, its counter, and its lock.
264 	 * then get a handle on the vnode for /dev/drum by using
265 	 * the its dev_t number ("swapdev", from MD conf.c).
266 	 */
267 
268 	LIST_INIT(&swap_priority);
269 	uvmexp.nswapdev = 0;
270 	rw_init(&swap_syscall_lock);
271 	cv_init(&uvm.scheduler_cv, "schedule");
272 	/* XXXSMP should be adaptive, but needs vmobjlock replaced */
273 	mutex_init(&uvm_swap_data_lock, MUTEX_SPIN, IPL_NONE);
274 
275 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
276 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
277 
278 	if (bdevvp(swapdev, &swapdev_vp))
279 		panic("uvm_swap_init: can't get vnode for swap device");
280 
281 	/*
282 	 * create swap block resource map to map /dev/drum.   the range
283 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
284 	 * that block 0 is reserved (used to indicate an allocation
285 	 * failure, or no allocation).
286 	 */
287 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 	    VM_NOSLEEP, IPL_NONE);
289 	if (swapmap == 0)
290 		panic("uvm_swap_init: extent_create failed");
291 
292 	/*
293 	 * done!
294 	 */
295 	uvm.swap_running = true;
296 	uvm.swapout_enabled = 1;
297 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
298 
299         sysctl_createv(NULL, 0, NULL, NULL,
300             CTLFLAG_READWRITE,
301             CTLTYPE_INT, "swapout",
302             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
303             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
304 }
305 
306 /*
307  * swaplist functions: functions that operate on the list of swap
308  * devices on the system.
309  */
310 
311 /*
312  * swaplist_insert: insert swap device "sdp" into the global list
313  *
314  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
315  * => caller must provide a newly malloc'd swappri structure (we will
316  *	FREE it if we don't need it... this it to prevent malloc blocking
317  *	here while adding swap)
318  */
319 static void
320 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
321 {
322 	struct swappri *spp, *pspp;
323 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
324 
325 	/*
326 	 * find entry at or after which to insert the new device.
327 	 */
328 	pspp = NULL;
329 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
330 		if (priority <= spp->spi_priority)
331 			break;
332 		pspp = spp;
333 	}
334 
335 	/*
336 	 * new priority?
337 	 */
338 	if (spp == NULL || spp->spi_priority != priority) {
339 		spp = newspp;  /* use newspp! */
340 		UVMHIST_LOG(pdhist, "created new swappri = %d",
341 			    priority, 0, 0, 0);
342 
343 		spp->spi_priority = priority;
344 		CIRCLEQ_INIT(&spp->spi_swapdev);
345 
346 		if (pspp)
347 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
348 		else
349 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
350 	} else {
351 	  	/* we don't need a new priority structure, free it */
352 		FREE(newspp, M_VMSWAP);
353 	}
354 
355 	/*
356 	 * priority found (or created).   now insert on the priority's
357 	 * circleq list and bump the total number of swapdevs.
358 	 */
359 	sdp->swd_priority = priority;
360 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
361 	uvmexp.nswapdev++;
362 }
363 
364 /*
365  * swaplist_find: find and optionally remove a swap device from the
366  *	global list.
367  *
368  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
369  * => we return the swapdev we found (and removed)
370  */
371 static struct swapdev *
372 swaplist_find(struct vnode *vp, bool remove)
373 {
374 	struct swapdev *sdp;
375 	struct swappri *spp;
376 
377 	/*
378 	 * search the lists for the requested vp
379 	 */
380 
381 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
382 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
383 			if (sdp->swd_vp == vp) {
384 				if (remove) {
385 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
386 					    sdp, swd_next);
387 					uvmexp.nswapdev--;
388 				}
389 				return(sdp);
390 			}
391 		}
392 	}
393 	return (NULL);
394 }
395 
396 /*
397  * swaplist_trim: scan priority list for empty priority entries and kill
398  *	them.
399  *
400  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
401  */
402 static void
403 swaplist_trim(void)
404 {
405 	struct swappri *spp, *nextspp;
406 
407 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
408 		nextspp = LIST_NEXT(spp, spi_swappri);
409 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
410 		    (void *)&spp->spi_swapdev)
411 			continue;
412 		LIST_REMOVE(spp, spi_swappri);
413 		free(spp, M_VMSWAP);
414 	}
415 }
416 
417 /*
418  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
419  *	to the "swapdev" that maps that section of the drum.
420  *
421  * => each swapdev takes one big contig chunk of the drum
422  * => caller must hold uvm_swap_data_lock
423  */
424 static struct swapdev *
425 swapdrum_getsdp(int pgno)
426 {
427 	struct swapdev *sdp;
428 	struct swappri *spp;
429 
430 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
431 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
432 			if (sdp->swd_flags & SWF_FAKE)
433 				continue;
434 			if (pgno >= sdp->swd_drumoffset &&
435 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
436 				return sdp;
437 			}
438 		}
439 	}
440 	return NULL;
441 }
442 
443 
444 /*
445  * sys_swapctl: main entry point for swapctl(2) system call
446  * 	[with two helper functions: swap_on and swap_off]
447  */
448 int
449 sys_swapctl(struct lwp *l, void *v, register_t *retval)
450 {
451 	struct sys_swapctl_args /* {
452 		syscallarg(int) cmd;
453 		syscallarg(void *) arg;
454 		syscallarg(int) misc;
455 	} */ *uap = (struct sys_swapctl_args *)v;
456 	struct vnode *vp;
457 	struct nameidata nd;
458 	struct swappri *spp;
459 	struct swapdev *sdp;
460 	struct swapent *sep;
461 #define SWAP_PATH_MAX (PATH_MAX + 1)
462 	char	*userpath;
463 	size_t	len;
464 	int	error, misc;
465 	int	priority;
466 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
467 
468 	misc = SCARG(uap, misc);
469 
470 	/*
471 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
472 	 */
473 	rw_enter(&swap_syscall_lock, RW_WRITER);
474 
475 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
476 	/*
477 	 * we handle the non-priv NSWAP and STATS request first.
478 	 *
479 	 * SWAP_NSWAP: return number of config'd swap devices
480 	 * [can also be obtained with uvmexp sysctl]
481 	 */
482 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
483 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
484 		    0, 0, 0);
485 		*retval = uvmexp.nswapdev;
486 		error = 0;
487 		goto out;
488 	}
489 
490 	/*
491 	 * SWAP_STATS: get stats on current # of configured swap devs
492 	 *
493 	 * note that the swap_priority list can't change as long
494 	 * as we are holding the swap_syscall_lock.  we don't want
495 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
496 	 * copyout() and we don't want to be holding that lock then!
497 	 */
498 	if (SCARG(uap, cmd) == SWAP_STATS
499 #if defined(COMPAT_13)
500 	    || SCARG(uap, cmd) == SWAP_OSTATS
501 #endif
502 	    ) {
503 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
504 			misc = uvmexp.nswapdev;
505 #if defined(COMPAT_13)
506 		if (SCARG(uap, cmd) == SWAP_OSTATS)
507 			len = sizeof(struct oswapent) * misc;
508 		else
509 #endif
510 			len = sizeof(struct swapent) * misc;
511 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
512 
513 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
514 		error = copyout(sep, SCARG(uap, arg), len);
515 
516 		free(sep, M_TEMP);
517 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
518 		goto out;
519 	}
520 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
521 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
522 
523 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
524 		goto out;
525 	}
526 
527 	/*
528 	 * all other requests require superuser privs.   verify.
529 	 */
530 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
531 	    0, NULL, NULL, NULL)))
532 		goto out;
533 
534 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
535 		/* drop the current dump device */
536 		dumpdev = NODEV;
537 		cpu_dumpconf();
538 		goto out;
539 	}
540 
541 	/*
542 	 * at this point we expect a path name in arg.   we will
543 	 * use namei() to gain a vnode reference (vref), and lock
544 	 * the vnode (VOP_LOCK).
545 	 *
546 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
547 	 * miniroot)
548 	 */
549 	if (SCARG(uap, arg) == NULL) {
550 		vp = rootvp;		/* miniroot */
551 		if (vget(vp, LK_EXCLUSIVE)) {
552 			error = EBUSY;
553 			goto out;
554 		}
555 		if (SCARG(uap, cmd) == SWAP_ON &&
556 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
557 			panic("swapctl: miniroot copy failed");
558 	} else {
559 		int	space;
560 		char	*where;
561 
562 		if (SCARG(uap, cmd) == SWAP_ON) {
563 			if ((error = copyinstr(SCARG(uap, arg), userpath,
564 			    SWAP_PATH_MAX, &len)))
565 				goto out;
566 			space = UIO_SYSSPACE;
567 			where = userpath;
568 		} else {
569 			space = UIO_USERSPACE;
570 			where = (char *)SCARG(uap, arg);
571 		}
572 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
573 		    space, where);
574 		if ((error = namei(&nd)))
575 			goto out;
576 		vp = nd.ni_vp;
577 	}
578 	/* note: "vp" is referenced and locked */
579 
580 	error = 0;		/* assume no error */
581 	switch(SCARG(uap, cmd)) {
582 
583 	case SWAP_DUMPDEV:
584 		if (vp->v_type != VBLK) {
585 			error = ENOTBLK;
586 			break;
587 		}
588 		if (bdevsw_lookup(vp->v_rdev))
589 			dumpdev = vp->v_rdev;
590 		else
591 			dumpdev = NODEV;
592 		cpu_dumpconf();
593 		break;
594 
595 	case SWAP_CTL:
596 		/*
597 		 * get new priority, remove old entry (if any) and then
598 		 * reinsert it in the correct place.  finally, prune out
599 		 * any empty priority structures.
600 		 */
601 		priority = SCARG(uap, misc);
602 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
603 		mutex_enter(&uvm_swap_data_lock);
604 		if ((sdp = swaplist_find(vp, true)) == NULL) {
605 			error = ENOENT;
606 		} else {
607 			swaplist_insert(sdp, spp, priority);
608 			swaplist_trim();
609 		}
610 		mutex_exit(&uvm_swap_data_lock);
611 		if (error)
612 			free(spp, M_VMSWAP);
613 		break;
614 
615 	case SWAP_ON:
616 
617 		/*
618 		 * check for duplicates.   if none found, then insert a
619 		 * dummy entry on the list to prevent someone else from
620 		 * trying to enable this device while we are working on
621 		 * it.
622 		 */
623 
624 		priority = SCARG(uap, misc);
625 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
626 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
627 		memset(sdp, 0, sizeof(*sdp));
628 		sdp->swd_flags = SWF_FAKE;
629 		sdp->swd_vp = vp;
630 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
631 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
632 		mutex_enter(&uvm_swap_data_lock);
633 		if (swaplist_find(vp, false) != NULL) {
634 			error = EBUSY;
635 			mutex_exit(&uvm_swap_data_lock);
636 			bufq_free(sdp->swd_tab);
637 			free(sdp, M_VMSWAP);
638 			free(spp, M_VMSWAP);
639 			break;
640 		}
641 		swaplist_insert(sdp, spp, priority);
642 		mutex_exit(&uvm_swap_data_lock);
643 
644 		sdp->swd_pathlen = len;
645 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
646 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
647 			panic("swapctl: copystr");
648 
649 		/*
650 		 * we've now got a FAKE placeholder in the swap list.
651 		 * now attempt to enable swap on it.  if we fail, undo
652 		 * what we've done and kill the fake entry we just inserted.
653 		 * if swap_on is a success, it will clear the SWF_FAKE flag
654 		 */
655 
656 		if ((error = swap_on(l, sdp)) != 0) {
657 			mutex_enter(&uvm_swap_data_lock);
658 			(void) swaplist_find(vp, true);  /* kill fake entry */
659 			swaplist_trim();
660 			mutex_exit(&uvm_swap_data_lock);
661 			bufq_free(sdp->swd_tab);
662 			free(sdp->swd_path, M_VMSWAP);
663 			free(sdp, M_VMSWAP);
664 			break;
665 		}
666 		break;
667 
668 	case SWAP_OFF:
669 		mutex_enter(&uvm_swap_data_lock);
670 		if ((sdp = swaplist_find(vp, false)) == NULL) {
671 			mutex_exit(&uvm_swap_data_lock);
672 			error = ENXIO;
673 			break;
674 		}
675 
676 		/*
677 		 * If a device isn't in use or enabled, we
678 		 * can't stop swapping from it (again).
679 		 */
680 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
681 			mutex_exit(&uvm_swap_data_lock);
682 			error = EBUSY;
683 			break;
684 		}
685 
686 		/*
687 		 * do the real work.
688 		 */
689 		error = swap_off(l, sdp);
690 		break;
691 
692 	default:
693 		error = EINVAL;
694 	}
695 
696 	/*
697 	 * done!  release the ref gained by namei() and unlock.
698 	 */
699 	vput(vp);
700 
701 out:
702 	free(userpath, M_TEMP);
703 	rw_exit(&swap_syscall_lock);
704 
705 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
706 	return (error);
707 }
708 
709 /*
710  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
711  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
712  * emulation to use it directly without going through sys_swapctl().
713  * The problem with using sys_swapctl() there is that it involves
714  * copying the swapent array to the stackgap, and this array's size
715  * is not known at build time. Hence it would not be possible to
716  * ensure it would fit in the stackgap in any case.
717  */
718 void
719 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
720 {
721 
722 	rw_enter(&swap_syscall_lock, RW_READER);
723 	uvm_swap_stats_locked(cmd, sep, sec, retval);
724 	rw_exit(&swap_syscall_lock);
725 }
726 
727 static void
728 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
729 {
730 	struct swappri *spp;
731 	struct swapdev *sdp;
732 	int count = 0;
733 
734 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
735 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
736 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
737 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
738 		  	/*
739 			 * backwards compatibility for system call.
740 			 * note that we use 'struct oswapent' as an
741 			 * overlay into both 'struct swapdev' and
742 			 * the userland 'struct swapent', as we
743 			 * want to retain backwards compatibility
744 			 * with NetBSD 1.3.
745 			 */
746 			sdp->swd_ose.ose_inuse =
747 			    btodb((uint64_t)sdp->swd_npginuse <<
748 			    PAGE_SHIFT);
749 			(void)memcpy(sep, &sdp->swd_ose,
750 			    sizeof(struct oswapent));
751 
752 			/* now copy out the path if necessary */
753 #if !defined(COMPAT_13)
754 			(void) cmd;
755 #endif
756 #if defined(COMPAT_13)
757 			if (cmd == SWAP_STATS)
758 #endif
759 				(void)memcpy(&sep->se_path, sdp->swd_path,
760 				    sdp->swd_pathlen);
761 
762 			count++;
763 #if defined(COMPAT_13)
764 			if (cmd == SWAP_OSTATS)
765 				sep = (struct swapent *)
766 				    ((struct oswapent *)sep + 1);
767 			else
768 #endif
769 				sep++;
770 		}
771 	}
772 
773 	*retval = count;
774 	return;
775 }
776 
777 /*
778  * swap_on: attempt to enable a swapdev for swapping.   note that the
779  *	swapdev is already on the global list, but disabled (marked
780  *	SWF_FAKE).
781  *
782  * => we avoid the start of the disk (to protect disk labels)
783  * => we also avoid the miniroot, if we are swapping to root.
784  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
785  *	if needed.
786  */
787 static int
788 swap_on(struct lwp *l, struct swapdev *sdp)
789 {
790 	struct vnode *vp;
791 	int error, npages, nblocks, size;
792 	long addr;
793 	u_long result;
794 	struct vattr va;
795 #ifdef NFS
796 	extern int (**nfsv2_vnodeop_p)(void *);
797 #endif /* NFS */
798 	const struct bdevsw *bdev;
799 	dev_t dev;
800 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
801 
802 	/*
803 	 * we want to enable swapping on sdp.   the swd_vp contains
804 	 * the vnode we want (locked and ref'd), and the swd_dev
805 	 * contains the dev_t of the file, if it a block device.
806 	 */
807 
808 	vp = sdp->swd_vp;
809 	dev = sdp->swd_dev;
810 
811 	/*
812 	 * open the swap file (mostly useful for block device files to
813 	 * let device driver know what is up).
814 	 *
815 	 * we skip the open/close for root on swap because the root
816 	 * has already been opened when root was mounted (mountroot).
817 	 */
818 	if (vp != rootvp) {
819 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
820 			return (error);
821 	}
822 
823 	/* XXX this only works for block devices */
824 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
825 
826 	/*
827 	 * we now need to determine the size of the swap area.   for
828 	 * block specials we can call the d_psize function.
829 	 * for normal files, we must stat [get attrs].
830 	 *
831 	 * we put the result in nblks.
832 	 * for normal files, we also want the filesystem block size
833 	 * (which we get with statfs).
834 	 */
835 	switch (vp->v_type) {
836 	case VBLK:
837 		bdev = bdevsw_lookup(dev);
838 		if (bdev == NULL || bdev->d_psize == NULL ||
839 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
840 			error = ENXIO;
841 			goto bad;
842 		}
843 		break;
844 
845 	case VREG:
846 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
847 			goto bad;
848 		nblocks = (int)btodb(va.va_size);
849 		if ((error =
850 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
851 			goto bad;
852 
853 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
854 		/*
855 		 * limit the max # of outstanding I/O requests we issue
856 		 * at any one time.   take it easy on NFS servers.
857 		 */
858 #ifdef NFS
859 		if (vp->v_op == nfsv2_vnodeop_p)
860 			sdp->swd_maxactive = 2; /* XXX */
861 		else
862 #endif /* NFS */
863 			sdp->swd_maxactive = 8; /* XXX */
864 		break;
865 
866 	default:
867 		error = ENXIO;
868 		goto bad;
869 	}
870 
871 	/*
872 	 * save nblocks in a safe place and convert to pages.
873 	 */
874 
875 	sdp->swd_ose.ose_nblks = nblocks;
876 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
877 
878 	/*
879 	 * for block special files, we want to make sure that leave
880 	 * the disklabel and bootblocks alone, so we arrange to skip
881 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
882 	 * note that because of this the "size" can be less than the
883 	 * actual number of blocks on the device.
884 	 */
885 	if (vp->v_type == VBLK) {
886 		/* we use pages 1 to (size - 1) [inclusive] */
887 		size = npages - 1;
888 		addr = 1;
889 	} else {
890 		/* we use pages 0 to (size - 1) [inclusive] */
891 		size = npages;
892 		addr = 0;
893 	}
894 
895 	/*
896 	 * make sure we have enough blocks for a reasonable sized swap
897 	 * area.   we want at least one page.
898 	 */
899 
900 	if (size < 1) {
901 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
902 		error = EINVAL;
903 		goto bad;
904 	}
905 
906 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
907 
908 	/*
909 	 * now we need to allocate an extent to manage this swap device
910 	 */
911 
912 	sdp->swd_blist = blist_create(npages);
913 	/* mark all expect the `saved' region free. */
914 	blist_free(sdp->swd_blist, addr, size);
915 
916 	/*
917 	 * if the vnode we are swapping to is the root vnode
918 	 * (i.e. we are swapping to the miniroot) then we want
919 	 * to make sure we don't overwrite it.   do a statfs to
920 	 * find its size and skip over it.
921 	 */
922 	if (vp == rootvp) {
923 		struct mount *mp;
924 		struct statvfs *sp;
925 		int rootblocks, rootpages;
926 
927 		mp = rootvnode->v_mount;
928 		sp = &mp->mnt_stat;
929 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
930 		/*
931 		 * XXX: sp->f_blocks isn't the total number of
932 		 * blocks in the filesystem, it's the number of
933 		 * data blocks.  so, our rootblocks almost
934 		 * definitely underestimates the total size
935 		 * of the filesystem - how badly depends on the
936 		 * details of the filesystem type.  there isn't
937 		 * an obvious way to deal with this cleanly
938 		 * and perfectly, so for now we just pad our
939 		 * rootblocks estimate with an extra 5 percent.
940 		 */
941 		rootblocks += (rootblocks >> 5) +
942 			(rootblocks >> 6) +
943 			(rootblocks >> 7);
944 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
945 		if (rootpages > size)
946 			panic("swap_on: miniroot larger than swap?");
947 
948 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
949 			panic("swap_on: unable to preserve miniroot");
950 		}
951 
952 		size -= rootpages;
953 		printf("Preserved %d pages of miniroot ", rootpages);
954 		printf("leaving %d pages of swap\n", size);
955 	}
956 
957 	/*
958 	 * add a ref to vp to reflect usage as a swap device.
959 	 */
960 	vref(vp);
961 
962 	/*
963 	 * now add the new swapdev to the drum and enable.
964 	 */
965 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
966 	if (result == 0)
967 		panic("swapdrum_add");
968 	/*
969 	 * If this is the first regular swap create the workqueue.
970 	 * => Protected by swap_syscall_lock.
971 	 */
972 	if (vp->v_type != VBLK) {
973 		if (sw_reg_count++ == 0) {
974 			KASSERT(sw_reg_workqueue == NULL);
975 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
976 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
977 				panic("swap_add: workqueue_create failed");
978 		}
979 	}
980 
981 	sdp->swd_drumoffset = (int)result;
982 	sdp->swd_drumsize = npages;
983 	sdp->swd_npages = size;
984 	mutex_enter(&uvm_swap_data_lock);
985 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
986 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
987 	uvmexp.swpages += size;
988 	uvmexp.swpgavail += size;
989 	mutex_exit(&uvm_swap_data_lock);
990 	return (0);
991 
992 	/*
993 	 * failure: clean up and return error.
994 	 */
995 
996 bad:
997 	if (sdp->swd_blist) {
998 		blist_destroy(sdp->swd_blist);
999 	}
1000 	if (vp != rootvp) {
1001 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1002 	}
1003 	return (error);
1004 }
1005 
1006 /*
1007  * swap_off: stop swapping on swapdev
1008  *
1009  * => swap data should be locked, we will unlock.
1010  */
1011 static int
1012 swap_off(struct lwp *l, struct swapdev *sdp)
1013 {
1014 	int npages = sdp->swd_npages;
1015 	int error = 0;
1016 
1017 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1018 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1019 
1020 	/* disable the swap area being removed */
1021 	sdp->swd_flags &= ~SWF_ENABLE;
1022 	uvmexp.swpgavail -= npages;
1023 	mutex_exit(&uvm_swap_data_lock);
1024 
1025 	/*
1026 	 * the idea is to find all the pages that are paged out to this
1027 	 * device, and page them all in.  in uvm, swap-backed pageable
1028 	 * memory can take two forms: aobjs and anons.  call the
1029 	 * swapoff hook for each subsystem to bring in pages.
1030 	 */
1031 
1032 	if (uao_swap_off(sdp->swd_drumoffset,
1033 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1034 	    amap_swap_off(sdp->swd_drumoffset,
1035 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1036 		error = ENOMEM;
1037 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1038 		error = EBUSY;
1039 	}
1040 
1041 	if (error) {
1042 		mutex_enter(&uvm_swap_data_lock);
1043 		sdp->swd_flags |= SWF_ENABLE;
1044 		uvmexp.swpgavail += npages;
1045 		mutex_exit(&uvm_swap_data_lock);
1046 
1047 		return error;
1048 	}
1049 
1050 	/*
1051 	 * If this is the last regular swap destroy the workqueue.
1052 	 * => Protected by swap_syscall_lock.
1053 	 */
1054 	if (sdp->swd_vp->v_type != VBLK) {
1055 		KASSERT(sw_reg_count > 0);
1056 		KASSERT(sw_reg_workqueue != NULL);
1057 		if (--sw_reg_count == 0) {
1058 			workqueue_destroy(sw_reg_workqueue);
1059 			sw_reg_workqueue = NULL;
1060 		}
1061 	}
1062 
1063 	/*
1064 	 * done with the vnode.
1065 	 * drop our ref on the vnode before calling VOP_CLOSE()
1066 	 * so that spec_close() can tell if this is the last close.
1067 	 */
1068 	vrele(sdp->swd_vp);
1069 	if (sdp->swd_vp != rootvp) {
1070 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1071 	}
1072 
1073 	mutex_enter(&uvm_swap_data_lock);
1074 	uvmexp.swpages -= npages;
1075 	uvmexp.swpginuse -= sdp->swd_npgbad;
1076 
1077 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1078 		panic("swap_off: swapdev not in list");
1079 	swaplist_trim();
1080 	mutex_exit(&uvm_swap_data_lock);
1081 
1082 	/*
1083 	 * free all resources!
1084 	 */
1085 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1086 	blist_destroy(sdp->swd_blist);
1087 	bufq_free(sdp->swd_tab);
1088 	free(sdp, M_VMSWAP);
1089 	return (0);
1090 }
1091 
1092 /*
1093  * /dev/drum interface and i/o functions
1094  */
1095 
1096 /*
1097  * swstrategy: perform I/O on the drum
1098  *
1099  * => we must map the i/o request from the drum to the correct swapdev.
1100  */
1101 static void
1102 swstrategy(struct buf *bp)
1103 {
1104 	struct swapdev *sdp;
1105 	struct vnode *vp;
1106 	int s, pageno, bn;
1107 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1108 
1109 	/*
1110 	 * convert block number to swapdev.   note that swapdev can't
1111 	 * be yanked out from under us because we are holding resources
1112 	 * in it (i.e. the blocks we are doing I/O on).
1113 	 */
1114 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1115 	mutex_enter(&uvm_swap_data_lock);
1116 	sdp = swapdrum_getsdp(pageno);
1117 	mutex_exit(&uvm_swap_data_lock);
1118 	if (sdp == NULL) {
1119 		bp->b_error = EINVAL;
1120 		biodone(bp);
1121 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1122 		return;
1123 	}
1124 
1125 	/*
1126 	 * convert drum page number to block number on this swapdev.
1127 	 */
1128 
1129 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1130 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1131 
1132 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1133 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1134 		sdp->swd_drumoffset, bn, bp->b_bcount);
1135 
1136 	/*
1137 	 * for block devices we finish up here.
1138 	 * for regular files we have to do more work which we delegate
1139 	 * to sw_reg_strategy().
1140 	 */
1141 
1142 	switch (sdp->swd_vp->v_type) {
1143 	default:
1144 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1145 
1146 	case VBLK:
1147 
1148 		/*
1149 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1150 		 * on the swapdev (sdp).
1151 		 */
1152 		s = splbio();
1153 		bp->b_blkno = bn;		/* swapdev block number */
1154 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1155 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1156 
1157 		/*
1158 		 * if we are doing a write, we have to redirect the i/o on
1159 		 * drum's v_numoutput counter to the swapdevs.
1160 		 */
1161 		if ((bp->b_flags & B_READ) == 0) {
1162 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1163 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
1164 		}
1165 
1166 		/*
1167 		 * finally plug in swapdev vnode and start I/O
1168 		 */
1169 		bp->b_vp = vp;
1170 		splx(s);
1171 		VOP_STRATEGY(vp, bp);
1172 		return;
1173 
1174 	case VREG:
1175 		/*
1176 		 * delegate to sw_reg_strategy function.
1177 		 */
1178 		sw_reg_strategy(sdp, bp, bn);
1179 		return;
1180 	}
1181 	/* NOTREACHED */
1182 }
1183 
1184 /*
1185  * swread: the read function for the drum (just a call to physio)
1186  */
1187 /*ARGSUSED*/
1188 static int
1189 swread(dev_t dev, struct uio *uio, int ioflag)
1190 {
1191 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1192 
1193 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1194 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1195 }
1196 
1197 /*
1198  * swwrite: the write function for the drum (just a call to physio)
1199  */
1200 /*ARGSUSED*/
1201 static int
1202 swwrite(dev_t dev, struct uio *uio, int ioflag)
1203 {
1204 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1205 
1206 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1207 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1208 }
1209 
1210 const struct bdevsw swap_bdevsw = {
1211 	noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1212 };
1213 
1214 const struct cdevsw swap_cdevsw = {
1215 	nullopen, nullclose, swread, swwrite, noioctl,
1216 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1217 };
1218 
1219 /*
1220  * sw_reg_strategy: handle swap i/o to regular files
1221  */
1222 static void
1223 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1224 {
1225 	struct vnode	*vp;
1226 	struct vndxfer	*vnx;
1227 	daddr_t		nbn;
1228 	char 		*addr;
1229 	off_t		byteoff;
1230 	int		s, off, nra, error, sz, resid;
1231 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1232 
1233 	/*
1234 	 * allocate a vndxfer head for this transfer and point it to
1235 	 * our buffer.
1236 	 */
1237 	getvndxfer(vnx);
1238 	vnx->vx_flags = VX_BUSY;
1239 	vnx->vx_error = 0;
1240 	vnx->vx_pending = 0;
1241 	vnx->vx_bp = bp;
1242 	vnx->vx_sdp = sdp;
1243 
1244 	/*
1245 	 * setup for main loop where we read filesystem blocks into
1246 	 * our buffer.
1247 	 */
1248 	error = 0;
1249 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1250 	addr = bp->b_data;		/* current position in buffer */
1251 	byteoff = dbtob((uint64_t)bn);
1252 
1253 	for (resid = bp->b_resid; resid; resid -= sz) {
1254 		struct vndbuf	*nbp;
1255 
1256 		/*
1257 		 * translate byteoffset into block number.  return values:
1258 		 *   vp = vnode of underlying device
1259 		 *  nbn = new block number (on underlying vnode dev)
1260 		 *  nra = num blocks we can read-ahead (excludes requested
1261 		 *	block)
1262 		 */
1263 		nra = 0;
1264 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1265 				 	&vp, &nbn, &nra);
1266 
1267 		if (error == 0 && nbn == (daddr_t)-1) {
1268 			/*
1269 			 * this used to just set error, but that doesn't
1270 			 * do the right thing.  Instead, it causes random
1271 			 * memory errors.  The panic() should remain until
1272 			 * this condition doesn't destabilize the system.
1273 			 */
1274 #if 1
1275 			panic("sw_reg_strategy: swap to sparse file");
1276 #else
1277 			error = EIO;	/* failure */
1278 #endif
1279 		}
1280 
1281 		/*
1282 		 * punt if there was an error or a hole in the file.
1283 		 * we must wait for any i/o ops we have already started
1284 		 * to finish before returning.
1285 		 *
1286 		 * XXX we could deal with holes here but it would be
1287 		 * a hassle (in the write case).
1288 		 */
1289 		if (error) {
1290 			s = splbio();
1291 			vnx->vx_error = error;	/* pass error up */
1292 			goto out;
1293 		}
1294 
1295 		/*
1296 		 * compute the size ("sz") of this transfer (in bytes).
1297 		 */
1298 		off = byteoff % sdp->swd_bsize;
1299 		sz = (1 + nra) * sdp->swd_bsize - off;
1300 		if (sz > resid)
1301 			sz = resid;
1302 
1303 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1304 			    "vp %p/%p offset 0x%x/0x%x",
1305 			    sdp->swd_vp, vp, byteoff, nbn);
1306 
1307 		/*
1308 		 * now get a buf structure.   note that the vb_buf is
1309 		 * at the front of the nbp structure so that you can
1310 		 * cast pointers between the two structure easily.
1311 		 */
1312 		getvndbuf(nbp);
1313 		BUF_INIT(&nbp->vb_buf);
1314 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1315 		nbp->vb_buf.b_bcount   = sz;
1316 		nbp->vb_buf.b_bufsize  = sz;
1317 		nbp->vb_buf.b_error    = 0;
1318 		nbp->vb_buf.b_data     = addr;
1319 		nbp->vb_buf.b_lblkno   = 0;
1320 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1321 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1322 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1323 		nbp->vb_buf.b_vp       = vp;
1324 		if (vp->v_type == VBLK) {
1325 			nbp->vb_buf.b_dev = vp->v_rdev;
1326 		}
1327 
1328 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1329 
1330 		/*
1331 		 * Just sort by block number
1332 		 */
1333 		s = splbio();
1334 		if (vnx->vx_error != 0) {
1335 			putvndbuf(nbp);
1336 			goto out;
1337 		}
1338 		vnx->vx_pending++;
1339 
1340 		/* sort it in and start I/O if we are not over our limit */
1341 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1342 		sw_reg_start(sdp);
1343 		splx(s);
1344 
1345 		/*
1346 		 * advance to the next I/O
1347 		 */
1348 		byteoff += sz;
1349 		addr += sz;
1350 	}
1351 
1352 	s = splbio();
1353 
1354 out: /* Arrive here at splbio */
1355 	vnx->vx_flags &= ~VX_BUSY;
1356 	if (vnx->vx_pending == 0) {
1357 		if (vnx->vx_error != 0)
1358 			bp->b_error = vnx->vx_error;
1359 		putvndxfer(vnx);
1360 		biodone(bp);
1361 	}
1362 	splx(s);
1363 }
1364 
1365 /*
1366  * sw_reg_start: start an I/O request on the requested swapdev
1367  *
1368  * => reqs are sorted by b_rawblkno (above)
1369  */
1370 static void
1371 sw_reg_start(struct swapdev *sdp)
1372 {
1373 	struct buf	*bp;
1374 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1375 
1376 	/* recursion control */
1377 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1378 		return;
1379 
1380 	sdp->swd_flags |= SWF_BUSY;
1381 
1382 	while (sdp->swd_active < sdp->swd_maxactive) {
1383 		bp = BUFQ_GET(sdp->swd_tab);
1384 		if (bp == NULL)
1385 			break;
1386 		sdp->swd_active++;
1387 
1388 		UVMHIST_LOG(pdhist,
1389 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1390 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1391 		if ((bp->b_flags & B_READ) == 0)
1392 			V_INCR_NUMOUTPUT(bp->b_vp);
1393 
1394 		VOP_STRATEGY(bp->b_vp, bp);
1395 	}
1396 	sdp->swd_flags &= ~SWF_BUSY;
1397 }
1398 
1399 /*
1400  * sw_reg_biodone: one of our i/o's has completed
1401  */
1402 static void
1403 sw_reg_biodone(struct buf *bp)
1404 {
1405 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1406 }
1407 
1408 /*
1409  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1410  *
1411  * => note that we can recover the vndbuf struct by casting the buf ptr
1412  */
1413 static void
1414 sw_reg_iodone(struct work *wk, void *dummy)
1415 {
1416 	struct vndbuf *vbp = (void *)wk;
1417 	struct vndxfer *vnx = vbp->vb_xfer;
1418 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1419 	struct swapdev	*sdp = vnx->vx_sdp;
1420 	int s, resid, error;
1421 	KASSERT(&vbp->vb_buf.b_work == wk);
1422 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1423 
1424 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1425 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1426 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1427 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1428 
1429 	/*
1430 	 * protect vbp at splbio and update.
1431 	 */
1432 
1433 	s = splbio();
1434 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1435 	pbp->b_resid -= resid;
1436 	vnx->vx_pending--;
1437 
1438 	if (vbp->vb_buf.b_error != 0) {
1439 		/* pass error upward */
1440 		error = vbp->vb_buf.b_error;
1441 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1442 		vnx->vx_error = error;
1443 	}
1444 
1445 	/*
1446 	 * kill vbp structure
1447 	 */
1448 	putvndbuf(vbp);
1449 
1450 	/*
1451 	 * wrap up this transaction if it has run to completion or, in
1452 	 * case of an error, when all auxiliary buffers have returned.
1453 	 */
1454 	if (vnx->vx_error != 0) {
1455 		/* pass error upward */
1456 		pbp->b_error = vnx->vx_error;
1457 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1458 			putvndxfer(vnx);
1459 			biodone(pbp);
1460 		}
1461 	} else if (pbp->b_resid == 0) {
1462 		KASSERT(vnx->vx_pending == 0);
1463 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1464 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1465 			    pbp, vnx->vx_error, 0, 0);
1466 			putvndxfer(vnx);
1467 			biodone(pbp);
1468 		}
1469 	}
1470 
1471 	/*
1472 	 * done!   start next swapdev I/O if one is pending
1473 	 */
1474 	sdp->swd_active--;
1475 	sw_reg_start(sdp);
1476 	splx(s);
1477 }
1478 
1479 
1480 /*
1481  * uvm_swap_alloc: allocate space on swap
1482  *
1483  * => allocation is done "round robin" down the priority list, as we
1484  *	allocate in a priority we "rotate" the circle queue.
1485  * => space can be freed with uvm_swap_free
1486  * => we return the page slot number in /dev/drum (0 == invalid slot)
1487  * => we lock uvm_swap_data_lock
1488  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1489  */
1490 int
1491 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1492 {
1493 	struct swapdev *sdp;
1494 	struct swappri *spp;
1495 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1496 
1497 	/*
1498 	 * no swap devices configured yet?   definite failure.
1499 	 */
1500 	if (uvmexp.nswapdev < 1)
1501 		return 0;
1502 
1503 	/*
1504 	 * lock data lock, convert slots into blocks, and enter loop
1505 	 */
1506 	mutex_enter(&uvm_swap_data_lock);
1507 
1508 ReTry:	/* XXXMRG */
1509 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1510 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1511 			uint64_t result;
1512 
1513 			/* if it's not enabled, then we can't swap from it */
1514 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1515 				continue;
1516 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1517 				continue;
1518 			result = blist_alloc(sdp->swd_blist, *nslots);
1519 			if (result == BLIST_NONE) {
1520 				continue;
1521 			}
1522 			KASSERT(result < sdp->swd_drumsize);
1523 
1524 			/*
1525 			 * successful allocation!  now rotate the circleq.
1526 			 */
1527 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1528 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1529 			sdp->swd_npginuse += *nslots;
1530 			uvmexp.swpginuse += *nslots;
1531 			mutex_exit(&uvm_swap_data_lock);
1532 			/* done!  return drum slot number */
1533 			UVMHIST_LOG(pdhist,
1534 			    "success!  returning %d slots starting at %d",
1535 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1536 			return (result + sdp->swd_drumoffset);
1537 		}
1538 	}
1539 
1540 	/* XXXMRG: BEGIN HACK */
1541 	if (*nslots > 1 && lessok) {
1542 		*nslots = 1;
1543 		/* XXXMRG: ugh!  blist should support this for us */
1544 		goto ReTry;
1545 	}
1546 	/* XXXMRG: END HACK */
1547 
1548 	mutex_exit(&uvm_swap_data_lock);
1549 	return 0;
1550 }
1551 
1552 bool
1553 uvm_swapisfull(void)
1554 {
1555 	bool rv;
1556 
1557 	mutex_enter(&uvm_swap_data_lock);
1558 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1559 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1560 	mutex_exit(&uvm_swap_data_lock);
1561 
1562 	return (rv);
1563 }
1564 
1565 /*
1566  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1567  *
1568  * => we lock uvm_swap_data_lock
1569  */
1570 void
1571 uvm_swap_markbad(int startslot, int nslots)
1572 {
1573 	struct swapdev *sdp;
1574 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1575 
1576 	mutex_enter(&uvm_swap_data_lock);
1577 	sdp = swapdrum_getsdp(startslot);
1578 	KASSERT(sdp != NULL);
1579 
1580 	/*
1581 	 * we just keep track of how many pages have been marked bad
1582 	 * in this device, to make everything add up in swap_off().
1583 	 * we assume here that the range of slots will all be within
1584 	 * one swap device.
1585 	 */
1586 
1587 	KASSERT(uvmexp.swpgonly >= nslots);
1588 	uvmexp.swpgonly -= nslots;
1589 	sdp->swd_npgbad += nslots;
1590 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1591 	mutex_exit(&uvm_swap_data_lock);
1592 }
1593 
1594 /*
1595  * uvm_swap_free: free swap slots
1596  *
1597  * => this can be all or part of an allocation made by uvm_swap_alloc
1598  * => we lock uvm_swap_data_lock
1599  */
1600 void
1601 uvm_swap_free(int startslot, int nslots)
1602 {
1603 	struct swapdev *sdp;
1604 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1605 
1606 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1607 	    startslot, 0, 0);
1608 
1609 	/*
1610 	 * ignore attempts to free the "bad" slot.
1611 	 */
1612 
1613 	if (startslot == SWSLOT_BAD) {
1614 		return;
1615 	}
1616 
1617 	/*
1618 	 * convert drum slot offset back to sdp, free the blocks
1619 	 * in the extent, and return.   must hold pri lock to do
1620 	 * lookup and access the extent.
1621 	 */
1622 
1623 	mutex_enter(&uvm_swap_data_lock);
1624 	sdp = swapdrum_getsdp(startslot);
1625 	KASSERT(uvmexp.nswapdev >= 1);
1626 	KASSERT(sdp != NULL);
1627 	KASSERT(sdp->swd_npginuse >= nslots);
1628 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1629 	sdp->swd_npginuse -= nslots;
1630 	uvmexp.swpginuse -= nslots;
1631 	mutex_exit(&uvm_swap_data_lock);
1632 }
1633 
1634 /*
1635  * uvm_swap_put: put any number of pages into a contig place on swap
1636  *
1637  * => can be sync or async
1638  */
1639 
1640 int
1641 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1642 {
1643 	int error;
1644 
1645 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1646 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1647 	return error;
1648 }
1649 
1650 /*
1651  * uvm_swap_get: get a single page from swap
1652  *
1653  * => usually a sync op (from fault)
1654  */
1655 
1656 int
1657 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1658 {
1659 	int error;
1660 
1661 	uvmexp.nswget++;
1662 	KASSERT(flags & PGO_SYNCIO);
1663 	if (swslot == SWSLOT_BAD) {
1664 		return EIO;
1665 	}
1666 
1667 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1668 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1669 	if (error == 0) {
1670 
1671 		/*
1672 		 * this page is no longer only in swap.
1673 		 */
1674 
1675 		mutex_enter(&uvm_swap_data_lock);
1676 		KASSERT(uvmexp.swpgonly > 0);
1677 		uvmexp.swpgonly--;
1678 		mutex_exit(&uvm_swap_data_lock);
1679 	}
1680 	return error;
1681 }
1682 
1683 /*
1684  * uvm_swap_io: do an i/o operation to swap
1685  */
1686 
1687 static int
1688 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1689 {
1690 	daddr_t startblk;
1691 	struct	buf *bp;
1692 	vaddr_t kva;
1693 	int	error, s, mapinflags;
1694 	bool write, async;
1695 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1696 
1697 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1698 	    startslot, npages, flags, 0);
1699 
1700 	write = (flags & B_READ) == 0;
1701 	async = (flags & B_ASYNC) != 0;
1702 
1703 	/*
1704 	 * convert starting drum slot to block number
1705 	 */
1706 
1707 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1708 
1709 	/*
1710 	 * first, map the pages into the kernel.
1711 	 */
1712 
1713 	mapinflags = !write ?
1714 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1715 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1716 	kva = uvm_pagermapin(pps, npages, mapinflags);
1717 
1718 	/*
1719 	 * now allocate a buf for the i/o.
1720 	 */
1721 
1722 	bp = getiobuf();
1723 
1724 	/*
1725 	 * fill in the bp/sbp.   we currently route our i/o through
1726 	 * /dev/drum's vnode [swapdev_vp].
1727 	 */
1728 
1729 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1730 	bp->b_proc = &proc0;	/* XXX */
1731 	bp->b_vnbufs.le_next = NOLIST;
1732 	bp->b_data = (void *)kva;
1733 	bp->b_blkno = startblk;
1734 	bp->b_vp = swapdev_vp;
1735 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1736 
1737 	/*
1738 	 * bump v_numoutput (counter of number of active outputs).
1739 	 */
1740 
1741 	if (write) {
1742 		s = splbio();
1743 		V_INCR_NUMOUTPUT(swapdev_vp);
1744 		splx(s);
1745 	}
1746 
1747 	/*
1748 	 * for async ops we must set up the iodone handler.
1749 	 */
1750 
1751 	if (async) {
1752 		bp->b_flags |= B_CALL;
1753 		bp->b_iodone = uvm_aio_biodone;
1754 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1755 		if (curlwp == uvm.pagedaemon_lwp)
1756 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1757 		else
1758 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1759 	} else {
1760 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1761 	}
1762 	UVMHIST_LOG(pdhist,
1763 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1764 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1765 
1766 	/*
1767 	 * now we start the I/O, and if async, return.
1768 	 */
1769 
1770 	VOP_STRATEGY(swapdev_vp, bp);
1771 	if (async)
1772 		return 0;
1773 
1774 	/*
1775 	 * must be sync i/o.   wait for it to finish
1776 	 */
1777 
1778 	error = biowait(bp);
1779 
1780 	/*
1781 	 * kill the pager mapping
1782 	 */
1783 
1784 	uvm_pagermapout(kva, npages);
1785 
1786 	/*
1787 	 * now dispose of the buf and we're done.
1788 	 */
1789 
1790 	s = splbio();
1791 	if (write)
1792 		vwakeup(bp);
1793 	putiobuf(bp);
1794 	splx(s);
1795 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1796 	return (error);
1797 }
1798