xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 7fa608457b817eca6e0977b37f758ae064f3c99c)
1 /*	$NetBSD: uvm_swap.c,v 1.130 2007/10/15 08:12:13 hannken Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.130 2007/10/15 08:12:13 hannken Exp $");
36 
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63 #include <sys/workqueue.h>
64 
65 #include <uvm/uvm.h>
66 
67 #include <miscfs/specfs/specdev.h>
68 
69 /*
70  * uvm_swap.c: manage configuration and i/o to swap space.
71  */
72 
73 /*
74  * swap space is managed in the following way:
75  *
76  * each swap partition or file is described by a "swapdev" structure.
77  * each "swapdev" structure contains a "swapent" structure which contains
78  * information that is passed up to the user (via system calls).
79  *
80  * each swap partition is assigned a "priority" (int) which controls
81  * swap parition usage.
82  *
83  * the system maintains a global data structure describing all swap
84  * partitions/files.   there is a sorted LIST of "swappri" structures
85  * which describe "swapdev"'s at that priority.   this LIST is headed
86  * by the "swap_priority" global var.    each "swappri" contains a
87  * CIRCLEQ of "swapdev" structures at that priority.
88  *
89  * locking:
90  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
91  *    system call and prevents the swap priority list from changing
92  *    while we are in the middle of a system call (e.g. SWAP_STATS).
93  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
94  *    structures including the priority list, the swapdev structures,
95  *    and the swapmap arena.
96  *
97  * each swap device has the following info:
98  *  - swap device in use (could be disabled, preventing future use)
99  *  - swap enabled (allows new allocations on swap)
100  *  - map info in /dev/drum
101  *  - vnode pointer
102  * for swap files only:
103  *  - block size
104  *  - max byte count in buffer
105  *  - buffer
106  *
107  * userland controls and configures swap with the swapctl(2) system call.
108  * the sys_swapctl performs the following operations:
109  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
110  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
111  *	(passed in via "arg") of a size passed in via "misc" ... we load
112  *	the current swap config into the array. The actual work is done
113  *	in the uvm_swap_stats(9) function.
114  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115  *	priority in "misc", start swapping on it.
116  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
118  *	"misc")
119  */
120 
121 /*
122  * swapdev: describes a single swap partition/file
123  *
124  * note the following should be true:
125  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
126  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
127  */
128 struct swapdev {
129 	struct oswapent swd_ose;
130 #define	swd_dev		swd_ose.ose_dev		/* device id */
131 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
132 #define	swd_priority	swd_ose.ose_priority	/* our priority */
133 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
134 	char			*swd_path;	/* saved pathname of device */
135 	int			swd_pathlen;	/* length of pathname */
136 	int			swd_npages;	/* #pages we can use */
137 	int			swd_npginuse;	/* #pages in use */
138 	int			swd_npgbad;	/* #pages bad */
139 	int			swd_drumoffset;	/* page0 offset in drum */
140 	int			swd_drumsize;	/* #pages in drum */
141 	blist_t			swd_blist;	/* blist for this swapdev */
142 	struct vnode		*swd_vp;	/* backing vnode */
143 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
144 
145 	int			swd_bsize;	/* blocksize (bytes) */
146 	int			swd_maxactive;	/* max active i/o reqs */
147 	struct bufq_state	*swd_tab;	/* buffer list */
148 	int			swd_active;	/* number of active buffers */
149 };
150 
151 /*
152  * swap device priority entry; the list is kept sorted on `spi_priority'.
153  */
154 struct swappri {
155 	int			spi_priority;     /* priority */
156 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
157 	/* circleq of swapdevs at this priority */
158 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
159 };
160 
161 /*
162  * The following two structures are used to keep track of data transfers
163  * on swap devices associated with regular files.
164  * NOTE: this code is more or less a copy of vnd.c; we use the same
165  * structure names here to ease porting..
166  */
167 struct vndxfer {
168 	struct buf	*vx_bp;		/* Pointer to parent buffer */
169 	struct swapdev	*vx_sdp;
170 	int		vx_error;
171 	int		vx_pending;	/* # of pending aux buffers */
172 	int		vx_flags;
173 #define VX_BUSY		1
174 #define VX_DEAD		2
175 };
176 
177 struct vndbuf {
178 	struct buf	vb_buf;
179 	struct vndxfer	*vb_xfer;
180 };
181 
182 
183 /*
184  * We keep a of pool vndbuf's and vndxfer structures.
185  */
186 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
187     IPL_BIO);
188 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
189     IPL_BIO);
190 
191 #define	getvndxfer(vnx)	do {						\
192 	int sp = splbio();						\
193 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
194 	splx(sp);							\
195 } while (/*CONSTCOND*/ 0)
196 
197 #define putvndxfer(vnx) {						\
198 	pool_put(&vndxfer_pool, (void *)(vnx));				\
199 }
200 
201 #define	getvndbuf(vbp)	do {						\
202 	int sp = splbio();						\
203 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
204 	splx(sp);							\
205 } while (/*CONSTCOND*/ 0)
206 
207 #define putvndbuf(vbp) {						\
208 	pool_put(&vndbuf_pool, (void *)(vbp));				\
209 }
210 
211 /*
212  * local variables
213  */
214 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
215 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
216 
217 /* list of all active swap devices [by priority] */
218 LIST_HEAD(swap_priority, swappri);
219 static struct swap_priority swap_priority;
220 
221 /* locks */
222 static krwlock_t swap_syscall_lock;
223 
224 /* workqueue and use counter for swap to regular files */
225 static int sw_reg_count = 0;
226 static struct workqueue *sw_reg_workqueue;
227 
228 /*
229  * prototypes
230  */
231 static struct swapdev	*swapdrum_getsdp(int);
232 
233 static struct swapdev	*swaplist_find(struct vnode *, bool);
234 static void		 swaplist_insert(struct swapdev *,
235 					 struct swappri *, int);
236 static void		 swaplist_trim(void);
237 
238 static int swap_on(struct lwp *, struct swapdev *);
239 static int swap_off(struct lwp *, struct swapdev *);
240 
241 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
242 
243 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
244 static void sw_reg_biodone(struct buf *);
245 static void sw_reg_iodone(struct work *wk, void *dummy);
246 static void sw_reg_start(struct swapdev *);
247 
248 static int uvm_swap_io(struct vm_page **, int, int, int);
249 
250 /*
251  * uvm_swap_init: init the swap system data structures and locks
252  *
253  * => called at boot time from init_main.c after the filesystems
254  *	are brought up (which happens after uvm_init())
255  */
256 void
257 uvm_swap_init(void)
258 {
259 	UVMHIST_FUNC("uvm_swap_init");
260 
261 	UVMHIST_CALLED(pdhist);
262 	/*
263 	 * first, init the swap list, its counter, and its lock.
264 	 * then get a handle on the vnode for /dev/drum by using
265 	 * the its dev_t number ("swapdev", from MD conf.c).
266 	 */
267 
268 	LIST_INIT(&swap_priority);
269 	uvmexp.nswapdev = 0;
270 	rw_init(&swap_syscall_lock);
271 	cv_init(&uvm.scheduler_cv, "schedule");
272 	/* XXXSMP should be adaptive, but needs vmobjlock replaced */
273 	mutex_init(&uvm_swap_data_lock, MUTEX_SPIN, IPL_NONE);
274 
275 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
276 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
277 
278 	if (bdevvp(swapdev, &swapdev_vp))
279 		panic("uvm_swap_init: can't get vnode for swap device");
280 
281 	/*
282 	 * create swap block resource map to map /dev/drum.   the range
283 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
284 	 * that block 0 is reserved (used to indicate an allocation
285 	 * failure, or no allocation).
286 	 */
287 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 	    VM_NOSLEEP, IPL_NONE);
289 	if (swapmap == 0)
290 		panic("uvm_swap_init: extent_create failed");
291 
292 	/*
293 	 * done!
294 	 */
295 	uvm.swap_running = true;
296 	uvm.swapout_enabled = 1;
297 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
298 
299         sysctl_createv(NULL, 0, NULL, NULL,
300             CTLFLAG_READWRITE,
301             CTLTYPE_INT, "swapout",
302             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
303             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
304 }
305 
306 /*
307  * swaplist functions: functions that operate on the list of swap
308  * devices on the system.
309  */
310 
311 /*
312  * swaplist_insert: insert swap device "sdp" into the global list
313  *
314  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
315  * => caller must provide a newly malloc'd swappri structure (we will
316  *	FREE it if we don't need it... this it to prevent malloc blocking
317  *	here while adding swap)
318  */
319 static void
320 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
321 {
322 	struct swappri *spp, *pspp;
323 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
324 
325 	/*
326 	 * find entry at or after which to insert the new device.
327 	 */
328 	pspp = NULL;
329 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
330 		if (priority <= spp->spi_priority)
331 			break;
332 		pspp = spp;
333 	}
334 
335 	/*
336 	 * new priority?
337 	 */
338 	if (spp == NULL || spp->spi_priority != priority) {
339 		spp = newspp;  /* use newspp! */
340 		UVMHIST_LOG(pdhist, "created new swappri = %d",
341 			    priority, 0, 0, 0);
342 
343 		spp->spi_priority = priority;
344 		CIRCLEQ_INIT(&spp->spi_swapdev);
345 
346 		if (pspp)
347 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
348 		else
349 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
350 	} else {
351 	  	/* we don't need a new priority structure, free it */
352 		FREE(newspp, M_VMSWAP);
353 	}
354 
355 	/*
356 	 * priority found (or created).   now insert on the priority's
357 	 * circleq list and bump the total number of swapdevs.
358 	 */
359 	sdp->swd_priority = priority;
360 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
361 	uvmexp.nswapdev++;
362 }
363 
364 /*
365  * swaplist_find: find and optionally remove a swap device from the
366  *	global list.
367  *
368  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
369  * => we return the swapdev we found (and removed)
370  */
371 static struct swapdev *
372 swaplist_find(struct vnode *vp, bool remove)
373 {
374 	struct swapdev *sdp;
375 	struct swappri *spp;
376 
377 	/*
378 	 * search the lists for the requested vp
379 	 */
380 
381 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
382 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
383 			if (sdp->swd_vp == vp) {
384 				if (remove) {
385 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
386 					    sdp, swd_next);
387 					uvmexp.nswapdev--;
388 				}
389 				return(sdp);
390 			}
391 		}
392 	}
393 	return (NULL);
394 }
395 
396 /*
397  * swaplist_trim: scan priority list for empty priority entries and kill
398  *	them.
399  *
400  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
401  */
402 static void
403 swaplist_trim(void)
404 {
405 	struct swappri *spp, *nextspp;
406 
407 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
408 		nextspp = LIST_NEXT(spp, spi_swappri);
409 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
410 		    (void *)&spp->spi_swapdev)
411 			continue;
412 		LIST_REMOVE(spp, spi_swappri);
413 		free(spp, M_VMSWAP);
414 	}
415 }
416 
417 /*
418  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
419  *	to the "swapdev" that maps that section of the drum.
420  *
421  * => each swapdev takes one big contig chunk of the drum
422  * => caller must hold uvm_swap_data_lock
423  */
424 static struct swapdev *
425 swapdrum_getsdp(int pgno)
426 {
427 	struct swapdev *sdp;
428 	struct swappri *spp;
429 
430 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
431 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
432 			if (sdp->swd_flags & SWF_FAKE)
433 				continue;
434 			if (pgno >= sdp->swd_drumoffset &&
435 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
436 				return sdp;
437 			}
438 		}
439 	}
440 	return NULL;
441 }
442 
443 
444 /*
445  * sys_swapctl: main entry point for swapctl(2) system call
446  * 	[with two helper functions: swap_on and swap_off]
447  */
448 int
449 sys_swapctl(struct lwp *l, void *v, register_t *retval)
450 {
451 	struct sys_swapctl_args /* {
452 		syscallarg(int) cmd;
453 		syscallarg(void *) arg;
454 		syscallarg(int) misc;
455 	} */ *uap = (struct sys_swapctl_args *)v;
456 	struct vnode *vp;
457 	struct nameidata nd;
458 	struct swappri *spp;
459 	struct swapdev *sdp;
460 	struct swapent *sep;
461 #define SWAP_PATH_MAX (PATH_MAX + 1)
462 	char	*userpath;
463 	size_t	len;
464 	int	error, misc;
465 	int	priority;
466 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
467 
468 	misc = SCARG(uap, misc);
469 
470 	/*
471 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
472 	 */
473 	rw_enter(&swap_syscall_lock, RW_WRITER);
474 
475 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
476 	/*
477 	 * we handle the non-priv NSWAP and STATS request first.
478 	 *
479 	 * SWAP_NSWAP: return number of config'd swap devices
480 	 * [can also be obtained with uvmexp sysctl]
481 	 */
482 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
483 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
484 		    0, 0, 0);
485 		*retval = uvmexp.nswapdev;
486 		error = 0;
487 		goto out;
488 	}
489 
490 	/*
491 	 * SWAP_STATS: get stats on current # of configured swap devs
492 	 *
493 	 * note that the swap_priority list can't change as long
494 	 * as we are holding the swap_syscall_lock.  we don't want
495 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
496 	 * copyout() and we don't want to be holding that lock then!
497 	 */
498 	if (SCARG(uap, cmd) == SWAP_STATS
499 #if defined(COMPAT_13)
500 	    || SCARG(uap, cmd) == SWAP_OSTATS
501 #endif
502 	    ) {
503 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
504 			misc = uvmexp.nswapdev;
505 #if defined(COMPAT_13)
506 		if (SCARG(uap, cmd) == SWAP_OSTATS)
507 			len = sizeof(struct oswapent) * misc;
508 		else
509 #endif
510 			len = sizeof(struct swapent) * misc;
511 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
512 
513 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
514 		error = copyout(sep, SCARG(uap, arg), len);
515 
516 		free(sep, M_TEMP);
517 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
518 		goto out;
519 	}
520 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
521 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
522 
523 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
524 		goto out;
525 	}
526 
527 	/*
528 	 * all other requests require superuser privs.   verify.
529 	 */
530 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
531 	    0, NULL, NULL, NULL)))
532 		goto out;
533 
534 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
535 		/* drop the current dump device */
536 		dumpdev = NODEV;
537 		cpu_dumpconf();
538 		goto out;
539 	}
540 
541 	/*
542 	 * at this point we expect a path name in arg.   we will
543 	 * use namei() to gain a vnode reference (vref), and lock
544 	 * the vnode (VOP_LOCK).
545 	 *
546 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
547 	 * miniroot)
548 	 */
549 	if (SCARG(uap, arg) == NULL) {
550 		vp = rootvp;		/* miniroot */
551 		if (vget(vp, LK_EXCLUSIVE)) {
552 			error = EBUSY;
553 			goto out;
554 		}
555 		if (SCARG(uap, cmd) == SWAP_ON &&
556 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
557 			panic("swapctl: miniroot copy failed");
558 	} else {
559 		int	space;
560 		char	*where;
561 
562 		if (SCARG(uap, cmd) == SWAP_ON) {
563 			if ((error = copyinstr(SCARG(uap, arg), userpath,
564 			    SWAP_PATH_MAX, &len)))
565 				goto out;
566 			space = UIO_SYSSPACE;
567 			where = userpath;
568 		} else {
569 			space = UIO_USERSPACE;
570 			where = (char *)SCARG(uap, arg);
571 		}
572 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, space, where, l);
573 		if ((error = namei(&nd)))
574 			goto out;
575 		vp = nd.ni_vp;
576 	}
577 	/* note: "vp" is referenced and locked */
578 
579 	error = 0;		/* assume no error */
580 	switch(SCARG(uap, cmd)) {
581 
582 	case SWAP_DUMPDEV:
583 		if (vp->v_type != VBLK) {
584 			error = ENOTBLK;
585 			break;
586 		}
587 		if (bdevsw_lookup(vp->v_rdev))
588 			dumpdev = vp->v_rdev;
589 		else
590 			dumpdev = NODEV;
591 		cpu_dumpconf();
592 		break;
593 
594 	case SWAP_CTL:
595 		/*
596 		 * get new priority, remove old entry (if any) and then
597 		 * reinsert it in the correct place.  finally, prune out
598 		 * any empty priority structures.
599 		 */
600 		priority = SCARG(uap, misc);
601 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
602 		mutex_enter(&uvm_swap_data_lock);
603 		if ((sdp = swaplist_find(vp, true)) == NULL) {
604 			error = ENOENT;
605 		} else {
606 			swaplist_insert(sdp, spp, priority);
607 			swaplist_trim();
608 		}
609 		mutex_exit(&uvm_swap_data_lock);
610 		if (error)
611 			free(spp, M_VMSWAP);
612 		break;
613 
614 	case SWAP_ON:
615 
616 		/*
617 		 * check for duplicates.   if none found, then insert a
618 		 * dummy entry on the list to prevent someone else from
619 		 * trying to enable this device while we are working on
620 		 * it.
621 		 */
622 
623 		priority = SCARG(uap, misc);
624 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
625 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
626 		memset(sdp, 0, sizeof(*sdp));
627 		sdp->swd_flags = SWF_FAKE;
628 		sdp->swd_vp = vp;
629 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
630 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
631 		mutex_enter(&uvm_swap_data_lock);
632 		if (swaplist_find(vp, false) != NULL) {
633 			error = EBUSY;
634 			mutex_exit(&uvm_swap_data_lock);
635 			bufq_free(sdp->swd_tab);
636 			free(sdp, M_VMSWAP);
637 			free(spp, M_VMSWAP);
638 			break;
639 		}
640 		swaplist_insert(sdp, spp, priority);
641 		mutex_exit(&uvm_swap_data_lock);
642 
643 		sdp->swd_pathlen = len;
644 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
645 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
646 			panic("swapctl: copystr");
647 
648 		/*
649 		 * we've now got a FAKE placeholder in the swap list.
650 		 * now attempt to enable swap on it.  if we fail, undo
651 		 * what we've done and kill the fake entry we just inserted.
652 		 * if swap_on is a success, it will clear the SWF_FAKE flag
653 		 */
654 
655 		if ((error = swap_on(l, sdp)) != 0) {
656 			mutex_enter(&uvm_swap_data_lock);
657 			(void) swaplist_find(vp, true);  /* kill fake entry */
658 			swaplist_trim();
659 			mutex_exit(&uvm_swap_data_lock);
660 			bufq_free(sdp->swd_tab);
661 			free(sdp->swd_path, M_VMSWAP);
662 			free(sdp, M_VMSWAP);
663 			break;
664 		}
665 		break;
666 
667 	case SWAP_OFF:
668 		mutex_enter(&uvm_swap_data_lock);
669 		if ((sdp = swaplist_find(vp, false)) == NULL) {
670 			mutex_exit(&uvm_swap_data_lock);
671 			error = ENXIO;
672 			break;
673 		}
674 
675 		/*
676 		 * If a device isn't in use or enabled, we
677 		 * can't stop swapping from it (again).
678 		 */
679 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
680 			mutex_exit(&uvm_swap_data_lock);
681 			error = EBUSY;
682 			break;
683 		}
684 
685 		/*
686 		 * do the real work.
687 		 */
688 		error = swap_off(l, sdp);
689 		break;
690 
691 	default:
692 		error = EINVAL;
693 	}
694 
695 	/*
696 	 * done!  release the ref gained by namei() and unlock.
697 	 */
698 	vput(vp);
699 
700 out:
701 	free(userpath, M_TEMP);
702 	rw_exit(&swap_syscall_lock);
703 
704 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
705 	return (error);
706 }
707 
708 /*
709  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
710  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
711  * emulation to use it directly without going through sys_swapctl().
712  * The problem with using sys_swapctl() there is that it involves
713  * copying the swapent array to the stackgap, and this array's size
714  * is not known at build time. Hence it would not be possible to
715  * ensure it would fit in the stackgap in any case.
716  */
717 void
718 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
719 {
720 
721 	rw_enter(&swap_syscall_lock, RW_READER);
722 	uvm_swap_stats_locked(cmd, sep, sec, retval);
723 	rw_exit(&swap_syscall_lock);
724 }
725 
726 static void
727 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
728 {
729 	struct swappri *spp;
730 	struct swapdev *sdp;
731 	int count = 0;
732 
733 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
734 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
735 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
736 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
737 		  	/*
738 			 * backwards compatibility for system call.
739 			 * note that we use 'struct oswapent' as an
740 			 * overlay into both 'struct swapdev' and
741 			 * the userland 'struct swapent', as we
742 			 * want to retain backwards compatibility
743 			 * with NetBSD 1.3.
744 			 */
745 			sdp->swd_ose.ose_inuse =
746 			    btodb((uint64_t)sdp->swd_npginuse <<
747 			    PAGE_SHIFT);
748 			(void)memcpy(sep, &sdp->swd_ose,
749 			    sizeof(struct oswapent));
750 
751 			/* now copy out the path if necessary */
752 #if !defined(COMPAT_13)
753 			(void) cmd;
754 #endif
755 #if defined(COMPAT_13)
756 			if (cmd == SWAP_STATS)
757 #endif
758 				(void)memcpy(&sep->se_path, sdp->swd_path,
759 				    sdp->swd_pathlen);
760 
761 			count++;
762 #if defined(COMPAT_13)
763 			if (cmd == SWAP_OSTATS)
764 				sep = (struct swapent *)
765 				    ((struct oswapent *)sep + 1);
766 			else
767 #endif
768 				sep++;
769 		}
770 	}
771 
772 	*retval = count;
773 	return;
774 }
775 
776 /*
777  * swap_on: attempt to enable a swapdev for swapping.   note that the
778  *	swapdev is already on the global list, but disabled (marked
779  *	SWF_FAKE).
780  *
781  * => we avoid the start of the disk (to protect disk labels)
782  * => we also avoid the miniroot, if we are swapping to root.
783  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
784  *	if needed.
785  */
786 static int
787 swap_on(struct lwp *l, struct swapdev *sdp)
788 {
789 	struct vnode *vp;
790 	int error, npages, nblocks, size;
791 	long addr;
792 	u_long result;
793 	struct vattr va;
794 #ifdef NFS
795 	extern int (**nfsv2_vnodeop_p)(void *);
796 #endif /* NFS */
797 	const struct bdevsw *bdev;
798 	dev_t dev;
799 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
800 
801 	/*
802 	 * we want to enable swapping on sdp.   the swd_vp contains
803 	 * the vnode we want (locked and ref'd), and the swd_dev
804 	 * contains the dev_t of the file, if it a block device.
805 	 */
806 
807 	vp = sdp->swd_vp;
808 	dev = sdp->swd_dev;
809 
810 	/*
811 	 * open the swap file (mostly useful for block device files to
812 	 * let device driver know what is up).
813 	 *
814 	 * we skip the open/close for root on swap because the root
815 	 * has already been opened when root was mounted (mountroot).
816 	 */
817 	if (vp != rootvp) {
818 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
819 			return (error);
820 	}
821 
822 	/* XXX this only works for block devices */
823 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
824 
825 	/*
826 	 * we now need to determine the size of the swap area.   for
827 	 * block specials we can call the d_psize function.
828 	 * for normal files, we must stat [get attrs].
829 	 *
830 	 * we put the result in nblks.
831 	 * for normal files, we also want the filesystem block size
832 	 * (which we get with statfs).
833 	 */
834 	switch (vp->v_type) {
835 	case VBLK:
836 		bdev = bdevsw_lookup(dev);
837 		if (bdev == NULL || bdev->d_psize == NULL ||
838 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
839 			error = ENXIO;
840 			goto bad;
841 		}
842 		break;
843 
844 	case VREG:
845 		if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
846 			goto bad;
847 		nblocks = (int)btodb(va.va_size);
848 		if ((error =
849 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
850 			goto bad;
851 
852 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
853 		/*
854 		 * limit the max # of outstanding I/O requests we issue
855 		 * at any one time.   take it easy on NFS servers.
856 		 */
857 #ifdef NFS
858 		if (vp->v_op == nfsv2_vnodeop_p)
859 			sdp->swd_maxactive = 2; /* XXX */
860 		else
861 #endif /* NFS */
862 			sdp->swd_maxactive = 8; /* XXX */
863 		break;
864 
865 	default:
866 		error = ENXIO;
867 		goto bad;
868 	}
869 
870 	/*
871 	 * save nblocks in a safe place and convert to pages.
872 	 */
873 
874 	sdp->swd_ose.ose_nblks = nblocks;
875 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
876 
877 	/*
878 	 * for block special files, we want to make sure that leave
879 	 * the disklabel and bootblocks alone, so we arrange to skip
880 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
881 	 * note that because of this the "size" can be less than the
882 	 * actual number of blocks on the device.
883 	 */
884 	if (vp->v_type == VBLK) {
885 		/* we use pages 1 to (size - 1) [inclusive] */
886 		size = npages - 1;
887 		addr = 1;
888 	} else {
889 		/* we use pages 0 to (size - 1) [inclusive] */
890 		size = npages;
891 		addr = 0;
892 	}
893 
894 	/*
895 	 * make sure we have enough blocks for a reasonable sized swap
896 	 * area.   we want at least one page.
897 	 */
898 
899 	if (size < 1) {
900 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
901 		error = EINVAL;
902 		goto bad;
903 	}
904 
905 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
906 
907 	/*
908 	 * now we need to allocate an extent to manage this swap device
909 	 */
910 
911 	sdp->swd_blist = blist_create(npages);
912 	/* mark all expect the `saved' region free. */
913 	blist_free(sdp->swd_blist, addr, size);
914 
915 	/*
916 	 * if the vnode we are swapping to is the root vnode
917 	 * (i.e. we are swapping to the miniroot) then we want
918 	 * to make sure we don't overwrite it.   do a statfs to
919 	 * find its size and skip over it.
920 	 */
921 	if (vp == rootvp) {
922 		struct mount *mp;
923 		struct statvfs *sp;
924 		int rootblocks, rootpages;
925 
926 		mp = rootvnode->v_mount;
927 		sp = &mp->mnt_stat;
928 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
929 		/*
930 		 * XXX: sp->f_blocks isn't the total number of
931 		 * blocks in the filesystem, it's the number of
932 		 * data blocks.  so, our rootblocks almost
933 		 * definitely underestimates the total size
934 		 * of the filesystem - how badly depends on the
935 		 * details of the filesystem type.  there isn't
936 		 * an obvious way to deal with this cleanly
937 		 * and perfectly, so for now we just pad our
938 		 * rootblocks estimate with an extra 5 percent.
939 		 */
940 		rootblocks += (rootblocks >> 5) +
941 			(rootblocks >> 6) +
942 			(rootblocks >> 7);
943 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
944 		if (rootpages > size)
945 			panic("swap_on: miniroot larger than swap?");
946 
947 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
948 			panic("swap_on: unable to preserve miniroot");
949 		}
950 
951 		size -= rootpages;
952 		printf("Preserved %d pages of miniroot ", rootpages);
953 		printf("leaving %d pages of swap\n", size);
954 	}
955 
956 	/*
957 	 * add a ref to vp to reflect usage as a swap device.
958 	 */
959 	vref(vp);
960 
961 	/*
962 	 * now add the new swapdev to the drum and enable.
963 	 */
964 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
965 	if (result == 0)
966 		panic("swapdrum_add");
967 	/*
968 	 * If this is the first regular swap create the workqueue.
969 	 * => Protected by swap_syscall_lock.
970 	 */
971 	if (vp->v_type != VBLK) {
972 		if (sw_reg_count++ == 0) {
973 			KASSERT(sw_reg_workqueue == NULL);
974 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
975 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
976 				panic("swap_add: workqueue_create failed");
977 		}
978 	}
979 
980 	sdp->swd_drumoffset = (int)result;
981 	sdp->swd_drumsize = npages;
982 	sdp->swd_npages = size;
983 	mutex_enter(&uvm_swap_data_lock);
984 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
985 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
986 	uvmexp.swpages += size;
987 	uvmexp.swpgavail += size;
988 	mutex_exit(&uvm_swap_data_lock);
989 	return (0);
990 
991 	/*
992 	 * failure: clean up and return error.
993 	 */
994 
995 bad:
996 	if (sdp->swd_blist) {
997 		blist_destroy(sdp->swd_blist);
998 	}
999 	if (vp != rootvp) {
1000 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
1001 	}
1002 	return (error);
1003 }
1004 
1005 /*
1006  * swap_off: stop swapping on swapdev
1007  *
1008  * => swap data should be locked, we will unlock.
1009  */
1010 static int
1011 swap_off(struct lwp *l, struct swapdev *sdp)
1012 {
1013 	int npages = sdp->swd_npages;
1014 	int error = 0;
1015 
1016 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1017 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1018 
1019 	/* disable the swap area being removed */
1020 	sdp->swd_flags &= ~SWF_ENABLE;
1021 	uvmexp.swpgavail -= npages;
1022 	mutex_exit(&uvm_swap_data_lock);
1023 
1024 	/*
1025 	 * the idea is to find all the pages that are paged out to this
1026 	 * device, and page them all in.  in uvm, swap-backed pageable
1027 	 * memory can take two forms: aobjs and anons.  call the
1028 	 * swapoff hook for each subsystem to bring in pages.
1029 	 */
1030 
1031 	if (uao_swap_off(sdp->swd_drumoffset,
1032 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1033 	    amap_swap_off(sdp->swd_drumoffset,
1034 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1035 		error = ENOMEM;
1036 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1037 		error = EBUSY;
1038 	}
1039 
1040 	if (error) {
1041 		mutex_enter(&uvm_swap_data_lock);
1042 		sdp->swd_flags |= SWF_ENABLE;
1043 		uvmexp.swpgavail += npages;
1044 		mutex_exit(&uvm_swap_data_lock);
1045 
1046 		return error;
1047 	}
1048 
1049 	/*
1050 	 * If this is the last regular swap destroy the workqueue.
1051 	 * => Protected by swap_syscall_lock.
1052 	 */
1053 	if (sdp->swd_vp->v_type != VBLK) {
1054 		KASSERT(sw_reg_count > 0);
1055 		KASSERT(sw_reg_workqueue != NULL);
1056 		if (--sw_reg_count == 0) {
1057 			workqueue_destroy(sw_reg_workqueue);
1058 			sw_reg_workqueue = NULL;
1059 		}
1060 	}
1061 
1062 	/*
1063 	 * done with the vnode.
1064 	 * drop our ref on the vnode before calling VOP_CLOSE()
1065 	 * so that spec_close() can tell if this is the last close.
1066 	 */
1067 	vrele(sdp->swd_vp);
1068 	if (sdp->swd_vp != rootvp) {
1069 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1070 	}
1071 
1072 	mutex_enter(&uvm_swap_data_lock);
1073 	uvmexp.swpages -= npages;
1074 	uvmexp.swpginuse -= sdp->swd_npgbad;
1075 
1076 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1077 		panic("swap_off: swapdev not in list");
1078 	swaplist_trim();
1079 	mutex_exit(&uvm_swap_data_lock);
1080 
1081 	/*
1082 	 * free all resources!
1083 	 */
1084 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1085 	blist_destroy(sdp->swd_blist);
1086 	bufq_free(sdp->swd_tab);
1087 	free(sdp, M_VMSWAP);
1088 	return (0);
1089 }
1090 
1091 /*
1092  * /dev/drum interface and i/o functions
1093  */
1094 
1095 /*
1096  * swstrategy: perform I/O on the drum
1097  *
1098  * => we must map the i/o request from the drum to the correct swapdev.
1099  */
1100 static void
1101 swstrategy(struct buf *bp)
1102 {
1103 	struct swapdev *sdp;
1104 	struct vnode *vp;
1105 	int s, pageno, bn;
1106 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1107 
1108 	/*
1109 	 * convert block number to swapdev.   note that swapdev can't
1110 	 * be yanked out from under us because we are holding resources
1111 	 * in it (i.e. the blocks we are doing I/O on).
1112 	 */
1113 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1114 	mutex_enter(&uvm_swap_data_lock);
1115 	sdp = swapdrum_getsdp(pageno);
1116 	mutex_exit(&uvm_swap_data_lock);
1117 	if (sdp == NULL) {
1118 		bp->b_error = EINVAL;
1119 		biodone(bp);
1120 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1121 		return;
1122 	}
1123 
1124 	/*
1125 	 * convert drum page number to block number on this swapdev.
1126 	 */
1127 
1128 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1129 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1130 
1131 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1132 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1133 		sdp->swd_drumoffset, bn, bp->b_bcount);
1134 
1135 	/*
1136 	 * for block devices we finish up here.
1137 	 * for regular files we have to do more work which we delegate
1138 	 * to sw_reg_strategy().
1139 	 */
1140 
1141 	switch (sdp->swd_vp->v_type) {
1142 	default:
1143 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1144 
1145 	case VBLK:
1146 
1147 		/*
1148 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1149 		 * on the swapdev (sdp).
1150 		 */
1151 		s = splbio();
1152 		bp->b_blkno = bn;		/* swapdev block number */
1153 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1154 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1155 
1156 		/*
1157 		 * if we are doing a write, we have to redirect the i/o on
1158 		 * drum's v_numoutput counter to the swapdevs.
1159 		 */
1160 		if ((bp->b_flags & B_READ) == 0) {
1161 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1162 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
1163 		}
1164 
1165 		/*
1166 		 * finally plug in swapdev vnode and start I/O
1167 		 */
1168 		bp->b_vp = vp;
1169 		splx(s);
1170 		VOP_STRATEGY(vp, bp);
1171 		return;
1172 
1173 	case VREG:
1174 		/*
1175 		 * delegate to sw_reg_strategy function.
1176 		 */
1177 		sw_reg_strategy(sdp, bp, bn);
1178 		return;
1179 	}
1180 	/* NOTREACHED */
1181 }
1182 
1183 /*
1184  * swread: the read function for the drum (just a call to physio)
1185  */
1186 /*ARGSUSED*/
1187 static int
1188 swread(dev_t dev, struct uio *uio, int ioflag)
1189 {
1190 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1191 
1192 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1193 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1194 }
1195 
1196 /*
1197  * swwrite: the write function for the drum (just a call to physio)
1198  */
1199 /*ARGSUSED*/
1200 static int
1201 swwrite(dev_t dev, struct uio *uio, int ioflag)
1202 {
1203 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1204 
1205 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1206 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1207 }
1208 
1209 const struct bdevsw swap_bdevsw = {
1210 	noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1211 };
1212 
1213 const struct cdevsw swap_cdevsw = {
1214 	nullopen, nullclose, swread, swwrite, noioctl,
1215 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1216 };
1217 
1218 /*
1219  * sw_reg_strategy: handle swap i/o to regular files
1220  */
1221 static void
1222 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1223 {
1224 	struct vnode	*vp;
1225 	struct vndxfer	*vnx;
1226 	daddr_t		nbn;
1227 	char 		*addr;
1228 	off_t		byteoff;
1229 	int		s, off, nra, error, sz, resid;
1230 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1231 
1232 	/*
1233 	 * allocate a vndxfer head for this transfer and point it to
1234 	 * our buffer.
1235 	 */
1236 	getvndxfer(vnx);
1237 	vnx->vx_flags = VX_BUSY;
1238 	vnx->vx_error = 0;
1239 	vnx->vx_pending = 0;
1240 	vnx->vx_bp = bp;
1241 	vnx->vx_sdp = sdp;
1242 
1243 	/*
1244 	 * setup for main loop where we read filesystem blocks into
1245 	 * our buffer.
1246 	 */
1247 	error = 0;
1248 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1249 	addr = bp->b_data;		/* current position in buffer */
1250 	byteoff = dbtob((uint64_t)bn);
1251 
1252 	for (resid = bp->b_resid; resid; resid -= sz) {
1253 		struct vndbuf	*nbp;
1254 
1255 		/*
1256 		 * translate byteoffset into block number.  return values:
1257 		 *   vp = vnode of underlying device
1258 		 *  nbn = new block number (on underlying vnode dev)
1259 		 *  nra = num blocks we can read-ahead (excludes requested
1260 		 *	block)
1261 		 */
1262 		nra = 0;
1263 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1264 				 	&vp, &nbn, &nra);
1265 
1266 		if (error == 0 && nbn == (daddr_t)-1) {
1267 			/*
1268 			 * this used to just set error, but that doesn't
1269 			 * do the right thing.  Instead, it causes random
1270 			 * memory errors.  The panic() should remain until
1271 			 * this condition doesn't destabilize the system.
1272 			 */
1273 #if 1
1274 			panic("sw_reg_strategy: swap to sparse file");
1275 #else
1276 			error = EIO;	/* failure */
1277 #endif
1278 		}
1279 
1280 		/*
1281 		 * punt if there was an error or a hole in the file.
1282 		 * we must wait for any i/o ops we have already started
1283 		 * to finish before returning.
1284 		 *
1285 		 * XXX we could deal with holes here but it would be
1286 		 * a hassle (in the write case).
1287 		 */
1288 		if (error) {
1289 			s = splbio();
1290 			vnx->vx_error = error;	/* pass error up */
1291 			goto out;
1292 		}
1293 
1294 		/*
1295 		 * compute the size ("sz") of this transfer (in bytes).
1296 		 */
1297 		off = byteoff % sdp->swd_bsize;
1298 		sz = (1 + nra) * sdp->swd_bsize - off;
1299 		if (sz > resid)
1300 			sz = resid;
1301 
1302 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1303 			    "vp %p/%p offset 0x%x/0x%x",
1304 			    sdp->swd_vp, vp, byteoff, nbn);
1305 
1306 		/*
1307 		 * now get a buf structure.   note that the vb_buf is
1308 		 * at the front of the nbp structure so that you can
1309 		 * cast pointers between the two structure easily.
1310 		 */
1311 		getvndbuf(nbp);
1312 		BUF_INIT(&nbp->vb_buf);
1313 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1314 		nbp->vb_buf.b_bcount   = sz;
1315 		nbp->vb_buf.b_bufsize  = sz;
1316 		nbp->vb_buf.b_error    = 0;
1317 		nbp->vb_buf.b_data     = addr;
1318 		nbp->vb_buf.b_lblkno   = 0;
1319 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1320 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1321 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1322 		nbp->vb_buf.b_vp       = vp;
1323 		if (vp->v_type == VBLK) {
1324 			nbp->vb_buf.b_dev = vp->v_rdev;
1325 		}
1326 
1327 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1328 
1329 		/*
1330 		 * Just sort by block number
1331 		 */
1332 		s = splbio();
1333 		if (vnx->vx_error != 0) {
1334 			putvndbuf(nbp);
1335 			goto out;
1336 		}
1337 		vnx->vx_pending++;
1338 
1339 		/* sort it in and start I/O if we are not over our limit */
1340 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1341 		sw_reg_start(sdp);
1342 		splx(s);
1343 
1344 		/*
1345 		 * advance to the next I/O
1346 		 */
1347 		byteoff += sz;
1348 		addr += sz;
1349 	}
1350 
1351 	s = splbio();
1352 
1353 out: /* Arrive here at splbio */
1354 	vnx->vx_flags &= ~VX_BUSY;
1355 	if (vnx->vx_pending == 0) {
1356 		if (vnx->vx_error != 0)
1357 			bp->b_error = vnx->vx_error;
1358 		putvndxfer(vnx);
1359 		biodone(bp);
1360 	}
1361 	splx(s);
1362 }
1363 
1364 /*
1365  * sw_reg_start: start an I/O request on the requested swapdev
1366  *
1367  * => reqs are sorted by b_rawblkno (above)
1368  */
1369 static void
1370 sw_reg_start(struct swapdev *sdp)
1371 {
1372 	struct buf	*bp;
1373 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1374 
1375 	/* recursion control */
1376 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1377 		return;
1378 
1379 	sdp->swd_flags |= SWF_BUSY;
1380 
1381 	while (sdp->swd_active < sdp->swd_maxactive) {
1382 		bp = BUFQ_GET(sdp->swd_tab);
1383 		if (bp == NULL)
1384 			break;
1385 		sdp->swd_active++;
1386 
1387 		UVMHIST_LOG(pdhist,
1388 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1389 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1390 		if ((bp->b_flags & B_READ) == 0)
1391 			V_INCR_NUMOUTPUT(bp->b_vp);
1392 
1393 		VOP_STRATEGY(bp->b_vp, bp);
1394 	}
1395 	sdp->swd_flags &= ~SWF_BUSY;
1396 }
1397 
1398 /*
1399  * sw_reg_biodone: one of our i/o's has completed
1400  */
1401 static void
1402 sw_reg_biodone(struct buf *bp)
1403 {
1404 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1405 }
1406 
1407 /*
1408  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1409  *
1410  * => note that we can recover the vndbuf struct by casting the buf ptr
1411  */
1412 static void
1413 sw_reg_iodone(struct work *wk, void *dummy)
1414 {
1415 	struct vndbuf *vbp = (void *)wk;
1416 	struct vndxfer *vnx = vbp->vb_xfer;
1417 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1418 	struct swapdev	*sdp = vnx->vx_sdp;
1419 	int s, resid, error;
1420 	KASSERT(&vbp->vb_buf.b_work == wk);
1421 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1422 
1423 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1424 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1425 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1426 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1427 
1428 	/*
1429 	 * protect vbp at splbio and update.
1430 	 */
1431 
1432 	s = splbio();
1433 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1434 	pbp->b_resid -= resid;
1435 	vnx->vx_pending--;
1436 
1437 	if (vbp->vb_buf.b_error != 0) {
1438 		/* pass error upward */
1439 		error = vbp->vb_buf.b_error;
1440 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1441 		vnx->vx_error = error;
1442 	}
1443 
1444 	/*
1445 	 * kill vbp structure
1446 	 */
1447 	putvndbuf(vbp);
1448 
1449 	/*
1450 	 * wrap up this transaction if it has run to completion or, in
1451 	 * case of an error, when all auxiliary buffers have returned.
1452 	 */
1453 	if (vnx->vx_error != 0) {
1454 		/* pass error upward */
1455 		pbp->b_error = vnx->vx_error;
1456 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1457 			putvndxfer(vnx);
1458 			biodone(pbp);
1459 		}
1460 	} else if (pbp->b_resid == 0) {
1461 		KASSERT(vnx->vx_pending == 0);
1462 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1463 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1464 			    pbp, vnx->vx_error, 0, 0);
1465 			putvndxfer(vnx);
1466 			biodone(pbp);
1467 		}
1468 	}
1469 
1470 	/*
1471 	 * done!   start next swapdev I/O if one is pending
1472 	 */
1473 	sdp->swd_active--;
1474 	sw_reg_start(sdp);
1475 	splx(s);
1476 }
1477 
1478 
1479 /*
1480  * uvm_swap_alloc: allocate space on swap
1481  *
1482  * => allocation is done "round robin" down the priority list, as we
1483  *	allocate in a priority we "rotate" the circle queue.
1484  * => space can be freed with uvm_swap_free
1485  * => we return the page slot number in /dev/drum (0 == invalid slot)
1486  * => we lock uvm_swap_data_lock
1487  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1488  */
1489 int
1490 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1491 {
1492 	struct swapdev *sdp;
1493 	struct swappri *spp;
1494 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1495 
1496 	/*
1497 	 * no swap devices configured yet?   definite failure.
1498 	 */
1499 	if (uvmexp.nswapdev < 1)
1500 		return 0;
1501 
1502 	/*
1503 	 * lock data lock, convert slots into blocks, and enter loop
1504 	 */
1505 	mutex_enter(&uvm_swap_data_lock);
1506 
1507 ReTry:	/* XXXMRG */
1508 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1509 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1510 			uint64_t result;
1511 
1512 			/* if it's not enabled, then we can't swap from it */
1513 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1514 				continue;
1515 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1516 				continue;
1517 			result = blist_alloc(sdp->swd_blist, *nslots);
1518 			if (result == BLIST_NONE) {
1519 				continue;
1520 			}
1521 			KASSERT(result < sdp->swd_drumsize);
1522 
1523 			/*
1524 			 * successful allocation!  now rotate the circleq.
1525 			 */
1526 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1527 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1528 			sdp->swd_npginuse += *nslots;
1529 			uvmexp.swpginuse += *nslots;
1530 			mutex_exit(&uvm_swap_data_lock);
1531 			/* done!  return drum slot number */
1532 			UVMHIST_LOG(pdhist,
1533 			    "success!  returning %d slots starting at %d",
1534 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1535 			return (result + sdp->swd_drumoffset);
1536 		}
1537 	}
1538 
1539 	/* XXXMRG: BEGIN HACK */
1540 	if (*nslots > 1 && lessok) {
1541 		*nslots = 1;
1542 		/* XXXMRG: ugh!  blist should support this for us */
1543 		goto ReTry;
1544 	}
1545 	/* XXXMRG: END HACK */
1546 
1547 	mutex_exit(&uvm_swap_data_lock);
1548 	return 0;
1549 }
1550 
1551 bool
1552 uvm_swapisfull(void)
1553 {
1554 	bool rv;
1555 
1556 	mutex_enter(&uvm_swap_data_lock);
1557 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1558 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1559 	mutex_exit(&uvm_swap_data_lock);
1560 
1561 	return (rv);
1562 }
1563 
1564 /*
1565  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1566  *
1567  * => we lock uvm_swap_data_lock
1568  */
1569 void
1570 uvm_swap_markbad(int startslot, int nslots)
1571 {
1572 	struct swapdev *sdp;
1573 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1574 
1575 	mutex_enter(&uvm_swap_data_lock);
1576 	sdp = swapdrum_getsdp(startslot);
1577 	KASSERT(sdp != NULL);
1578 
1579 	/*
1580 	 * we just keep track of how many pages have been marked bad
1581 	 * in this device, to make everything add up in swap_off().
1582 	 * we assume here that the range of slots will all be within
1583 	 * one swap device.
1584 	 */
1585 
1586 	KASSERT(uvmexp.swpgonly >= nslots);
1587 	uvmexp.swpgonly -= nslots;
1588 	sdp->swd_npgbad += nslots;
1589 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1590 	mutex_exit(&uvm_swap_data_lock);
1591 }
1592 
1593 /*
1594  * uvm_swap_free: free swap slots
1595  *
1596  * => this can be all or part of an allocation made by uvm_swap_alloc
1597  * => we lock uvm_swap_data_lock
1598  */
1599 void
1600 uvm_swap_free(int startslot, int nslots)
1601 {
1602 	struct swapdev *sdp;
1603 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1604 
1605 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1606 	    startslot, 0, 0);
1607 
1608 	/*
1609 	 * ignore attempts to free the "bad" slot.
1610 	 */
1611 
1612 	if (startslot == SWSLOT_BAD) {
1613 		return;
1614 	}
1615 
1616 	/*
1617 	 * convert drum slot offset back to sdp, free the blocks
1618 	 * in the extent, and return.   must hold pri lock to do
1619 	 * lookup and access the extent.
1620 	 */
1621 
1622 	mutex_enter(&uvm_swap_data_lock);
1623 	sdp = swapdrum_getsdp(startslot);
1624 	KASSERT(uvmexp.nswapdev >= 1);
1625 	KASSERT(sdp != NULL);
1626 	KASSERT(sdp->swd_npginuse >= nslots);
1627 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1628 	sdp->swd_npginuse -= nslots;
1629 	uvmexp.swpginuse -= nslots;
1630 	mutex_exit(&uvm_swap_data_lock);
1631 }
1632 
1633 /*
1634  * uvm_swap_put: put any number of pages into a contig place on swap
1635  *
1636  * => can be sync or async
1637  */
1638 
1639 int
1640 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1641 {
1642 	int error;
1643 
1644 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1645 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1646 	return error;
1647 }
1648 
1649 /*
1650  * uvm_swap_get: get a single page from swap
1651  *
1652  * => usually a sync op (from fault)
1653  */
1654 
1655 int
1656 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1657 {
1658 	int error;
1659 
1660 	uvmexp.nswget++;
1661 	KASSERT(flags & PGO_SYNCIO);
1662 	if (swslot == SWSLOT_BAD) {
1663 		return EIO;
1664 	}
1665 
1666 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1667 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1668 	if (error == 0) {
1669 
1670 		/*
1671 		 * this page is no longer only in swap.
1672 		 */
1673 
1674 		mutex_enter(&uvm_swap_data_lock);
1675 		KASSERT(uvmexp.swpgonly > 0);
1676 		uvmexp.swpgonly--;
1677 		mutex_exit(&uvm_swap_data_lock);
1678 	}
1679 	return error;
1680 }
1681 
1682 /*
1683  * uvm_swap_io: do an i/o operation to swap
1684  */
1685 
1686 static int
1687 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1688 {
1689 	daddr_t startblk;
1690 	struct	buf *bp;
1691 	vaddr_t kva;
1692 	int	error, s, mapinflags;
1693 	bool write, async;
1694 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1695 
1696 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1697 	    startslot, npages, flags, 0);
1698 
1699 	write = (flags & B_READ) == 0;
1700 	async = (flags & B_ASYNC) != 0;
1701 
1702 	/*
1703 	 * convert starting drum slot to block number
1704 	 */
1705 
1706 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1707 
1708 	/*
1709 	 * first, map the pages into the kernel.
1710 	 */
1711 
1712 	mapinflags = !write ?
1713 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1714 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1715 	kva = uvm_pagermapin(pps, npages, mapinflags);
1716 
1717 	/*
1718 	 * now allocate a buf for the i/o.
1719 	 */
1720 
1721 	bp = getiobuf();
1722 
1723 	/*
1724 	 * fill in the bp/sbp.   we currently route our i/o through
1725 	 * /dev/drum's vnode [swapdev_vp].
1726 	 */
1727 
1728 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1729 	bp->b_proc = &proc0;	/* XXX */
1730 	bp->b_vnbufs.le_next = NOLIST;
1731 	bp->b_data = (void *)kva;
1732 	bp->b_blkno = startblk;
1733 	bp->b_vp = swapdev_vp;
1734 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1735 
1736 	/*
1737 	 * bump v_numoutput (counter of number of active outputs).
1738 	 */
1739 
1740 	if (write) {
1741 		s = splbio();
1742 		V_INCR_NUMOUTPUT(swapdev_vp);
1743 		splx(s);
1744 	}
1745 
1746 	/*
1747 	 * for async ops we must set up the iodone handler.
1748 	 */
1749 
1750 	if (async) {
1751 		bp->b_flags |= B_CALL;
1752 		bp->b_iodone = uvm_aio_biodone;
1753 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1754 		if (curlwp == uvm.pagedaemon_lwp)
1755 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1756 		else
1757 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1758 	} else {
1759 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1760 	}
1761 	UVMHIST_LOG(pdhist,
1762 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1763 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1764 
1765 	/*
1766 	 * now we start the I/O, and if async, return.
1767 	 */
1768 
1769 	VOP_STRATEGY(swapdev_vp, bp);
1770 	if (async)
1771 		return 0;
1772 
1773 	/*
1774 	 * must be sync i/o.   wait for it to finish
1775 	 */
1776 
1777 	error = biowait(bp);
1778 
1779 	/*
1780 	 * kill the pager mapping
1781 	 */
1782 
1783 	uvm_pagermapout(kva, npages);
1784 
1785 	/*
1786 	 * now dispose of the buf and we're done.
1787 	 */
1788 
1789 	s = splbio();
1790 	if (write)
1791 		vwakeup(bp);
1792 	putiobuf(bp);
1793 	splx(s);
1794 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1795 	return (error);
1796 }
1797