xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 7f21db1c0118155e0dd40b75182e30c589d9f63e)
1 /*	$NetBSD: uvm_swap.c,v 1.149 2010/02/07 15:51:28 mlelstv Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.149 2010/02/07 15:51:28 mlelstv Exp $");
34 
35 #include "fs_nfs.h"
36 #include "opt_uvmhist.h"
37 #include "opt_compat_netbsd.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/proc.h>
46 #include <sys/namei.h>
47 #include <sys/disklabel.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59 #include <sys/kauth.h>
60 #include <sys/sysctl.h>
61 #include <sys/workqueue.h>
62 
63 #include <uvm/uvm.h>
64 
65 #include <miscfs/specfs/specdev.h>
66 
67 /*
68  * uvm_swap.c: manage configuration and i/o to swap space.
69  */
70 
71 /*
72  * swap space is managed in the following way:
73  *
74  * each swap partition or file is described by a "swapdev" structure.
75  * each "swapdev" structure contains a "swapent" structure which contains
76  * information that is passed up to the user (via system calls).
77  *
78  * each swap partition is assigned a "priority" (int) which controls
79  * swap parition usage.
80  *
81  * the system maintains a global data structure describing all swap
82  * partitions/files.   there is a sorted LIST of "swappri" structures
83  * which describe "swapdev"'s at that priority.   this LIST is headed
84  * by the "swap_priority" global var.    each "swappri" contains a
85  * CIRCLEQ of "swapdev" structures at that priority.
86  *
87  * locking:
88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
89  *    system call and prevents the swap priority list from changing
90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
92  *    structures including the priority list, the swapdev structures,
93  *    and the swapmap arena.
94  *
95  * each swap device has the following info:
96  *  - swap device in use (could be disabled, preventing future use)
97  *  - swap enabled (allows new allocations on swap)
98  *  - map info in /dev/drum
99  *  - vnode pointer
100  * for swap files only:
101  *  - block size
102  *  - max byte count in buffer
103  *  - buffer
104  *
105  * userland controls and configures swap with the swapctl(2) system call.
106  * the sys_swapctl performs the following operations:
107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
109  *	(passed in via "arg") of a size passed in via "misc" ... we load
110  *	the current swap config into the array. The actual work is done
111  *	in the uvm_swap_stats(9) function.
112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113  *	priority in "misc", start swapping on it.
114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
116  *	"misc")
117  */
118 
119 /*
120  * swapdev: describes a single swap partition/file
121  *
122  * note the following should be true:
123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125  */
126 struct swapdev {
127 	dev_t			swd_dev;	/* device id */
128 	int			swd_flags;	/* flags:inuse/enable/fake */
129 	int			swd_priority;	/* our priority */
130 	int			swd_nblks;	/* blocks in this device */
131 	char			*swd_path;	/* saved pathname of device */
132 	int			swd_pathlen;	/* length of pathname */
133 	int			swd_npages;	/* #pages we can use */
134 	int			swd_npginuse;	/* #pages in use */
135 	int			swd_npgbad;	/* #pages bad */
136 	int			swd_drumoffset;	/* page0 offset in drum */
137 	int			swd_drumsize;	/* #pages in drum */
138 	blist_t			swd_blist;	/* blist for this swapdev */
139 	struct vnode		*swd_vp;	/* backing vnode */
140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
141 
142 	int			swd_bsize;	/* blocksize (bytes) */
143 	int			swd_maxactive;	/* max active i/o reqs */
144 	struct bufq_state	*swd_tab;	/* buffer list */
145 	int			swd_active;	/* number of active buffers */
146 };
147 
148 /*
149  * swap device priority entry; the list is kept sorted on `spi_priority'.
150  */
151 struct swappri {
152 	int			spi_priority;     /* priority */
153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
154 	/* circleq of swapdevs at this priority */
155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
156 };
157 
158 /*
159  * The following two structures are used to keep track of data transfers
160  * on swap devices associated with regular files.
161  * NOTE: this code is more or less a copy of vnd.c; we use the same
162  * structure names here to ease porting..
163  */
164 struct vndxfer {
165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
166 	struct swapdev	*vx_sdp;
167 	int		vx_error;
168 	int		vx_pending;	/* # of pending aux buffers */
169 	int		vx_flags;
170 #define VX_BUSY		1
171 #define VX_DEAD		2
172 };
173 
174 struct vndbuf {
175 	struct buf	vb_buf;
176 	struct vndxfer	*vb_xfer;
177 };
178 
179 /*
180  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
181  * dev_t and has no se_path[] member.
182  */
183 struct swapent13 {
184 	int32_t	se13_dev;		/* device id */
185 	int	se13_flags;		/* flags */
186 	int	se13_nblks;		/* total blocks */
187 	int	se13_inuse;		/* blocks in use */
188 	int	se13_priority;		/* priority of this device */
189 };
190 
191 /*
192  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
193  * dev_t.
194  */
195 struct swapent50 {
196 	int32_t	se50_dev;		/* device id */
197 	int	se50_flags;		/* flags */
198 	int	se50_nblks;		/* total blocks */
199 	int	se50_inuse;		/* blocks in use */
200 	int	se50_priority;		/* priority of this device */
201 	char	se50_path[PATH_MAX+1];	/* path name */
202 };
203 
204 /*
205  * We keep a of pool vndbuf's and vndxfer structures.
206  */
207 static struct pool vndxfer_pool, vndbuf_pool;
208 
209 /*
210  * local variables
211  */
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
214 
215 /* list of all active swap devices [by priority] */
216 LIST_HEAD(swap_priority, swappri);
217 static struct swap_priority swap_priority;
218 
219 /* locks */
220 static krwlock_t swap_syscall_lock;
221 
222 /* workqueue and use counter for swap to regular files */
223 static int sw_reg_count = 0;
224 static struct workqueue *sw_reg_workqueue;
225 
226 /* tuneables */
227 u_int uvm_swapisfull_factor = 99;
228 
229 /*
230  * prototypes
231  */
232 static struct swapdev	*swapdrum_getsdp(int);
233 
234 static struct swapdev	*swaplist_find(struct vnode *, bool);
235 static void		 swaplist_insert(struct swapdev *,
236 					 struct swappri *, int);
237 static void		 swaplist_trim(void);
238 
239 static int swap_on(struct lwp *, struct swapdev *);
240 static int swap_off(struct lwp *, struct swapdev *);
241 
242 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
243 
244 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
245 static void sw_reg_biodone(struct buf *);
246 static void sw_reg_iodone(struct work *wk, void *dummy);
247 static void sw_reg_start(struct swapdev *);
248 
249 static int uvm_swap_io(struct vm_page **, int, int, int);
250 
251 /*
252  * uvm_swap_init: init the swap system data structures and locks
253  *
254  * => called at boot time from init_main.c after the filesystems
255  *	are brought up (which happens after uvm_init())
256  */
257 void
258 uvm_swap_init(void)
259 {
260 	UVMHIST_FUNC("uvm_swap_init");
261 
262 	UVMHIST_CALLED(pdhist);
263 	/*
264 	 * first, init the swap list, its counter, and its lock.
265 	 * then get a handle on the vnode for /dev/drum by using
266 	 * the its dev_t number ("swapdev", from MD conf.c).
267 	 */
268 
269 	LIST_INIT(&swap_priority);
270 	uvmexp.nswapdev = 0;
271 	rw_init(&swap_syscall_lock);
272 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
273 
274 	if (bdevvp(swapdev, &swapdev_vp))
275 		panic("%s: can't get vnode for swap device", __func__);
276 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
277 		panic("%s: can't lock swap device", __func__);
278 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
279 		panic("%s: can't open swap device", __func__);
280 	VOP_UNLOCK(swapdev_vp, 0);
281 
282 	/*
283 	 * create swap block resource map to map /dev/drum.   the range
284 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
285 	 * that block 0 is reserved (used to indicate an allocation
286 	 * failure, or no allocation).
287 	 */
288 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
289 	    VM_NOSLEEP, IPL_NONE);
290 	if (swapmap == 0) {
291 		panic("%s: vmem_create failed", __func__);
292 	}
293 
294 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
295 	    NULL, IPL_BIO);
296 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
297 	    NULL, IPL_BIO);
298 
299 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
300 }
301 
302 /*
303  * swaplist functions: functions that operate on the list of swap
304  * devices on the system.
305  */
306 
307 /*
308  * swaplist_insert: insert swap device "sdp" into the global list
309  *
310  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
311  * => caller must provide a newly malloc'd swappri structure (we will
312  *	FREE it if we don't need it... this it to prevent malloc blocking
313  *	here while adding swap)
314  */
315 static void
316 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
317 {
318 	struct swappri *spp, *pspp;
319 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
320 
321 	/*
322 	 * find entry at or after which to insert the new device.
323 	 */
324 	pspp = NULL;
325 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
326 		if (priority <= spp->spi_priority)
327 			break;
328 		pspp = spp;
329 	}
330 
331 	/*
332 	 * new priority?
333 	 */
334 	if (spp == NULL || spp->spi_priority != priority) {
335 		spp = newspp;  /* use newspp! */
336 		UVMHIST_LOG(pdhist, "created new swappri = %d",
337 			    priority, 0, 0, 0);
338 
339 		spp->spi_priority = priority;
340 		CIRCLEQ_INIT(&spp->spi_swapdev);
341 
342 		if (pspp)
343 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
344 		else
345 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
346 	} else {
347 	  	/* we don't need a new priority structure, free it */
348 		free(newspp, M_VMSWAP);
349 	}
350 
351 	/*
352 	 * priority found (or created).   now insert on the priority's
353 	 * circleq list and bump the total number of swapdevs.
354 	 */
355 	sdp->swd_priority = priority;
356 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
357 	uvmexp.nswapdev++;
358 }
359 
360 /*
361  * swaplist_find: find and optionally remove a swap device from the
362  *	global list.
363  *
364  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
365  * => we return the swapdev we found (and removed)
366  */
367 static struct swapdev *
368 swaplist_find(struct vnode *vp, bool remove)
369 {
370 	struct swapdev *sdp;
371 	struct swappri *spp;
372 
373 	/*
374 	 * search the lists for the requested vp
375 	 */
376 
377 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
378 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
379 			if (sdp->swd_vp == vp) {
380 				if (remove) {
381 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
382 					    sdp, swd_next);
383 					uvmexp.nswapdev--;
384 				}
385 				return(sdp);
386 			}
387 		}
388 	}
389 	return (NULL);
390 }
391 
392 /*
393  * swaplist_trim: scan priority list for empty priority entries and kill
394  *	them.
395  *
396  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
397  */
398 static void
399 swaplist_trim(void)
400 {
401 	struct swappri *spp, *nextspp;
402 
403 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
404 		nextspp = LIST_NEXT(spp, spi_swappri);
405 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
406 		    (void *)&spp->spi_swapdev)
407 			continue;
408 		LIST_REMOVE(spp, spi_swappri);
409 		free(spp, M_VMSWAP);
410 	}
411 }
412 
413 /*
414  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
415  *	to the "swapdev" that maps that section of the drum.
416  *
417  * => each swapdev takes one big contig chunk of the drum
418  * => caller must hold uvm_swap_data_lock
419  */
420 static struct swapdev *
421 swapdrum_getsdp(int pgno)
422 {
423 	struct swapdev *sdp;
424 	struct swappri *spp;
425 
426 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
427 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
428 			if (sdp->swd_flags & SWF_FAKE)
429 				continue;
430 			if (pgno >= sdp->swd_drumoffset &&
431 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 				return sdp;
433 			}
434 		}
435 	}
436 	return NULL;
437 }
438 
439 
440 /*
441  * sys_swapctl: main entry point for swapctl(2) system call
442  * 	[with two helper functions: swap_on and swap_off]
443  */
444 int
445 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
446 {
447 	/* {
448 		syscallarg(int) cmd;
449 		syscallarg(void *) arg;
450 		syscallarg(int) misc;
451 	} */
452 	struct vnode *vp;
453 	struct nameidata nd;
454 	struct swappri *spp;
455 	struct swapdev *sdp;
456 	struct swapent *sep;
457 #define SWAP_PATH_MAX (PATH_MAX + 1)
458 	char	*userpath;
459 	size_t	len;
460 	int	error, misc;
461 	int	priority;
462 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
463 
464 	misc = SCARG(uap, misc);
465 
466 	/*
467 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
468 	 */
469 	rw_enter(&swap_syscall_lock, RW_WRITER);
470 
471 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
472 	/*
473 	 * we handle the non-priv NSWAP and STATS request first.
474 	 *
475 	 * SWAP_NSWAP: return number of config'd swap devices
476 	 * [can also be obtained with uvmexp sysctl]
477 	 */
478 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
479 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
480 		    0, 0, 0);
481 		*retval = uvmexp.nswapdev;
482 		error = 0;
483 		goto out;
484 	}
485 
486 	/*
487 	 * SWAP_STATS: get stats on current # of configured swap devs
488 	 *
489 	 * note that the swap_priority list can't change as long
490 	 * as we are holding the swap_syscall_lock.  we don't want
491 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
492 	 * copyout() and we don't want to be holding that lock then!
493 	 */
494 	if (SCARG(uap, cmd) == SWAP_STATS
495 #if defined(COMPAT_50)
496 	    || SCARG(uap, cmd) == SWAP_STATS50
497 #endif
498 #if defined(COMPAT_13)
499 	    || SCARG(uap, cmd) == SWAP_STATS13
500 #endif
501 	    ) {
502 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
503 			misc = uvmexp.nswapdev;
504 #if defined(COMPAT_13)
505 		if (SCARG(uap, cmd) == SWAP_STATS13)
506 			len = sizeof(struct swapent13) * misc;
507 		else
508 #endif
509 #if defined(COMPAT_50)
510 		if (SCARG(uap, cmd) == SWAP_STATS50)
511 			len = sizeof(struct swapent50) * misc;
512 		else
513 #endif
514 			len = sizeof(struct swapent) * misc;
515 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
516 
517 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
518 		error = copyout(sep, SCARG(uap, arg), len);
519 
520 		free(sep, M_TEMP);
521 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
522 		goto out;
523 	}
524 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
525 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
526 
527 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
528 		goto out;
529 	}
530 
531 	/*
532 	 * all other requests require superuser privs.   verify.
533 	 */
534 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
535 	    0, NULL, NULL, NULL)))
536 		goto out;
537 
538 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
539 		/* drop the current dump device */
540 		dumpdev = NODEV;
541 		dumpcdev = NODEV;
542 		cpu_dumpconf();
543 		goto out;
544 	}
545 
546 	/*
547 	 * at this point we expect a path name in arg.   we will
548 	 * use namei() to gain a vnode reference (vref), and lock
549 	 * the vnode (VOP_LOCK).
550 	 *
551 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
552 	 * miniroot)
553 	 */
554 	if (SCARG(uap, arg) == NULL) {
555 		vp = rootvp;		/* miniroot */
556 		if (vget(vp, LK_EXCLUSIVE)) {
557 			error = EBUSY;
558 			goto out;
559 		}
560 		if (SCARG(uap, cmd) == SWAP_ON &&
561 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
562 			panic("swapctl: miniroot copy failed");
563 	} else {
564 		int	space;
565 		char	*where;
566 
567 		if (SCARG(uap, cmd) == SWAP_ON) {
568 			if ((error = copyinstr(SCARG(uap, arg), userpath,
569 			    SWAP_PATH_MAX, &len)))
570 				goto out;
571 			space = UIO_SYSSPACE;
572 			where = userpath;
573 		} else {
574 			space = UIO_USERSPACE;
575 			where = (char *)SCARG(uap, arg);
576 		}
577 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
578 		    space, where);
579 		if ((error = namei(&nd)))
580 			goto out;
581 		vp = nd.ni_vp;
582 	}
583 	/* note: "vp" is referenced and locked */
584 
585 	error = 0;		/* assume no error */
586 	switch(SCARG(uap, cmd)) {
587 
588 	case SWAP_DUMPDEV:
589 		if (vp->v_type != VBLK) {
590 			error = ENOTBLK;
591 			break;
592 		}
593 		if (bdevsw_lookup(vp->v_rdev)) {
594 			dumpdev = vp->v_rdev;
595 			dumpcdev = devsw_blk2chr(dumpdev);
596 		} else
597 			dumpdev = NODEV;
598 		cpu_dumpconf();
599 		break;
600 
601 	case SWAP_CTL:
602 		/*
603 		 * get new priority, remove old entry (if any) and then
604 		 * reinsert it in the correct place.  finally, prune out
605 		 * any empty priority structures.
606 		 */
607 		priority = SCARG(uap, misc);
608 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
609 		mutex_enter(&uvm_swap_data_lock);
610 		if ((sdp = swaplist_find(vp, true)) == NULL) {
611 			error = ENOENT;
612 		} else {
613 			swaplist_insert(sdp, spp, priority);
614 			swaplist_trim();
615 		}
616 		mutex_exit(&uvm_swap_data_lock);
617 		if (error)
618 			free(spp, M_VMSWAP);
619 		break;
620 
621 	case SWAP_ON:
622 
623 		/*
624 		 * check for duplicates.   if none found, then insert a
625 		 * dummy entry on the list to prevent someone else from
626 		 * trying to enable this device while we are working on
627 		 * it.
628 		 */
629 
630 		priority = SCARG(uap, misc);
631 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
632 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
633 		memset(sdp, 0, sizeof(*sdp));
634 		sdp->swd_flags = SWF_FAKE;
635 		sdp->swd_vp = vp;
636 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
637 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
638 		mutex_enter(&uvm_swap_data_lock);
639 		if (swaplist_find(vp, false) != NULL) {
640 			error = EBUSY;
641 			mutex_exit(&uvm_swap_data_lock);
642 			bufq_free(sdp->swd_tab);
643 			free(sdp, M_VMSWAP);
644 			free(spp, M_VMSWAP);
645 			break;
646 		}
647 		swaplist_insert(sdp, spp, priority);
648 		mutex_exit(&uvm_swap_data_lock);
649 
650 		sdp->swd_pathlen = len;
651 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
652 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
653 			panic("swapctl: copystr");
654 
655 		/*
656 		 * we've now got a FAKE placeholder in the swap list.
657 		 * now attempt to enable swap on it.  if we fail, undo
658 		 * what we've done and kill the fake entry we just inserted.
659 		 * if swap_on is a success, it will clear the SWF_FAKE flag
660 		 */
661 
662 		if ((error = swap_on(l, sdp)) != 0) {
663 			mutex_enter(&uvm_swap_data_lock);
664 			(void) swaplist_find(vp, true);  /* kill fake entry */
665 			swaplist_trim();
666 			mutex_exit(&uvm_swap_data_lock);
667 			bufq_free(sdp->swd_tab);
668 			free(sdp->swd_path, M_VMSWAP);
669 			free(sdp, M_VMSWAP);
670 			break;
671 		}
672 		break;
673 
674 	case SWAP_OFF:
675 		mutex_enter(&uvm_swap_data_lock);
676 		if ((sdp = swaplist_find(vp, false)) == NULL) {
677 			mutex_exit(&uvm_swap_data_lock);
678 			error = ENXIO;
679 			break;
680 		}
681 
682 		/*
683 		 * If a device isn't in use or enabled, we
684 		 * can't stop swapping from it (again).
685 		 */
686 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
687 			mutex_exit(&uvm_swap_data_lock);
688 			error = EBUSY;
689 			break;
690 		}
691 
692 		/*
693 		 * do the real work.
694 		 */
695 		error = swap_off(l, sdp);
696 		break;
697 
698 	default:
699 		error = EINVAL;
700 	}
701 
702 	/*
703 	 * done!  release the ref gained by namei() and unlock.
704 	 */
705 	vput(vp);
706 
707 out:
708 	free(userpath, M_TEMP);
709 	rw_exit(&swap_syscall_lock);
710 
711 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
712 	return (error);
713 }
714 
715 /*
716  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
717  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
718  * emulation to use it directly without going through sys_swapctl().
719  * The problem with using sys_swapctl() there is that it involves
720  * copying the swapent array to the stackgap, and this array's size
721  * is not known at build time. Hence it would not be possible to
722  * ensure it would fit in the stackgap in any case.
723  */
724 void
725 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
726 {
727 
728 	rw_enter(&swap_syscall_lock, RW_READER);
729 	uvm_swap_stats_locked(cmd, sep, sec, retval);
730 	rw_exit(&swap_syscall_lock);
731 }
732 
733 static void
734 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
735 {
736 	struct swappri *spp;
737 	struct swapdev *sdp;
738 	int count = 0;
739 
740 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
741 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
742 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
743 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
744 			int inuse;
745 
746 		  	/*
747 			 * backwards compatibility for system call.
748 			 * For NetBSD 1.3 and 5.0, we have to use
749 			 * the 32 bit dev_t.  For 5.0 and -current
750 			 * we have to add the path.
751 			 */
752 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
753 			    PAGE_SHIFT);
754 
755 #if defined(COMPAT_13) || defined(COMPAT_50)
756 			if (cmd == SWAP_STATS) {
757 #endif
758 				sep->se_dev = sdp->swd_dev;
759 				sep->se_flags = sdp->swd_flags;
760 				sep->se_nblks = sdp->swd_nblks;
761 				sep->se_inuse = inuse;
762 				sep->se_priority = sdp->swd_priority;
763 				memcpy(&sep->se_path, sdp->swd_path,
764 				       sizeof sep->se_path);
765 				sep++;
766 #if defined(COMPAT_13)
767 			} else if (cmd == SWAP_STATS13) {
768 				struct swapent13 *sep13 =
769 				    (struct swapent13 *)sep;
770 
771 				sep13->se13_dev = sdp->swd_dev;
772 				sep13->se13_flags = sdp->swd_flags;
773 				sep13->se13_nblks = sdp->swd_nblks;
774 				sep13->se13_inuse = inuse;
775 				sep13->se13_priority = sdp->swd_priority;
776 				sep = (struct swapent *)(sep13 + 1);
777 #endif
778 #if defined(COMPAT_50)
779 			} else if (cmd == SWAP_STATS50) {
780 				struct swapent50 *sep50 =
781 				    (struct swapent50 *)sep;
782 
783 				sep50->se50_dev = sdp->swd_dev;
784 				sep50->se50_flags = sdp->swd_flags;
785 				sep50->se50_nblks = sdp->swd_nblks;
786 				sep50->se50_inuse = inuse;
787 				sep50->se50_priority = sdp->swd_priority;
788 				memcpy(&sep50->se50_path, sdp->swd_path,
789 				       sizeof sep50->se50_path);
790 				sep = (struct swapent *)(sep50 + 1);
791 #endif
792 #if defined(COMPAT_13) || defined(COMPAT_50)
793 			}
794 #endif
795 			count++;
796 		}
797 	}
798 
799 	*retval = count;
800 	return;
801 }
802 
803 /*
804  * swap_on: attempt to enable a swapdev for swapping.   note that the
805  *	swapdev is already on the global list, but disabled (marked
806  *	SWF_FAKE).
807  *
808  * => we avoid the start of the disk (to protect disk labels)
809  * => we also avoid the miniroot, if we are swapping to root.
810  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
811  *	if needed.
812  */
813 static int
814 swap_on(struct lwp *l, struct swapdev *sdp)
815 {
816 	struct vnode *vp;
817 	int error, npages, nblocks, size;
818 	long addr;
819 	u_long result;
820 	struct vattr va;
821 #ifdef NFS
822 	extern int (**nfsv2_vnodeop_p)(void *);
823 #endif /* NFS */
824 	const struct bdevsw *bdev;
825 	dev_t dev;
826 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
827 
828 	/*
829 	 * we want to enable swapping on sdp.   the swd_vp contains
830 	 * the vnode we want (locked and ref'd), and the swd_dev
831 	 * contains the dev_t of the file, if it a block device.
832 	 */
833 
834 	vp = sdp->swd_vp;
835 	dev = sdp->swd_dev;
836 
837 	/*
838 	 * open the swap file (mostly useful for block device files to
839 	 * let device driver know what is up).
840 	 *
841 	 * we skip the open/close for root on swap because the root
842 	 * has already been opened when root was mounted (mountroot).
843 	 */
844 	if (vp != rootvp) {
845 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
846 			return (error);
847 	}
848 
849 	/* XXX this only works for block devices */
850 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
851 
852 	/*
853 	 * we now need to determine the size of the swap area.   for
854 	 * block specials we can call the d_psize function.
855 	 * for normal files, we must stat [get attrs].
856 	 *
857 	 * we put the result in nblks.
858 	 * for normal files, we also want the filesystem block size
859 	 * (which we get with statfs).
860 	 */
861 	switch (vp->v_type) {
862 	case VBLK:
863 		bdev = bdevsw_lookup(dev);
864 		if (bdev == NULL || bdev->d_psize == NULL ||
865 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
866 			error = ENXIO;
867 			goto bad;
868 		}
869 		break;
870 
871 	case VREG:
872 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
873 			goto bad;
874 		nblocks = (int)btodb(va.va_size);
875 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
876 		/*
877 		 * limit the max # of outstanding I/O requests we issue
878 		 * at any one time.   take it easy on NFS servers.
879 		 */
880 #ifdef NFS
881 		if (vp->v_op == nfsv2_vnodeop_p)
882 			sdp->swd_maxactive = 2; /* XXX */
883 		else
884 #endif /* NFS */
885 			sdp->swd_maxactive = 8; /* XXX */
886 		break;
887 
888 	default:
889 		error = ENXIO;
890 		goto bad;
891 	}
892 
893 	/*
894 	 * save nblocks in a safe place and convert to pages.
895 	 */
896 
897 	sdp->swd_nblks = nblocks;
898 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
899 
900 	/*
901 	 * for block special files, we want to make sure that leave
902 	 * the disklabel and bootblocks alone, so we arrange to skip
903 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
904 	 * note that because of this the "size" can be less than the
905 	 * actual number of blocks on the device.
906 	 */
907 	if (vp->v_type == VBLK) {
908 		/* we use pages 1 to (size - 1) [inclusive] */
909 		size = npages - 1;
910 		addr = 1;
911 	} else {
912 		/* we use pages 0 to (size - 1) [inclusive] */
913 		size = npages;
914 		addr = 0;
915 	}
916 
917 	/*
918 	 * make sure we have enough blocks for a reasonable sized swap
919 	 * area.   we want at least one page.
920 	 */
921 
922 	if (size < 1) {
923 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
924 		error = EINVAL;
925 		goto bad;
926 	}
927 
928 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
929 
930 	/*
931 	 * now we need to allocate an extent to manage this swap device
932 	 */
933 
934 	sdp->swd_blist = blist_create(npages);
935 	/* mark all expect the `saved' region free. */
936 	blist_free(sdp->swd_blist, addr, size);
937 
938 	/*
939 	 * if the vnode we are swapping to is the root vnode
940 	 * (i.e. we are swapping to the miniroot) then we want
941 	 * to make sure we don't overwrite it.   do a statfs to
942 	 * find its size and skip over it.
943 	 */
944 	if (vp == rootvp) {
945 		struct mount *mp;
946 		struct statvfs *sp;
947 		int rootblocks, rootpages;
948 
949 		mp = rootvnode->v_mount;
950 		sp = &mp->mnt_stat;
951 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
952 		/*
953 		 * XXX: sp->f_blocks isn't the total number of
954 		 * blocks in the filesystem, it's the number of
955 		 * data blocks.  so, our rootblocks almost
956 		 * definitely underestimates the total size
957 		 * of the filesystem - how badly depends on the
958 		 * details of the filesystem type.  there isn't
959 		 * an obvious way to deal with this cleanly
960 		 * and perfectly, so for now we just pad our
961 		 * rootblocks estimate with an extra 5 percent.
962 		 */
963 		rootblocks += (rootblocks >> 5) +
964 			(rootblocks >> 6) +
965 			(rootblocks >> 7);
966 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
967 		if (rootpages > size)
968 			panic("swap_on: miniroot larger than swap?");
969 
970 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
971 			panic("swap_on: unable to preserve miniroot");
972 		}
973 
974 		size -= rootpages;
975 		printf("Preserved %d pages of miniroot ", rootpages);
976 		printf("leaving %d pages of swap\n", size);
977 	}
978 
979 	/*
980 	 * add a ref to vp to reflect usage as a swap device.
981 	 */
982 	vref(vp);
983 
984 	/*
985 	 * now add the new swapdev to the drum and enable.
986 	 */
987 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
988 	if (result == 0)
989 		panic("swapdrum_add");
990 	/*
991 	 * If this is the first regular swap create the workqueue.
992 	 * => Protected by swap_syscall_lock.
993 	 */
994 	if (vp->v_type != VBLK) {
995 		if (sw_reg_count++ == 0) {
996 			KASSERT(sw_reg_workqueue == NULL);
997 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
998 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
999 				panic("%s: workqueue_create failed", __func__);
1000 		}
1001 	}
1002 
1003 	sdp->swd_drumoffset = (int)result;
1004 	sdp->swd_drumsize = npages;
1005 	sdp->swd_npages = size;
1006 	mutex_enter(&uvm_swap_data_lock);
1007 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1008 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1009 	uvmexp.swpages += size;
1010 	uvmexp.swpgavail += size;
1011 	mutex_exit(&uvm_swap_data_lock);
1012 	return (0);
1013 
1014 	/*
1015 	 * failure: clean up and return error.
1016 	 */
1017 
1018 bad:
1019 	if (sdp->swd_blist) {
1020 		blist_destroy(sdp->swd_blist);
1021 	}
1022 	if (vp != rootvp) {
1023 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1024 	}
1025 	return (error);
1026 }
1027 
1028 /*
1029  * swap_off: stop swapping on swapdev
1030  *
1031  * => swap data should be locked, we will unlock.
1032  */
1033 static int
1034 swap_off(struct lwp *l, struct swapdev *sdp)
1035 {
1036 	int npages = sdp->swd_npages;
1037 	int error = 0;
1038 
1039 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1040 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1041 
1042 	/* disable the swap area being removed */
1043 	sdp->swd_flags &= ~SWF_ENABLE;
1044 	uvmexp.swpgavail -= npages;
1045 	mutex_exit(&uvm_swap_data_lock);
1046 
1047 	/*
1048 	 * the idea is to find all the pages that are paged out to this
1049 	 * device, and page them all in.  in uvm, swap-backed pageable
1050 	 * memory can take two forms: aobjs and anons.  call the
1051 	 * swapoff hook for each subsystem to bring in pages.
1052 	 */
1053 
1054 	if (uao_swap_off(sdp->swd_drumoffset,
1055 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1056 	    amap_swap_off(sdp->swd_drumoffset,
1057 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1058 		error = ENOMEM;
1059 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1060 		error = EBUSY;
1061 	}
1062 
1063 	if (error) {
1064 		mutex_enter(&uvm_swap_data_lock);
1065 		sdp->swd_flags |= SWF_ENABLE;
1066 		uvmexp.swpgavail += npages;
1067 		mutex_exit(&uvm_swap_data_lock);
1068 
1069 		return error;
1070 	}
1071 
1072 	/*
1073 	 * If this is the last regular swap destroy the workqueue.
1074 	 * => Protected by swap_syscall_lock.
1075 	 */
1076 	if (sdp->swd_vp->v_type != VBLK) {
1077 		KASSERT(sw_reg_count > 0);
1078 		KASSERT(sw_reg_workqueue != NULL);
1079 		if (--sw_reg_count == 0) {
1080 			workqueue_destroy(sw_reg_workqueue);
1081 			sw_reg_workqueue = NULL;
1082 		}
1083 	}
1084 
1085 	/*
1086 	 * done with the vnode.
1087 	 * drop our ref on the vnode before calling VOP_CLOSE()
1088 	 * so that spec_close() can tell if this is the last close.
1089 	 */
1090 	vrele(sdp->swd_vp);
1091 	if (sdp->swd_vp != rootvp) {
1092 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1093 	}
1094 
1095 	mutex_enter(&uvm_swap_data_lock);
1096 	uvmexp.swpages -= npages;
1097 	uvmexp.swpginuse -= sdp->swd_npgbad;
1098 
1099 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1100 		panic("%s: swapdev not in list", __func__);
1101 	swaplist_trim();
1102 	mutex_exit(&uvm_swap_data_lock);
1103 
1104 	/*
1105 	 * free all resources!
1106 	 */
1107 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1108 	blist_destroy(sdp->swd_blist);
1109 	bufq_free(sdp->swd_tab);
1110 	free(sdp, M_VMSWAP);
1111 	return (0);
1112 }
1113 
1114 /*
1115  * /dev/drum interface and i/o functions
1116  */
1117 
1118 /*
1119  * swstrategy: perform I/O on the drum
1120  *
1121  * => we must map the i/o request from the drum to the correct swapdev.
1122  */
1123 static void
1124 swstrategy(struct buf *bp)
1125 {
1126 	struct swapdev *sdp;
1127 	struct vnode *vp;
1128 	int pageno, bn;
1129 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1130 
1131 	/*
1132 	 * convert block number to swapdev.   note that swapdev can't
1133 	 * be yanked out from under us because we are holding resources
1134 	 * in it (i.e. the blocks we are doing I/O on).
1135 	 */
1136 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1137 	mutex_enter(&uvm_swap_data_lock);
1138 	sdp = swapdrum_getsdp(pageno);
1139 	mutex_exit(&uvm_swap_data_lock);
1140 	if (sdp == NULL) {
1141 		bp->b_error = EINVAL;
1142 		biodone(bp);
1143 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1144 		return;
1145 	}
1146 
1147 	/*
1148 	 * convert drum page number to block number on this swapdev.
1149 	 */
1150 
1151 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1152 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1153 
1154 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1155 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1156 		sdp->swd_drumoffset, bn, bp->b_bcount);
1157 
1158 	/*
1159 	 * for block devices we finish up here.
1160 	 * for regular files we have to do more work which we delegate
1161 	 * to sw_reg_strategy().
1162 	 */
1163 
1164 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1165 	switch (vp->v_type) {
1166 	default:
1167 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1168 
1169 	case VBLK:
1170 
1171 		/*
1172 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1173 		 * on the swapdev (sdp).
1174 		 */
1175 		bp->b_blkno = bn;		/* swapdev block number */
1176 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1177 
1178 		/*
1179 		 * if we are doing a write, we have to redirect the i/o on
1180 		 * drum's v_numoutput counter to the swapdevs.
1181 		 */
1182 		if ((bp->b_flags & B_READ) == 0) {
1183 			mutex_enter(bp->b_objlock);
1184 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1185 			mutex_exit(bp->b_objlock);
1186 			mutex_enter(&vp->v_interlock);
1187 			vp->v_numoutput++;	/* put it on swapdev */
1188 			mutex_exit(&vp->v_interlock);
1189 		}
1190 
1191 		/*
1192 		 * finally plug in swapdev vnode and start I/O
1193 		 */
1194 		bp->b_vp = vp;
1195 		bp->b_objlock = &vp->v_interlock;
1196 		VOP_STRATEGY(vp, bp);
1197 		return;
1198 
1199 	case VREG:
1200 		/*
1201 		 * delegate to sw_reg_strategy function.
1202 		 */
1203 		sw_reg_strategy(sdp, bp, bn);
1204 		return;
1205 	}
1206 	/* NOTREACHED */
1207 }
1208 
1209 /*
1210  * swread: the read function for the drum (just a call to physio)
1211  */
1212 /*ARGSUSED*/
1213 static int
1214 swread(dev_t dev, struct uio *uio, int ioflag)
1215 {
1216 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1217 
1218 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1219 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1220 }
1221 
1222 /*
1223  * swwrite: the write function for the drum (just a call to physio)
1224  */
1225 /*ARGSUSED*/
1226 static int
1227 swwrite(dev_t dev, struct uio *uio, int ioflag)
1228 {
1229 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1230 
1231 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1232 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1233 }
1234 
1235 const struct bdevsw swap_bdevsw = {
1236 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1237 };
1238 
1239 const struct cdevsw swap_cdevsw = {
1240 	nullopen, nullclose, swread, swwrite, noioctl,
1241 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1242 };
1243 
1244 /*
1245  * sw_reg_strategy: handle swap i/o to regular files
1246  */
1247 static void
1248 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1249 {
1250 	struct vnode	*vp;
1251 	struct vndxfer	*vnx;
1252 	daddr_t		nbn;
1253 	char 		*addr;
1254 	off_t		byteoff;
1255 	int		s, off, nra, error, sz, resid;
1256 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1257 
1258 	/*
1259 	 * allocate a vndxfer head for this transfer and point it to
1260 	 * our buffer.
1261 	 */
1262 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1263 	vnx->vx_flags = VX_BUSY;
1264 	vnx->vx_error = 0;
1265 	vnx->vx_pending = 0;
1266 	vnx->vx_bp = bp;
1267 	vnx->vx_sdp = sdp;
1268 
1269 	/*
1270 	 * setup for main loop where we read filesystem blocks into
1271 	 * our buffer.
1272 	 */
1273 	error = 0;
1274 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1275 	addr = bp->b_data;		/* current position in buffer */
1276 	byteoff = dbtob((uint64_t)bn);
1277 
1278 	for (resid = bp->b_resid; resid; resid -= sz) {
1279 		struct vndbuf	*nbp;
1280 
1281 		/*
1282 		 * translate byteoffset into block number.  return values:
1283 		 *   vp = vnode of underlying device
1284 		 *  nbn = new block number (on underlying vnode dev)
1285 		 *  nra = num blocks we can read-ahead (excludes requested
1286 		 *	block)
1287 		 */
1288 		nra = 0;
1289 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1290 				 	&vp, &nbn, &nra);
1291 
1292 		if (error == 0 && nbn == (daddr_t)-1) {
1293 			/*
1294 			 * this used to just set error, but that doesn't
1295 			 * do the right thing.  Instead, it causes random
1296 			 * memory errors.  The panic() should remain until
1297 			 * this condition doesn't destabilize the system.
1298 			 */
1299 #if 1
1300 			panic("%s: swap to sparse file", __func__);
1301 #else
1302 			error = EIO;	/* failure */
1303 #endif
1304 		}
1305 
1306 		/*
1307 		 * punt if there was an error or a hole in the file.
1308 		 * we must wait for any i/o ops we have already started
1309 		 * to finish before returning.
1310 		 *
1311 		 * XXX we could deal with holes here but it would be
1312 		 * a hassle (in the write case).
1313 		 */
1314 		if (error) {
1315 			s = splbio();
1316 			vnx->vx_error = error;	/* pass error up */
1317 			goto out;
1318 		}
1319 
1320 		/*
1321 		 * compute the size ("sz") of this transfer (in bytes).
1322 		 */
1323 		off = byteoff % sdp->swd_bsize;
1324 		sz = (1 + nra) * sdp->swd_bsize - off;
1325 		if (sz > resid)
1326 			sz = resid;
1327 
1328 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1329 			    "vp %p/%p offset 0x%x/0x%x",
1330 			    sdp->swd_vp, vp, byteoff, nbn);
1331 
1332 		/*
1333 		 * now get a buf structure.   note that the vb_buf is
1334 		 * at the front of the nbp structure so that you can
1335 		 * cast pointers between the two structure easily.
1336 		 */
1337 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1338 		buf_init(&nbp->vb_buf);
1339 		nbp->vb_buf.b_flags    = bp->b_flags;
1340 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1341 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1342 		nbp->vb_buf.b_bcount   = sz;
1343 		nbp->vb_buf.b_bufsize  = sz;
1344 		nbp->vb_buf.b_error    = 0;
1345 		nbp->vb_buf.b_data     = addr;
1346 		nbp->vb_buf.b_lblkno   = 0;
1347 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1348 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1349 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1350 		nbp->vb_buf.b_vp       = vp;
1351 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
1352 		if (vp->v_type == VBLK) {
1353 			nbp->vb_buf.b_dev = vp->v_rdev;
1354 		}
1355 
1356 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1357 
1358 		/*
1359 		 * Just sort by block number
1360 		 */
1361 		s = splbio();
1362 		if (vnx->vx_error != 0) {
1363 			buf_destroy(&nbp->vb_buf);
1364 			pool_put(&vndbuf_pool, nbp);
1365 			goto out;
1366 		}
1367 		vnx->vx_pending++;
1368 
1369 		/* sort it in and start I/O if we are not over our limit */
1370 		/* XXXAD locking */
1371 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1372 		sw_reg_start(sdp);
1373 		splx(s);
1374 
1375 		/*
1376 		 * advance to the next I/O
1377 		 */
1378 		byteoff += sz;
1379 		addr += sz;
1380 	}
1381 
1382 	s = splbio();
1383 
1384 out: /* Arrive here at splbio */
1385 	vnx->vx_flags &= ~VX_BUSY;
1386 	if (vnx->vx_pending == 0) {
1387 		error = vnx->vx_error;
1388 		pool_put(&vndxfer_pool, vnx);
1389 		bp->b_error = error;
1390 		biodone(bp);
1391 	}
1392 	splx(s);
1393 }
1394 
1395 /*
1396  * sw_reg_start: start an I/O request on the requested swapdev
1397  *
1398  * => reqs are sorted by b_rawblkno (above)
1399  */
1400 static void
1401 sw_reg_start(struct swapdev *sdp)
1402 {
1403 	struct buf	*bp;
1404 	struct vnode	*vp;
1405 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1406 
1407 	/* recursion control */
1408 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1409 		return;
1410 
1411 	sdp->swd_flags |= SWF_BUSY;
1412 
1413 	while (sdp->swd_active < sdp->swd_maxactive) {
1414 		bp = bufq_get(sdp->swd_tab);
1415 		if (bp == NULL)
1416 			break;
1417 		sdp->swd_active++;
1418 
1419 		UVMHIST_LOG(pdhist,
1420 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1421 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1422 		vp = bp->b_vp;
1423 		KASSERT(bp->b_objlock == &vp->v_interlock);
1424 		if ((bp->b_flags & B_READ) == 0) {
1425 			mutex_enter(&vp->v_interlock);
1426 			vp->v_numoutput++;
1427 			mutex_exit(&vp->v_interlock);
1428 		}
1429 		VOP_STRATEGY(vp, bp);
1430 	}
1431 	sdp->swd_flags &= ~SWF_BUSY;
1432 }
1433 
1434 /*
1435  * sw_reg_biodone: one of our i/o's has completed
1436  */
1437 static void
1438 sw_reg_biodone(struct buf *bp)
1439 {
1440 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1441 }
1442 
1443 /*
1444  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1445  *
1446  * => note that we can recover the vndbuf struct by casting the buf ptr
1447  */
1448 static void
1449 sw_reg_iodone(struct work *wk, void *dummy)
1450 {
1451 	struct vndbuf *vbp = (void *)wk;
1452 	struct vndxfer *vnx = vbp->vb_xfer;
1453 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1454 	struct swapdev	*sdp = vnx->vx_sdp;
1455 	int s, resid, error;
1456 	KASSERT(&vbp->vb_buf.b_work == wk);
1457 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1458 
1459 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1460 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1461 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1462 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1463 
1464 	/*
1465 	 * protect vbp at splbio and update.
1466 	 */
1467 
1468 	s = splbio();
1469 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1470 	pbp->b_resid -= resid;
1471 	vnx->vx_pending--;
1472 
1473 	if (vbp->vb_buf.b_error != 0) {
1474 		/* pass error upward */
1475 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1476 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1477 		vnx->vx_error = error;
1478 	}
1479 
1480 	/*
1481 	 * kill vbp structure
1482 	 */
1483 	buf_destroy(&vbp->vb_buf);
1484 	pool_put(&vndbuf_pool, vbp);
1485 
1486 	/*
1487 	 * wrap up this transaction if it has run to completion or, in
1488 	 * case of an error, when all auxiliary buffers have returned.
1489 	 */
1490 	if (vnx->vx_error != 0) {
1491 		/* pass error upward */
1492 		error = vnx->vx_error;
1493 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1494 			pbp->b_error = error;
1495 			biodone(pbp);
1496 			pool_put(&vndxfer_pool, vnx);
1497 		}
1498 	} else if (pbp->b_resid == 0) {
1499 		KASSERT(vnx->vx_pending == 0);
1500 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1501 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1502 			    pbp, vnx->vx_error, 0, 0);
1503 			biodone(pbp);
1504 			pool_put(&vndxfer_pool, vnx);
1505 		}
1506 	}
1507 
1508 	/*
1509 	 * done!   start next swapdev I/O if one is pending
1510 	 */
1511 	sdp->swd_active--;
1512 	sw_reg_start(sdp);
1513 	splx(s);
1514 }
1515 
1516 
1517 /*
1518  * uvm_swap_alloc: allocate space on swap
1519  *
1520  * => allocation is done "round robin" down the priority list, as we
1521  *	allocate in a priority we "rotate" the circle queue.
1522  * => space can be freed with uvm_swap_free
1523  * => we return the page slot number in /dev/drum (0 == invalid slot)
1524  * => we lock uvm_swap_data_lock
1525  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1526  */
1527 int
1528 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1529 {
1530 	struct swapdev *sdp;
1531 	struct swappri *spp;
1532 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1533 
1534 	/*
1535 	 * no swap devices configured yet?   definite failure.
1536 	 */
1537 	if (uvmexp.nswapdev < 1)
1538 		return 0;
1539 
1540 	/*
1541 	 * lock data lock, convert slots into blocks, and enter loop
1542 	 */
1543 	mutex_enter(&uvm_swap_data_lock);
1544 
1545 ReTry:	/* XXXMRG */
1546 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1547 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1548 			uint64_t result;
1549 
1550 			/* if it's not enabled, then we can't swap from it */
1551 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1552 				continue;
1553 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1554 				continue;
1555 			result = blist_alloc(sdp->swd_blist, *nslots);
1556 			if (result == BLIST_NONE) {
1557 				continue;
1558 			}
1559 			KASSERT(result < sdp->swd_drumsize);
1560 
1561 			/*
1562 			 * successful allocation!  now rotate the circleq.
1563 			 */
1564 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1565 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1566 			sdp->swd_npginuse += *nslots;
1567 			uvmexp.swpginuse += *nslots;
1568 			mutex_exit(&uvm_swap_data_lock);
1569 			/* done!  return drum slot number */
1570 			UVMHIST_LOG(pdhist,
1571 			    "success!  returning %d slots starting at %d",
1572 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1573 			return (result + sdp->swd_drumoffset);
1574 		}
1575 	}
1576 
1577 	/* XXXMRG: BEGIN HACK */
1578 	if (*nslots > 1 && lessok) {
1579 		*nslots = 1;
1580 		/* XXXMRG: ugh!  blist should support this for us */
1581 		goto ReTry;
1582 	}
1583 	/* XXXMRG: END HACK */
1584 
1585 	mutex_exit(&uvm_swap_data_lock);
1586 	return 0;
1587 }
1588 
1589 /*
1590  * uvm_swapisfull: return true if most of available swap is allocated
1591  * and in use.  we don't count some small portion as it may be inaccessible
1592  * to us at any given moment, for example if there is lock contention or if
1593  * pages are busy.
1594  */
1595 bool
1596 uvm_swapisfull(void)
1597 {
1598 	int swpgonly;
1599 	bool rv;
1600 
1601 	mutex_enter(&uvm_swap_data_lock);
1602 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1603 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1604 	    uvm_swapisfull_factor);
1605 	rv = (swpgonly >= uvmexp.swpgavail);
1606 	mutex_exit(&uvm_swap_data_lock);
1607 
1608 	return (rv);
1609 }
1610 
1611 /*
1612  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1613  *
1614  * => we lock uvm_swap_data_lock
1615  */
1616 void
1617 uvm_swap_markbad(int startslot, int nslots)
1618 {
1619 	struct swapdev *sdp;
1620 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1621 
1622 	mutex_enter(&uvm_swap_data_lock);
1623 	sdp = swapdrum_getsdp(startslot);
1624 	KASSERT(sdp != NULL);
1625 
1626 	/*
1627 	 * we just keep track of how many pages have been marked bad
1628 	 * in this device, to make everything add up in swap_off().
1629 	 * we assume here that the range of slots will all be within
1630 	 * one swap device.
1631 	 */
1632 
1633 	KASSERT(uvmexp.swpgonly >= nslots);
1634 	uvmexp.swpgonly -= nslots;
1635 	sdp->swd_npgbad += nslots;
1636 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1637 	mutex_exit(&uvm_swap_data_lock);
1638 }
1639 
1640 /*
1641  * uvm_swap_free: free swap slots
1642  *
1643  * => this can be all or part of an allocation made by uvm_swap_alloc
1644  * => we lock uvm_swap_data_lock
1645  */
1646 void
1647 uvm_swap_free(int startslot, int nslots)
1648 {
1649 	struct swapdev *sdp;
1650 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1651 
1652 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1653 	    startslot, 0, 0);
1654 
1655 	/*
1656 	 * ignore attempts to free the "bad" slot.
1657 	 */
1658 
1659 	if (startslot == SWSLOT_BAD) {
1660 		return;
1661 	}
1662 
1663 	/*
1664 	 * convert drum slot offset back to sdp, free the blocks
1665 	 * in the extent, and return.   must hold pri lock to do
1666 	 * lookup and access the extent.
1667 	 */
1668 
1669 	mutex_enter(&uvm_swap_data_lock);
1670 	sdp = swapdrum_getsdp(startslot);
1671 	KASSERT(uvmexp.nswapdev >= 1);
1672 	KASSERT(sdp != NULL);
1673 	KASSERT(sdp->swd_npginuse >= nslots);
1674 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1675 	sdp->swd_npginuse -= nslots;
1676 	uvmexp.swpginuse -= nslots;
1677 	mutex_exit(&uvm_swap_data_lock);
1678 }
1679 
1680 /*
1681  * uvm_swap_put: put any number of pages into a contig place on swap
1682  *
1683  * => can be sync or async
1684  */
1685 
1686 int
1687 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1688 {
1689 	int error;
1690 
1691 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1692 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1693 	return error;
1694 }
1695 
1696 /*
1697  * uvm_swap_get: get a single page from swap
1698  *
1699  * => usually a sync op (from fault)
1700  */
1701 
1702 int
1703 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1704 {
1705 	int error;
1706 
1707 	uvmexp.nswget++;
1708 	KASSERT(flags & PGO_SYNCIO);
1709 	if (swslot == SWSLOT_BAD) {
1710 		return EIO;
1711 	}
1712 
1713 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1714 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1715 	if (error == 0) {
1716 
1717 		/*
1718 		 * this page is no longer only in swap.
1719 		 */
1720 
1721 		mutex_enter(&uvm_swap_data_lock);
1722 		KASSERT(uvmexp.swpgonly > 0);
1723 		uvmexp.swpgonly--;
1724 		mutex_exit(&uvm_swap_data_lock);
1725 	}
1726 	return error;
1727 }
1728 
1729 /*
1730  * uvm_swap_io: do an i/o operation to swap
1731  */
1732 
1733 static int
1734 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1735 {
1736 	daddr_t startblk;
1737 	struct	buf *bp;
1738 	vaddr_t kva;
1739 	int	error, mapinflags;
1740 	bool write, async;
1741 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1742 
1743 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1744 	    startslot, npages, flags, 0);
1745 
1746 	write = (flags & B_READ) == 0;
1747 	async = (flags & B_ASYNC) != 0;
1748 
1749 	/*
1750 	 * allocate a buf for the i/o.
1751 	 */
1752 
1753 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1754 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1755 	if (bp == NULL) {
1756 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1757 		return ENOMEM;
1758 	}
1759 
1760 	/*
1761 	 * convert starting drum slot to block number
1762 	 */
1763 
1764 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1765 
1766 	/*
1767 	 * first, map the pages into the kernel.
1768 	 */
1769 
1770 	mapinflags = !write ?
1771 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1772 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1773 	kva = uvm_pagermapin(pps, npages, mapinflags);
1774 
1775 	/*
1776 	 * fill in the bp/sbp.   we currently route our i/o through
1777 	 * /dev/drum's vnode [swapdev_vp].
1778 	 */
1779 
1780 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1781 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1782 	bp->b_proc = &proc0;	/* XXX */
1783 	bp->b_vnbufs.le_next = NOLIST;
1784 	bp->b_data = (void *)kva;
1785 	bp->b_blkno = startblk;
1786 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1787 
1788 	/*
1789 	 * bump v_numoutput (counter of number of active outputs).
1790 	 */
1791 
1792 	if (write) {
1793 		mutex_enter(&swapdev_vp->v_interlock);
1794 		swapdev_vp->v_numoutput++;
1795 		mutex_exit(&swapdev_vp->v_interlock);
1796 	}
1797 
1798 	/*
1799 	 * for async ops we must set up the iodone handler.
1800 	 */
1801 
1802 	if (async) {
1803 		bp->b_iodone = uvm_aio_biodone;
1804 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1805 		if (curlwp == uvm.pagedaemon_lwp)
1806 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1807 		else
1808 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1809 	} else {
1810 		bp->b_iodone = NULL;
1811 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1812 	}
1813 	UVMHIST_LOG(pdhist,
1814 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1815 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1816 
1817 	/*
1818 	 * now we start the I/O, and if async, return.
1819 	 */
1820 
1821 	VOP_STRATEGY(swapdev_vp, bp);
1822 	if (async)
1823 		return 0;
1824 
1825 	/*
1826 	 * must be sync i/o.   wait for it to finish
1827 	 */
1828 
1829 	error = biowait(bp);
1830 
1831 	/*
1832 	 * kill the pager mapping
1833 	 */
1834 
1835 	uvm_pagermapout(kva, npages);
1836 
1837 	/*
1838 	 * now dispose of the buf and we're done.
1839 	 */
1840 
1841 	if (write) {
1842 		mutex_enter(&swapdev_vp->v_interlock);
1843 		vwakeup(bp);
1844 		mutex_exit(&swapdev_vp->v_interlock);
1845 	}
1846 	putiobuf(bp);
1847 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1848 
1849 	return (error);
1850 }
1851