xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 6a493d6bc668897c91594964a732d38505b70cbb)
1 /*	$NetBSD: uvm_swap.c,v 1.165 2013/11/23 14:50:40 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.165 2013/11/23 14:50:40 christos Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * TAILQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats() function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* tailq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180  * dev_t and has no se_path[] member.
181  */
182 struct swapent13 {
183 	int32_t	se13_dev;		/* device id */
184 	int	se13_flags;		/* flags */
185 	int	se13_nblks;		/* total blocks */
186 	int	se13_inuse;		/* blocks in use */
187 	int	se13_priority;		/* priority of this device */
188 };
189 
190 /*
191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192  * dev_t.
193  */
194 struct swapent50 {
195 	int32_t	se50_dev;		/* device id */
196 	int	se50_flags;		/* flags */
197 	int	se50_nblks;		/* total blocks */
198 	int	se50_inuse;		/* blocks in use */
199 	int	se50_priority;		/* priority of this device */
200 	char	se50_path[PATH_MAX+1];	/* path name */
201 };
202 
203 /*
204  * We keep a of pool vndbuf's and vndxfer structures.
205  */
206 static struct pool vndxfer_pool, vndbuf_pool;
207 
208 /*
209  * local variables
210  */
211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
212 
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216 
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219 
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223 
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226 
227 /*
228  * prototypes
229  */
230 static struct swapdev	*swapdrum_getsdp(int);
231 
232 static struct swapdev	*swaplist_find(struct vnode *, bool);
233 static void		 swaplist_insert(struct swapdev *,
234 					 struct swappri *, int);
235 static void		 swaplist_trim(void);
236 
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239 
240 static void uvm_swap_stats(int, struct swapent *, int, register_t *);
241 
242 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
243 static void sw_reg_biodone(struct buf *);
244 static void sw_reg_iodone(struct work *wk, void *dummy);
245 static void sw_reg_start(struct swapdev *);
246 
247 static int uvm_swap_io(struct vm_page **, int, int, int);
248 
249 /*
250  * uvm_swap_init: init the swap system data structures and locks
251  *
252  * => called at boot time from init_main.c after the filesystems
253  *	are brought up (which happens after uvm_init())
254  */
255 void
256 uvm_swap_init(void)
257 {
258 	UVMHIST_FUNC("uvm_swap_init");
259 
260 	UVMHIST_CALLED(pdhist);
261 	/*
262 	 * first, init the swap list, its counter, and its lock.
263 	 * then get a handle on the vnode for /dev/drum by using
264 	 * the its dev_t number ("swapdev", from MD conf.c).
265 	 */
266 
267 	LIST_INIT(&swap_priority);
268 	uvmexp.nswapdev = 0;
269 	rw_init(&swap_syscall_lock);
270 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
271 
272 	if (bdevvp(swapdev, &swapdev_vp))
273 		panic("%s: can't get vnode for swap device", __func__);
274 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
275 		panic("%s: can't lock swap device", __func__);
276 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
277 		panic("%s: can't open swap device", __func__);
278 	VOP_UNLOCK(swapdev_vp);
279 
280 	/*
281 	 * create swap block resource map to map /dev/drum.   the range
282 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
283 	 * that block 0 is reserved (used to indicate an allocation
284 	 * failure, or no allocation).
285 	 */
286 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
287 	    VM_NOSLEEP, IPL_NONE);
288 	if (swapmap == 0) {
289 		panic("%s: vmem_create failed", __func__);
290 	}
291 
292 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
293 	    NULL, IPL_BIO);
294 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
295 	    NULL, IPL_BIO);
296 
297 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
298 }
299 
300 /*
301  * swaplist functions: functions that operate on the list of swap
302  * devices on the system.
303  */
304 
305 /*
306  * swaplist_insert: insert swap device "sdp" into the global list
307  *
308  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
309  * => caller must provide a newly allocated swappri structure (we will
310  *	FREE it if we don't need it... this it to prevent allocation
311  *	blocking here while adding swap)
312  */
313 static void
314 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
315 {
316 	struct swappri *spp, *pspp;
317 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
318 
319 	/*
320 	 * find entry at or after which to insert the new device.
321 	 */
322 	pspp = NULL;
323 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
324 		if (priority <= spp->spi_priority)
325 			break;
326 		pspp = spp;
327 	}
328 
329 	/*
330 	 * new priority?
331 	 */
332 	if (spp == NULL || spp->spi_priority != priority) {
333 		spp = newspp;  /* use newspp! */
334 		UVMHIST_LOG(pdhist, "created new swappri = %d",
335 			    priority, 0, 0, 0);
336 
337 		spp->spi_priority = priority;
338 		TAILQ_INIT(&spp->spi_swapdev);
339 
340 		if (pspp)
341 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
342 		else
343 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
344 	} else {
345 	  	/* we don't need a new priority structure, free it */
346 		kmem_free(newspp, sizeof(*newspp));
347 	}
348 
349 	/*
350 	 * priority found (or created).   now insert on the priority's
351 	 * tailq list and bump the total number of swapdevs.
352 	 */
353 	sdp->swd_priority = priority;
354 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
355 	uvmexp.nswapdev++;
356 }
357 
358 /*
359  * swaplist_find: find and optionally remove a swap device from the
360  *	global list.
361  *
362  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
363  * => we return the swapdev we found (and removed)
364  */
365 static struct swapdev *
366 swaplist_find(struct vnode *vp, bool remove)
367 {
368 	struct swapdev *sdp;
369 	struct swappri *spp;
370 
371 	/*
372 	 * search the lists for the requested vp
373 	 */
374 
375 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 			if (sdp->swd_vp == vp) {
378 				if (remove) {
379 					TAILQ_REMOVE(&spp->spi_swapdev,
380 					    sdp, swd_next);
381 					uvmexp.nswapdev--;
382 				}
383 				return(sdp);
384 			}
385 		}
386 	}
387 	return (NULL);
388 }
389 
390 /*
391  * swaplist_trim: scan priority list for empty priority entries and kill
392  *	them.
393  *
394  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
395  */
396 static void
397 swaplist_trim(void)
398 {
399 	struct swappri *spp, *nextspp;
400 
401 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
402 		if (TAILQ_EMPTY(&spp->spi_swapdev))
403 			continue;
404 		LIST_REMOVE(spp, spi_swappri);
405 		kmem_free(spp, sizeof(*spp));
406 	}
407 }
408 
409 /*
410  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
411  *	to the "swapdev" that maps that section of the drum.
412  *
413  * => each swapdev takes one big contig chunk of the drum
414  * => caller must hold uvm_swap_data_lock
415  */
416 static struct swapdev *
417 swapdrum_getsdp(int pgno)
418 {
419 	struct swapdev *sdp;
420 	struct swappri *spp;
421 
422 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
423 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
424 			if (sdp->swd_flags & SWF_FAKE)
425 				continue;
426 			if (pgno >= sdp->swd_drumoffset &&
427 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
428 				return sdp;
429 			}
430 		}
431 	}
432 	return NULL;
433 }
434 
435 
436 /*
437  * sys_swapctl: main entry point for swapctl(2) system call
438  * 	[with two helper functions: swap_on and swap_off]
439  */
440 int
441 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
442 {
443 	/* {
444 		syscallarg(int) cmd;
445 		syscallarg(void *) arg;
446 		syscallarg(int) misc;
447 	} */
448 	struct vnode *vp;
449 	struct nameidata nd;
450 	struct swappri *spp;
451 	struct swapdev *sdp;
452 	struct swapent *sep;
453 #define SWAP_PATH_MAX (PATH_MAX + 1)
454 	char	*userpath;
455 	size_t	len = 0;
456 	int	error, misc;
457 	int	priority;
458 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
459 
460 	/*
461 	 * we handle the non-priv NSWAP and STATS request first.
462 	 *
463 	 * SWAP_NSWAP: return number of config'd swap devices
464 	 * [can also be obtained with uvmexp sysctl]
465 	 */
466 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
467 		const int nswapdev = uvmexp.nswapdev;
468 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
469 		*retval = nswapdev;
470 		return 0;
471 	}
472 
473 	misc = SCARG(uap, misc);
474 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
475 
476 	/*
477 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
478 	 */
479 	rw_enter(&swap_syscall_lock, RW_WRITER);
480 
481 	/*
482 	 * SWAP_STATS: get stats on current # of configured swap devs
483 	 *
484 	 * note that the swap_priority list can't change as long
485 	 * as we are holding the swap_syscall_lock.  we don't want
486 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
487 	 * copyout() and we don't want to be holding that lock then!
488 	 */
489 	if (SCARG(uap, cmd) == SWAP_STATS
490 #if defined(COMPAT_50)
491 	    || SCARG(uap, cmd) == SWAP_STATS50
492 #endif
493 #if defined(COMPAT_13)
494 	    || SCARG(uap, cmd) == SWAP_STATS13
495 #endif
496 	    ) {
497 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
498 			misc = uvmexp.nswapdev;
499 
500 		if (misc == 0) {
501 			error = EINVAL;
502 			goto out;
503 		}
504 		KASSERT(misc > 0);
505 #if defined(COMPAT_13)
506 		if (SCARG(uap, cmd) == SWAP_STATS13)
507 			len = sizeof(struct swapent13) * misc;
508 		else
509 #endif
510 #if defined(COMPAT_50)
511 		if (SCARG(uap, cmd) == SWAP_STATS50)
512 			len = sizeof(struct swapent50) * misc;
513 		else
514 #endif
515 			len = sizeof(struct swapent) * misc;
516 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
517 
518 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
519 		error = copyout(sep, SCARG(uap, arg), len);
520 
521 		kmem_free(sep, len);
522 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
523 		goto out;
524 	}
525 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
526 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
527 
528 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
529 		goto out;
530 	}
531 
532 	/*
533 	 * all other requests require superuser privs.   verify.
534 	 */
535 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
536 	    0, NULL, NULL, NULL)))
537 		goto out;
538 
539 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
540 		/* drop the current dump device */
541 		dumpdev = NODEV;
542 		dumpcdev = NODEV;
543 		cpu_dumpconf();
544 		goto out;
545 	}
546 
547 	/*
548 	 * at this point we expect a path name in arg.   we will
549 	 * use namei() to gain a vnode reference (vref), and lock
550 	 * the vnode (VOP_LOCK).
551 	 *
552 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
553 	 * miniroot)
554 	 */
555 	if (SCARG(uap, arg) == NULL) {
556 		vp = rootvp;		/* miniroot */
557 		vref(vp);
558 		if (vn_lock(vp, LK_EXCLUSIVE)) {
559 			vrele(vp);
560 			error = EBUSY;
561 			goto out;
562 		}
563 		if (SCARG(uap, cmd) == SWAP_ON &&
564 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
565 			panic("swapctl: miniroot copy failed");
566 		KASSERT(len > 0);
567 	} else {
568 		struct pathbuf *pb;
569 
570 		/*
571 		 * This used to allow copying in one extra byte
572 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
573 		 * This was completely pointless because if anyone
574 		 * used that extra byte namei would fail with
575 		 * ENAMETOOLONG anyway, so I've removed the excess
576 		 * logic. - dholland 20100215
577 		 */
578 
579 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
580 		if (error) {
581 			goto out;
582 		}
583 		if (SCARG(uap, cmd) == SWAP_ON) {
584 			/* get a copy of the string */
585 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
586 			len = strlen(userpath) + 1;
587 		}
588 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
589 		if ((error = namei(&nd))) {
590 			pathbuf_destroy(pb);
591 			goto out;
592 		}
593 		vp = nd.ni_vp;
594 		pathbuf_destroy(pb);
595 	}
596 	/* note: "vp" is referenced and locked */
597 
598 	error = 0;		/* assume no error */
599 	switch(SCARG(uap, cmd)) {
600 
601 	case SWAP_DUMPDEV:
602 		if (vp->v_type != VBLK) {
603 			error = ENOTBLK;
604 			break;
605 		}
606 		if (bdevsw_lookup(vp->v_rdev)) {
607 			dumpdev = vp->v_rdev;
608 			dumpcdev = devsw_blk2chr(dumpdev);
609 		} else
610 			dumpdev = NODEV;
611 		cpu_dumpconf();
612 		break;
613 
614 	case SWAP_CTL:
615 		/*
616 		 * get new priority, remove old entry (if any) and then
617 		 * reinsert it in the correct place.  finally, prune out
618 		 * any empty priority structures.
619 		 */
620 		priority = SCARG(uap, misc);
621 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
622 		mutex_enter(&uvm_swap_data_lock);
623 		if ((sdp = swaplist_find(vp, true)) == NULL) {
624 			error = ENOENT;
625 		} else {
626 			swaplist_insert(sdp, spp, priority);
627 			swaplist_trim();
628 		}
629 		mutex_exit(&uvm_swap_data_lock);
630 		if (error)
631 			kmem_free(spp, sizeof(*spp));
632 		break;
633 
634 	case SWAP_ON:
635 
636 		/*
637 		 * check for duplicates.   if none found, then insert a
638 		 * dummy entry on the list to prevent someone else from
639 		 * trying to enable this device while we are working on
640 		 * it.
641 		 */
642 
643 		priority = SCARG(uap, misc);
644 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
645 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
646 		sdp->swd_flags = SWF_FAKE;
647 		sdp->swd_vp = vp;
648 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
649 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
650 		mutex_enter(&uvm_swap_data_lock);
651 		if (swaplist_find(vp, false) != NULL) {
652 			error = EBUSY;
653 			mutex_exit(&uvm_swap_data_lock);
654 			bufq_free(sdp->swd_tab);
655 			kmem_free(sdp, sizeof(*sdp));
656 			kmem_free(spp, sizeof(*spp));
657 			break;
658 		}
659 		swaplist_insert(sdp, spp, priority);
660 		mutex_exit(&uvm_swap_data_lock);
661 
662 		KASSERT(len > 0);
663 		sdp->swd_pathlen = len;
664 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
665 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
666 			panic("swapctl: copystr");
667 
668 		/*
669 		 * we've now got a FAKE placeholder in the swap list.
670 		 * now attempt to enable swap on it.  if we fail, undo
671 		 * what we've done and kill the fake entry we just inserted.
672 		 * if swap_on is a success, it will clear the SWF_FAKE flag
673 		 */
674 
675 		if ((error = swap_on(l, sdp)) != 0) {
676 			mutex_enter(&uvm_swap_data_lock);
677 			(void) swaplist_find(vp, true);  /* kill fake entry */
678 			swaplist_trim();
679 			mutex_exit(&uvm_swap_data_lock);
680 			bufq_free(sdp->swd_tab);
681 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
682 			kmem_free(sdp, sizeof(*sdp));
683 			break;
684 		}
685 		break;
686 
687 	case SWAP_OFF:
688 		mutex_enter(&uvm_swap_data_lock);
689 		if ((sdp = swaplist_find(vp, false)) == NULL) {
690 			mutex_exit(&uvm_swap_data_lock);
691 			error = ENXIO;
692 			break;
693 		}
694 
695 		/*
696 		 * If a device isn't in use or enabled, we
697 		 * can't stop swapping from it (again).
698 		 */
699 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
700 			mutex_exit(&uvm_swap_data_lock);
701 			error = EBUSY;
702 			break;
703 		}
704 
705 		/*
706 		 * do the real work.
707 		 */
708 		error = swap_off(l, sdp);
709 		break;
710 
711 	default:
712 		error = EINVAL;
713 	}
714 
715 	/*
716 	 * done!  release the ref gained by namei() and unlock.
717 	 */
718 	vput(vp);
719 out:
720 	rw_exit(&swap_syscall_lock);
721 	kmem_free(userpath, SWAP_PATH_MAX);
722 
723 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
724 	return (error);
725 }
726 
727 /*
728  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
729  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
730  * emulation to use it directly without going through sys_swapctl().
731  * The problem with using sys_swapctl() there is that it involves
732  * copying the swapent array to the stackgap, and this array's size
733  * is not known at build time. Hence it would not be possible to
734  * ensure it would fit in the stackgap in any case.
735  */
736 static void
737 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
738 {
739 	struct swappri *spp;
740 	struct swapdev *sdp;
741 	int count = 0;
742 
743 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
744 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
745 			int inuse;
746 
747 			if (sec-- <= 0)
748 				break;
749 
750 			/*
751 			 * backwards compatibility for system call.
752 			 * For NetBSD 1.3 and 5.0, we have to use
753 			 * the 32 bit dev_t.  For 5.0 and -current
754 			 * we have to add the path.
755 			 */
756 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
757 			    PAGE_SHIFT);
758 
759 #if defined(COMPAT_13) || defined(COMPAT_50)
760 			if (cmd == SWAP_STATS) {
761 #endif
762 				sep->se_dev = sdp->swd_dev;
763 				sep->se_flags = sdp->swd_flags;
764 				sep->se_nblks = sdp->swd_nblks;
765 				sep->se_inuse = inuse;
766 				sep->se_priority = sdp->swd_priority;
767 				KASSERT(sdp->swd_pathlen <
768 				    sizeof(sep->se_path));
769 				strcpy(sep->se_path, sdp->swd_path);
770 				sep++;
771 #if defined(COMPAT_13)
772 			} else if (cmd == SWAP_STATS13) {
773 				struct swapent13 *sep13 =
774 				    (struct swapent13 *)sep;
775 
776 				sep13->se13_dev = sdp->swd_dev;
777 				sep13->se13_flags = sdp->swd_flags;
778 				sep13->se13_nblks = sdp->swd_nblks;
779 				sep13->se13_inuse = inuse;
780 				sep13->se13_priority = sdp->swd_priority;
781 				sep = (struct swapent *)(sep13 + 1);
782 #endif
783 #if defined(COMPAT_50)
784 			} else if (cmd == SWAP_STATS50) {
785 				struct swapent50 *sep50 =
786 				    (struct swapent50 *)sep;
787 
788 				sep50->se50_dev = sdp->swd_dev;
789 				sep50->se50_flags = sdp->swd_flags;
790 				sep50->se50_nblks = sdp->swd_nblks;
791 				sep50->se50_inuse = inuse;
792 				sep50->se50_priority = sdp->swd_priority;
793 				KASSERT(sdp->swd_pathlen <
794 				    sizeof(sep50->se50_path));
795 				strcpy(sep50->se50_path, sdp->swd_path);
796 				sep = (struct swapent *)(sep50 + 1);
797 #endif
798 #if defined(COMPAT_13) || defined(COMPAT_50)
799 			}
800 #endif
801 			count++;
802 		}
803 	}
804 	*retval = count;
805 }
806 
807 /*
808  * swap_on: attempt to enable a swapdev for swapping.   note that the
809  *	swapdev is already on the global list, but disabled (marked
810  *	SWF_FAKE).
811  *
812  * => we avoid the start of the disk (to protect disk labels)
813  * => we also avoid the miniroot, if we are swapping to root.
814  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
815  *	if needed.
816  */
817 static int
818 swap_on(struct lwp *l, struct swapdev *sdp)
819 {
820 	struct vnode *vp;
821 	int error, npages, nblocks, size;
822 	long addr;
823 	vmem_addr_t result;
824 	struct vattr va;
825 	dev_t dev;
826 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
827 
828 	/*
829 	 * we want to enable swapping on sdp.   the swd_vp contains
830 	 * the vnode we want (locked and ref'd), and the swd_dev
831 	 * contains the dev_t of the file, if it a block device.
832 	 */
833 
834 	vp = sdp->swd_vp;
835 	dev = sdp->swd_dev;
836 
837 	/*
838 	 * open the swap file (mostly useful for block device files to
839 	 * let device driver know what is up).
840 	 *
841 	 * we skip the open/close for root on swap because the root
842 	 * has already been opened when root was mounted (mountroot).
843 	 */
844 	if (vp != rootvp) {
845 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
846 			return (error);
847 	}
848 
849 	/* XXX this only works for block devices */
850 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
851 
852 	/*
853 	 * we now need to determine the size of the swap area.   for
854 	 * block specials we can call the d_psize function.
855 	 * for normal files, we must stat [get attrs].
856 	 *
857 	 * we put the result in nblks.
858 	 * for normal files, we also want the filesystem block size
859 	 * (which we get with statfs).
860 	 */
861 	switch (vp->v_type) {
862 	case VBLK:
863 		if ((nblocks = bdev_size(dev)) == -1) {
864 			error = ENXIO;
865 			goto bad;
866 		}
867 		break;
868 
869 	case VREG:
870 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
871 			goto bad;
872 		nblocks = (int)btodb(va.va_size);
873 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
874 		/*
875 		 * limit the max # of outstanding I/O requests we issue
876 		 * at any one time.   take it easy on NFS servers.
877 		 */
878 		if (vp->v_tag == VT_NFS)
879 			sdp->swd_maxactive = 2; /* XXX */
880 		else
881 			sdp->swd_maxactive = 8; /* XXX */
882 		break;
883 
884 	default:
885 		error = ENXIO;
886 		goto bad;
887 	}
888 
889 	/*
890 	 * save nblocks in a safe place and convert to pages.
891 	 */
892 
893 	sdp->swd_nblks = nblocks;
894 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
895 
896 	/*
897 	 * for block special files, we want to make sure that leave
898 	 * the disklabel and bootblocks alone, so we arrange to skip
899 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
900 	 * note that because of this the "size" can be less than the
901 	 * actual number of blocks on the device.
902 	 */
903 	if (vp->v_type == VBLK) {
904 		/* we use pages 1 to (size - 1) [inclusive] */
905 		size = npages - 1;
906 		addr = 1;
907 	} else {
908 		/* we use pages 0 to (size - 1) [inclusive] */
909 		size = npages;
910 		addr = 0;
911 	}
912 
913 	/*
914 	 * make sure we have enough blocks for a reasonable sized swap
915 	 * area.   we want at least one page.
916 	 */
917 
918 	if (size < 1) {
919 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
920 		error = EINVAL;
921 		goto bad;
922 	}
923 
924 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
925 
926 	/*
927 	 * now we need to allocate an extent to manage this swap device
928 	 */
929 
930 	sdp->swd_blist = blist_create(npages);
931 	/* mark all expect the `saved' region free. */
932 	blist_free(sdp->swd_blist, addr, size);
933 
934 	/*
935 	 * if the vnode we are swapping to is the root vnode
936 	 * (i.e. we are swapping to the miniroot) then we want
937 	 * to make sure we don't overwrite it.   do a statfs to
938 	 * find its size and skip over it.
939 	 */
940 	if (vp == rootvp) {
941 		struct mount *mp;
942 		struct statvfs *sp;
943 		int rootblocks, rootpages;
944 
945 		mp = rootvnode->v_mount;
946 		sp = &mp->mnt_stat;
947 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
948 		/*
949 		 * XXX: sp->f_blocks isn't the total number of
950 		 * blocks in the filesystem, it's the number of
951 		 * data blocks.  so, our rootblocks almost
952 		 * definitely underestimates the total size
953 		 * of the filesystem - how badly depends on the
954 		 * details of the filesystem type.  there isn't
955 		 * an obvious way to deal with this cleanly
956 		 * and perfectly, so for now we just pad our
957 		 * rootblocks estimate with an extra 5 percent.
958 		 */
959 		rootblocks += (rootblocks >> 5) +
960 			(rootblocks >> 6) +
961 			(rootblocks >> 7);
962 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
963 		if (rootpages > size)
964 			panic("swap_on: miniroot larger than swap?");
965 
966 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
967 			panic("swap_on: unable to preserve miniroot");
968 		}
969 
970 		size -= rootpages;
971 		printf("Preserved %d pages of miniroot ", rootpages);
972 		printf("leaving %d pages of swap\n", size);
973 	}
974 
975 	/*
976 	 * add a ref to vp to reflect usage as a swap device.
977 	 */
978 	vref(vp);
979 
980 	/*
981 	 * now add the new swapdev to the drum and enable.
982 	 */
983 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
984 	if (error != 0)
985 		panic("swapdrum_add");
986 	/*
987 	 * If this is the first regular swap create the workqueue.
988 	 * => Protected by swap_syscall_lock.
989 	 */
990 	if (vp->v_type != VBLK) {
991 		if (sw_reg_count++ == 0) {
992 			KASSERT(sw_reg_workqueue == NULL);
993 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
994 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
995 				panic("%s: workqueue_create failed", __func__);
996 		}
997 	}
998 
999 	sdp->swd_drumoffset = (int)result;
1000 	sdp->swd_drumsize = npages;
1001 	sdp->swd_npages = size;
1002 	mutex_enter(&uvm_swap_data_lock);
1003 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1004 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1005 	uvmexp.swpages += size;
1006 	uvmexp.swpgavail += size;
1007 	mutex_exit(&uvm_swap_data_lock);
1008 	return (0);
1009 
1010 	/*
1011 	 * failure: clean up and return error.
1012 	 */
1013 
1014 bad:
1015 	if (sdp->swd_blist) {
1016 		blist_destroy(sdp->swd_blist);
1017 	}
1018 	if (vp != rootvp) {
1019 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1020 	}
1021 	return (error);
1022 }
1023 
1024 /*
1025  * swap_off: stop swapping on swapdev
1026  *
1027  * => swap data should be locked, we will unlock.
1028  */
1029 static int
1030 swap_off(struct lwp *l, struct swapdev *sdp)
1031 {
1032 	int npages = sdp->swd_npages;
1033 	int error = 0;
1034 
1035 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1036 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1037 
1038 	/* disable the swap area being removed */
1039 	sdp->swd_flags &= ~SWF_ENABLE;
1040 	uvmexp.swpgavail -= npages;
1041 	mutex_exit(&uvm_swap_data_lock);
1042 
1043 	/*
1044 	 * the idea is to find all the pages that are paged out to this
1045 	 * device, and page them all in.  in uvm, swap-backed pageable
1046 	 * memory can take two forms: aobjs and anons.  call the
1047 	 * swapoff hook for each subsystem to bring in pages.
1048 	 */
1049 
1050 	if (uao_swap_off(sdp->swd_drumoffset,
1051 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1052 	    amap_swap_off(sdp->swd_drumoffset,
1053 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1054 		error = ENOMEM;
1055 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1056 		error = EBUSY;
1057 	}
1058 
1059 	if (error) {
1060 		mutex_enter(&uvm_swap_data_lock);
1061 		sdp->swd_flags |= SWF_ENABLE;
1062 		uvmexp.swpgavail += npages;
1063 		mutex_exit(&uvm_swap_data_lock);
1064 
1065 		return error;
1066 	}
1067 
1068 	/*
1069 	 * If this is the last regular swap destroy the workqueue.
1070 	 * => Protected by swap_syscall_lock.
1071 	 */
1072 	if (sdp->swd_vp->v_type != VBLK) {
1073 		KASSERT(sw_reg_count > 0);
1074 		KASSERT(sw_reg_workqueue != NULL);
1075 		if (--sw_reg_count == 0) {
1076 			workqueue_destroy(sw_reg_workqueue);
1077 			sw_reg_workqueue = NULL;
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * done with the vnode.
1083 	 * drop our ref on the vnode before calling VOP_CLOSE()
1084 	 * so that spec_close() can tell if this is the last close.
1085 	 */
1086 	vrele(sdp->swd_vp);
1087 	if (sdp->swd_vp != rootvp) {
1088 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1089 	}
1090 
1091 	mutex_enter(&uvm_swap_data_lock);
1092 	uvmexp.swpages -= npages;
1093 	uvmexp.swpginuse -= sdp->swd_npgbad;
1094 
1095 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1096 		panic("%s: swapdev not in list", __func__);
1097 	swaplist_trim();
1098 	mutex_exit(&uvm_swap_data_lock);
1099 
1100 	/*
1101 	 * free all resources!
1102 	 */
1103 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1104 	blist_destroy(sdp->swd_blist);
1105 	bufq_free(sdp->swd_tab);
1106 	kmem_free(sdp, sizeof(*sdp));
1107 	return (0);
1108 }
1109 
1110 void
1111 uvm_swap_shutdown(struct lwp *l)
1112 {
1113 	struct swapdev *sdp;
1114 	struct swappri *spp;
1115 	struct vnode *vp;
1116 	int error;
1117 
1118 	printf("turning of swap...");
1119 	rw_enter(&swap_syscall_lock, RW_WRITER);
1120 	mutex_enter(&uvm_swap_data_lock);
1121 again:
1122 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1123 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1124 			if (sdp->swd_flags & SWF_FAKE)
1125 				continue;
1126 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1127 				continue;
1128 #ifdef DEBUG
1129 			printf("\nturning off swap on %s...",
1130 			    sdp->swd_path);
1131 #endif
1132 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1133 				error = EBUSY;
1134 				vp = NULL;
1135 			} else
1136 				error = 0;
1137 			if (!error) {
1138 				error = swap_off(l, sdp);
1139 				mutex_enter(&uvm_swap_data_lock);
1140 			}
1141 			if (error) {
1142 				printf("stopping swap on %s failed "
1143 				    "with error %d\n", sdp->swd_path, error);
1144 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1145 				    swd_next);
1146 				uvmexp.nswapdev--;
1147 				swaplist_trim();
1148 				if (vp)
1149 					vput(vp);
1150 			}
1151 			goto again;
1152 		}
1153 	printf(" done\n");
1154 	mutex_exit(&uvm_swap_data_lock);
1155 	rw_exit(&swap_syscall_lock);
1156 }
1157 
1158 
1159 /*
1160  * /dev/drum interface and i/o functions
1161  */
1162 
1163 /*
1164  * swstrategy: perform I/O on the drum
1165  *
1166  * => we must map the i/o request from the drum to the correct swapdev.
1167  */
1168 static void
1169 swstrategy(struct buf *bp)
1170 {
1171 	struct swapdev *sdp;
1172 	struct vnode *vp;
1173 	int pageno, bn;
1174 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1175 
1176 	/*
1177 	 * convert block number to swapdev.   note that swapdev can't
1178 	 * be yanked out from under us because we are holding resources
1179 	 * in it (i.e. the blocks we are doing I/O on).
1180 	 */
1181 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1182 	mutex_enter(&uvm_swap_data_lock);
1183 	sdp = swapdrum_getsdp(pageno);
1184 	mutex_exit(&uvm_swap_data_lock);
1185 	if (sdp == NULL) {
1186 		bp->b_error = EINVAL;
1187 		bp->b_resid = bp->b_bcount;
1188 		biodone(bp);
1189 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1190 		return;
1191 	}
1192 
1193 	/*
1194 	 * convert drum page number to block number on this swapdev.
1195 	 */
1196 
1197 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1198 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1199 
1200 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1201 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1202 		sdp->swd_drumoffset, bn, bp->b_bcount);
1203 
1204 	/*
1205 	 * for block devices we finish up here.
1206 	 * for regular files we have to do more work which we delegate
1207 	 * to sw_reg_strategy().
1208 	 */
1209 
1210 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1211 	switch (vp->v_type) {
1212 	default:
1213 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1214 
1215 	case VBLK:
1216 
1217 		/*
1218 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1219 		 * on the swapdev (sdp).
1220 		 */
1221 		bp->b_blkno = bn;		/* swapdev block number */
1222 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1223 
1224 		/*
1225 		 * if we are doing a write, we have to redirect the i/o on
1226 		 * drum's v_numoutput counter to the swapdevs.
1227 		 */
1228 		if ((bp->b_flags & B_READ) == 0) {
1229 			mutex_enter(bp->b_objlock);
1230 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1231 			mutex_exit(bp->b_objlock);
1232 			mutex_enter(vp->v_interlock);
1233 			vp->v_numoutput++;	/* put it on swapdev */
1234 			mutex_exit(vp->v_interlock);
1235 		}
1236 
1237 		/*
1238 		 * finally plug in swapdev vnode and start I/O
1239 		 */
1240 		bp->b_vp = vp;
1241 		bp->b_objlock = vp->v_interlock;
1242 		VOP_STRATEGY(vp, bp);
1243 		return;
1244 
1245 	case VREG:
1246 		/*
1247 		 * delegate to sw_reg_strategy function.
1248 		 */
1249 		sw_reg_strategy(sdp, bp, bn);
1250 		return;
1251 	}
1252 	/* NOTREACHED */
1253 }
1254 
1255 /*
1256  * swread: the read function for the drum (just a call to physio)
1257  */
1258 /*ARGSUSED*/
1259 static int
1260 swread(dev_t dev, struct uio *uio, int ioflag)
1261 {
1262 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1263 
1264 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1265 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1266 }
1267 
1268 /*
1269  * swwrite: the write function for the drum (just a call to physio)
1270  */
1271 /*ARGSUSED*/
1272 static int
1273 swwrite(dev_t dev, struct uio *uio, int ioflag)
1274 {
1275 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1276 
1277 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1278 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1279 }
1280 
1281 const struct bdevsw swap_bdevsw = {
1282 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1283 };
1284 
1285 const struct cdevsw swap_cdevsw = {
1286 	nullopen, nullclose, swread, swwrite, noioctl,
1287 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1288 };
1289 
1290 /*
1291  * sw_reg_strategy: handle swap i/o to regular files
1292  */
1293 static void
1294 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1295 {
1296 	struct vnode	*vp;
1297 	struct vndxfer	*vnx;
1298 	daddr_t		nbn;
1299 	char 		*addr;
1300 	off_t		byteoff;
1301 	int		s, off, nra, error, sz, resid;
1302 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1303 
1304 	/*
1305 	 * allocate a vndxfer head for this transfer and point it to
1306 	 * our buffer.
1307 	 */
1308 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1309 	vnx->vx_flags = VX_BUSY;
1310 	vnx->vx_error = 0;
1311 	vnx->vx_pending = 0;
1312 	vnx->vx_bp = bp;
1313 	vnx->vx_sdp = sdp;
1314 
1315 	/*
1316 	 * setup for main loop where we read filesystem blocks into
1317 	 * our buffer.
1318 	 */
1319 	error = 0;
1320 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1321 	addr = bp->b_data;		/* current position in buffer */
1322 	byteoff = dbtob((uint64_t)bn);
1323 
1324 	for (resid = bp->b_resid; resid; resid -= sz) {
1325 		struct vndbuf	*nbp;
1326 
1327 		/*
1328 		 * translate byteoffset into block number.  return values:
1329 		 *   vp = vnode of underlying device
1330 		 *  nbn = new block number (on underlying vnode dev)
1331 		 *  nra = num blocks we can read-ahead (excludes requested
1332 		 *	block)
1333 		 */
1334 		nra = 0;
1335 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1336 				 	&vp, &nbn, &nra);
1337 
1338 		if (error == 0 && nbn == (daddr_t)-1) {
1339 			/*
1340 			 * this used to just set error, but that doesn't
1341 			 * do the right thing.  Instead, it causes random
1342 			 * memory errors.  The panic() should remain until
1343 			 * this condition doesn't destabilize the system.
1344 			 */
1345 #if 1
1346 			panic("%s: swap to sparse file", __func__);
1347 #else
1348 			error = EIO;	/* failure */
1349 #endif
1350 		}
1351 
1352 		/*
1353 		 * punt if there was an error or a hole in the file.
1354 		 * we must wait for any i/o ops we have already started
1355 		 * to finish before returning.
1356 		 *
1357 		 * XXX we could deal with holes here but it would be
1358 		 * a hassle (in the write case).
1359 		 */
1360 		if (error) {
1361 			s = splbio();
1362 			vnx->vx_error = error;	/* pass error up */
1363 			goto out;
1364 		}
1365 
1366 		/*
1367 		 * compute the size ("sz") of this transfer (in bytes).
1368 		 */
1369 		off = byteoff % sdp->swd_bsize;
1370 		sz = (1 + nra) * sdp->swd_bsize - off;
1371 		if (sz > resid)
1372 			sz = resid;
1373 
1374 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1375 			    "vp %p/%p offset 0x%x/0x%x",
1376 			    sdp->swd_vp, vp, byteoff, nbn);
1377 
1378 		/*
1379 		 * now get a buf structure.   note that the vb_buf is
1380 		 * at the front of the nbp structure so that you can
1381 		 * cast pointers between the two structure easily.
1382 		 */
1383 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1384 		buf_init(&nbp->vb_buf);
1385 		nbp->vb_buf.b_flags    = bp->b_flags;
1386 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1387 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1388 		nbp->vb_buf.b_bcount   = sz;
1389 		nbp->vb_buf.b_bufsize  = sz;
1390 		nbp->vb_buf.b_error    = 0;
1391 		nbp->vb_buf.b_data     = addr;
1392 		nbp->vb_buf.b_lblkno   = 0;
1393 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1394 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1395 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1396 		nbp->vb_buf.b_vp       = vp;
1397 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1398 		if (vp->v_type == VBLK) {
1399 			nbp->vb_buf.b_dev = vp->v_rdev;
1400 		}
1401 
1402 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1403 
1404 		/*
1405 		 * Just sort by block number
1406 		 */
1407 		s = splbio();
1408 		if (vnx->vx_error != 0) {
1409 			buf_destroy(&nbp->vb_buf);
1410 			pool_put(&vndbuf_pool, nbp);
1411 			goto out;
1412 		}
1413 		vnx->vx_pending++;
1414 
1415 		/* sort it in and start I/O if we are not over our limit */
1416 		/* XXXAD locking */
1417 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1418 		sw_reg_start(sdp);
1419 		splx(s);
1420 
1421 		/*
1422 		 * advance to the next I/O
1423 		 */
1424 		byteoff += sz;
1425 		addr += sz;
1426 	}
1427 
1428 	s = splbio();
1429 
1430 out: /* Arrive here at splbio */
1431 	vnx->vx_flags &= ~VX_BUSY;
1432 	if (vnx->vx_pending == 0) {
1433 		error = vnx->vx_error;
1434 		pool_put(&vndxfer_pool, vnx);
1435 		bp->b_error = error;
1436 		biodone(bp);
1437 	}
1438 	splx(s);
1439 }
1440 
1441 /*
1442  * sw_reg_start: start an I/O request on the requested swapdev
1443  *
1444  * => reqs are sorted by b_rawblkno (above)
1445  */
1446 static void
1447 sw_reg_start(struct swapdev *sdp)
1448 {
1449 	struct buf	*bp;
1450 	struct vnode	*vp;
1451 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1452 
1453 	/* recursion control */
1454 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1455 		return;
1456 
1457 	sdp->swd_flags |= SWF_BUSY;
1458 
1459 	while (sdp->swd_active < sdp->swd_maxactive) {
1460 		bp = bufq_get(sdp->swd_tab);
1461 		if (bp == NULL)
1462 			break;
1463 		sdp->swd_active++;
1464 
1465 		UVMHIST_LOG(pdhist,
1466 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1467 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1468 		vp = bp->b_vp;
1469 		KASSERT(bp->b_objlock == vp->v_interlock);
1470 		if ((bp->b_flags & B_READ) == 0) {
1471 			mutex_enter(vp->v_interlock);
1472 			vp->v_numoutput++;
1473 			mutex_exit(vp->v_interlock);
1474 		}
1475 		VOP_STRATEGY(vp, bp);
1476 	}
1477 	sdp->swd_flags &= ~SWF_BUSY;
1478 }
1479 
1480 /*
1481  * sw_reg_biodone: one of our i/o's has completed
1482  */
1483 static void
1484 sw_reg_biodone(struct buf *bp)
1485 {
1486 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1487 }
1488 
1489 /*
1490  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1491  *
1492  * => note that we can recover the vndbuf struct by casting the buf ptr
1493  */
1494 static void
1495 sw_reg_iodone(struct work *wk, void *dummy)
1496 {
1497 	struct vndbuf *vbp = (void *)wk;
1498 	struct vndxfer *vnx = vbp->vb_xfer;
1499 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1500 	struct swapdev	*sdp = vnx->vx_sdp;
1501 	int s, resid, error;
1502 	KASSERT(&vbp->vb_buf.b_work == wk);
1503 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1504 
1505 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1506 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1507 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1508 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1509 
1510 	/*
1511 	 * protect vbp at splbio and update.
1512 	 */
1513 
1514 	s = splbio();
1515 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1516 	pbp->b_resid -= resid;
1517 	vnx->vx_pending--;
1518 
1519 	if (vbp->vb_buf.b_error != 0) {
1520 		/* pass error upward */
1521 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1522 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1523 		vnx->vx_error = error;
1524 	}
1525 
1526 	/*
1527 	 * kill vbp structure
1528 	 */
1529 	buf_destroy(&vbp->vb_buf);
1530 	pool_put(&vndbuf_pool, vbp);
1531 
1532 	/*
1533 	 * wrap up this transaction if it has run to completion or, in
1534 	 * case of an error, when all auxiliary buffers have returned.
1535 	 */
1536 	if (vnx->vx_error != 0) {
1537 		/* pass error upward */
1538 		error = vnx->vx_error;
1539 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1540 			pbp->b_error = error;
1541 			biodone(pbp);
1542 			pool_put(&vndxfer_pool, vnx);
1543 		}
1544 	} else if (pbp->b_resid == 0) {
1545 		KASSERT(vnx->vx_pending == 0);
1546 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1547 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1548 			    pbp, vnx->vx_error, 0, 0);
1549 			biodone(pbp);
1550 			pool_put(&vndxfer_pool, vnx);
1551 		}
1552 	}
1553 
1554 	/*
1555 	 * done!   start next swapdev I/O if one is pending
1556 	 */
1557 	sdp->swd_active--;
1558 	sw_reg_start(sdp);
1559 	splx(s);
1560 }
1561 
1562 
1563 /*
1564  * uvm_swap_alloc: allocate space on swap
1565  *
1566  * => allocation is done "round robin" down the priority list, as we
1567  *	allocate in a priority we "rotate" the circle queue.
1568  * => space can be freed with uvm_swap_free
1569  * => we return the page slot number in /dev/drum (0 == invalid slot)
1570  * => we lock uvm_swap_data_lock
1571  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1572  */
1573 int
1574 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1575 {
1576 	struct swapdev *sdp;
1577 	struct swappri *spp;
1578 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1579 
1580 	/*
1581 	 * no swap devices configured yet?   definite failure.
1582 	 */
1583 	if (uvmexp.nswapdev < 1)
1584 		return 0;
1585 
1586 	/*
1587 	 * XXXJAK: BEGIN HACK
1588 	 *
1589 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1590 	 * too many slots.
1591 	 */
1592 	if (*nslots > BLIST_MAX_ALLOC) {
1593 		if (__predict_false(lessok == false))
1594 			return 0;
1595 		*nslots = BLIST_MAX_ALLOC;
1596 	}
1597 	/* XXXJAK: END HACK */
1598 
1599 	/*
1600 	 * lock data lock, convert slots into blocks, and enter loop
1601 	 */
1602 	mutex_enter(&uvm_swap_data_lock);
1603 
1604 ReTry:	/* XXXMRG */
1605 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1606 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1607 			uint64_t result;
1608 
1609 			/* if it's not enabled, then we can't swap from it */
1610 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1611 				continue;
1612 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1613 				continue;
1614 			result = blist_alloc(sdp->swd_blist, *nslots);
1615 			if (result == BLIST_NONE) {
1616 				continue;
1617 			}
1618 			KASSERT(result < sdp->swd_drumsize);
1619 
1620 			/*
1621 			 * successful allocation!  now rotate the tailq.
1622 			 */
1623 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1624 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1625 			sdp->swd_npginuse += *nslots;
1626 			uvmexp.swpginuse += *nslots;
1627 			mutex_exit(&uvm_swap_data_lock);
1628 			/* done!  return drum slot number */
1629 			UVMHIST_LOG(pdhist,
1630 			    "success!  returning %d slots starting at %d",
1631 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1632 			return (result + sdp->swd_drumoffset);
1633 		}
1634 	}
1635 
1636 	/* XXXMRG: BEGIN HACK */
1637 	if (*nslots > 1 && lessok) {
1638 		*nslots = 1;
1639 		/* XXXMRG: ugh!  blist should support this for us */
1640 		goto ReTry;
1641 	}
1642 	/* XXXMRG: END HACK */
1643 
1644 	mutex_exit(&uvm_swap_data_lock);
1645 	return 0;
1646 }
1647 
1648 /*
1649  * uvm_swapisfull: return true if most of available swap is allocated
1650  * and in use.  we don't count some small portion as it may be inaccessible
1651  * to us at any given moment, for example if there is lock contention or if
1652  * pages are busy.
1653  */
1654 bool
1655 uvm_swapisfull(void)
1656 {
1657 	int swpgonly;
1658 	bool rv;
1659 
1660 	mutex_enter(&uvm_swap_data_lock);
1661 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1662 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1663 	    uvm_swapisfull_factor);
1664 	rv = (swpgonly >= uvmexp.swpgavail);
1665 	mutex_exit(&uvm_swap_data_lock);
1666 
1667 	return (rv);
1668 }
1669 
1670 /*
1671  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1672  *
1673  * => we lock uvm_swap_data_lock
1674  */
1675 void
1676 uvm_swap_markbad(int startslot, int nslots)
1677 {
1678 	struct swapdev *sdp;
1679 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1680 
1681 	mutex_enter(&uvm_swap_data_lock);
1682 	sdp = swapdrum_getsdp(startslot);
1683 	KASSERT(sdp != NULL);
1684 
1685 	/*
1686 	 * we just keep track of how many pages have been marked bad
1687 	 * in this device, to make everything add up in swap_off().
1688 	 * we assume here that the range of slots will all be within
1689 	 * one swap device.
1690 	 */
1691 
1692 	KASSERT(uvmexp.swpgonly >= nslots);
1693 	uvmexp.swpgonly -= nslots;
1694 	sdp->swd_npgbad += nslots;
1695 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1696 	mutex_exit(&uvm_swap_data_lock);
1697 }
1698 
1699 /*
1700  * uvm_swap_free: free swap slots
1701  *
1702  * => this can be all or part of an allocation made by uvm_swap_alloc
1703  * => we lock uvm_swap_data_lock
1704  */
1705 void
1706 uvm_swap_free(int startslot, int nslots)
1707 {
1708 	struct swapdev *sdp;
1709 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1710 
1711 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1712 	    startslot, 0, 0);
1713 
1714 	/*
1715 	 * ignore attempts to free the "bad" slot.
1716 	 */
1717 
1718 	if (startslot == SWSLOT_BAD) {
1719 		return;
1720 	}
1721 
1722 	/*
1723 	 * convert drum slot offset back to sdp, free the blocks
1724 	 * in the extent, and return.   must hold pri lock to do
1725 	 * lookup and access the extent.
1726 	 */
1727 
1728 	mutex_enter(&uvm_swap_data_lock);
1729 	sdp = swapdrum_getsdp(startslot);
1730 	KASSERT(uvmexp.nswapdev >= 1);
1731 	KASSERT(sdp != NULL);
1732 	KASSERT(sdp->swd_npginuse >= nslots);
1733 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1734 	sdp->swd_npginuse -= nslots;
1735 	uvmexp.swpginuse -= nslots;
1736 	mutex_exit(&uvm_swap_data_lock);
1737 }
1738 
1739 /*
1740  * uvm_swap_put: put any number of pages into a contig place on swap
1741  *
1742  * => can be sync or async
1743  */
1744 
1745 int
1746 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1747 {
1748 	int error;
1749 
1750 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1751 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1752 	return error;
1753 }
1754 
1755 /*
1756  * uvm_swap_get: get a single page from swap
1757  *
1758  * => usually a sync op (from fault)
1759  */
1760 
1761 int
1762 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1763 {
1764 	int error;
1765 
1766 	uvmexp.nswget++;
1767 	KASSERT(flags & PGO_SYNCIO);
1768 	if (swslot == SWSLOT_BAD) {
1769 		return EIO;
1770 	}
1771 
1772 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1773 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1774 	if (error == 0) {
1775 
1776 		/*
1777 		 * this page is no longer only in swap.
1778 		 */
1779 
1780 		mutex_enter(&uvm_swap_data_lock);
1781 		KASSERT(uvmexp.swpgonly > 0);
1782 		uvmexp.swpgonly--;
1783 		mutex_exit(&uvm_swap_data_lock);
1784 	}
1785 	return error;
1786 }
1787 
1788 /*
1789  * uvm_swap_io: do an i/o operation to swap
1790  */
1791 
1792 static int
1793 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1794 {
1795 	daddr_t startblk;
1796 	struct	buf *bp;
1797 	vaddr_t kva;
1798 	int	error, mapinflags;
1799 	bool write, async;
1800 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1801 
1802 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1803 	    startslot, npages, flags, 0);
1804 
1805 	write = (flags & B_READ) == 0;
1806 	async = (flags & B_ASYNC) != 0;
1807 
1808 	/*
1809 	 * allocate a buf for the i/o.
1810 	 */
1811 
1812 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1813 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1814 	if (bp == NULL) {
1815 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1816 		return ENOMEM;
1817 	}
1818 
1819 	/*
1820 	 * convert starting drum slot to block number
1821 	 */
1822 
1823 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1824 
1825 	/*
1826 	 * first, map the pages into the kernel.
1827 	 */
1828 
1829 	mapinflags = !write ?
1830 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1831 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1832 	kva = uvm_pagermapin(pps, npages, mapinflags);
1833 
1834 	/*
1835 	 * fill in the bp/sbp.   we currently route our i/o through
1836 	 * /dev/drum's vnode [swapdev_vp].
1837 	 */
1838 
1839 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1840 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1841 	bp->b_proc = &proc0;	/* XXX */
1842 	bp->b_vnbufs.le_next = NOLIST;
1843 	bp->b_data = (void *)kva;
1844 	bp->b_blkno = startblk;
1845 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1846 
1847 	/*
1848 	 * bump v_numoutput (counter of number of active outputs).
1849 	 */
1850 
1851 	if (write) {
1852 		mutex_enter(swapdev_vp->v_interlock);
1853 		swapdev_vp->v_numoutput++;
1854 		mutex_exit(swapdev_vp->v_interlock);
1855 	}
1856 
1857 	/*
1858 	 * for async ops we must set up the iodone handler.
1859 	 */
1860 
1861 	if (async) {
1862 		bp->b_iodone = uvm_aio_biodone;
1863 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1864 		if (curlwp == uvm.pagedaemon_lwp)
1865 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1866 		else
1867 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1868 	} else {
1869 		bp->b_iodone = NULL;
1870 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1871 	}
1872 	UVMHIST_LOG(pdhist,
1873 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1874 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1875 
1876 	/*
1877 	 * now we start the I/O, and if async, return.
1878 	 */
1879 
1880 	VOP_STRATEGY(swapdev_vp, bp);
1881 	if (async)
1882 		return 0;
1883 
1884 	/*
1885 	 * must be sync i/o.   wait for it to finish
1886 	 */
1887 
1888 	error = biowait(bp);
1889 
1890 	/*
1891 	 * kill the pager mapping
1892 	 */
1893 
1894 	uvm_pagermapout(kva, npages);
1895 
1896 	/*
1897 	 * now dispose of the buf and we're done.
1898 	 */
1899 
1900 	if (write) {
1901 		mutex_enter(swapdev_vp->v_interlock);
1902 		vwakeup(bp);
1903 		mutex_exit(swapdev_vp->v_interlock);
1904 	}
1905 	putiobuf(bp);
1906 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1907 
1908 	return (error);
1909 }
1910