1 /* $NetBSD: uvm_swap.c,v 1.64 2002/05/09 21:43:44 fredette Exp $ */ 2 3 /* 4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp 31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.64 2002/05/09 21:43:44 fredette Exp $"); 36 37 #include "fs_nfs.h" 38 #include "opt_uvmhist.h" 39 #include "opt_compat_netbsd.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/buf.h> 45 #include <sys/conf.h> 46 #include <sys/proc.h> 47 #include <sys/namei.h> 48 #include <sys/disklabel.h> 49 #include <sys/errno.h> 50 #include <sys/kernel.h> 51 #include <sys/malloc.h> 52 #include <sys/vnode.h> 53 #include <sys/file.h> 54 #include <sys/extent.h> 55 #include <sys/mount.h> 56 #include <sys/pool.h> 57 #include <sys/syscallargs.h> 58 #include <sys/swap.h> 59 60 #include <uvm/uvm.h> 61 62 #include <miscfs/specfs/specdev.h> 63 64 /* 65 * uvm_swap.c: manage configuration and i/o to swap space. 66 */ 67 68 /* 69 * swap space is managed in the following way: 70 * 71 * each swap partition or file is described by a "swapdev" structure. 72 * each "swapdev" structure contains a "swapent" structure which contains 73 * information that is passed up to the user (via system calls). 74 * 75 * each swap partition is assigned a "priority" (int) which controls 76 * swap parition usage. 77 * 78 * the system maintains a global data structure describing all swap 79 * partitions/files. there is a sorted LIST of "swappri" structures 80 * which describe "swapdev"'s at that priority. this LIST is headed 81 * by the "swap_priority" global var. each "swappri" contains a 82 * CIRCLEQ of "swapdev" structures at that priority. 83 * 84 * locking: 85 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl 86 * system call and prevents the swap priority list from changing 87 * while we are in the middle of a system call (e.g. SWAP_STATS). 88 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data 89 * structures including the priority list, the swapdev structures, 90 * and the swapmap extent. 91 * 92 * each swap device has the following info: 93 * - swap device in use (could be disabled, preventing future use) 94 * - swap enabled (allows new allocations on swap) 95 * - map info in /dev/drum 96 * - vnode pointer 97 * for swap files only: 98 * - block size 99 * - max byte count in buffer 100 * - buffer 101 * 102 * userland controls and configures swap with the swapctl(2) system call. 103 * the sys_swapctl performs the following operations: 104 * [1] SWAP_NSWAP: returns the number of swap devices currently configured 105 * [2] SWAP_STATS: given a pointer to an array of swapent structures 106 * (passed in via "arg") of a size passed in via "misc" ... we load 107 * the current swap config into the array. The actual work is done 108 * in the uvm_swap_stats(9) function. 109 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a 110 * priority in "misc", start swapping on it. 111 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device 112 * [5] SWAP_CTL: changes the priority of a swap device (new priority in 113 * "misc") 114 */ 115 116 /* 117 * swapdev: describes a single swap partition/file 118 * 119 * note the following should be true: 120 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] 121 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] 122 */ 123 struct swapdev { 124 struct oswapent swd_ose; 125 #define swd_dev swd_ose.ose_dev /* device id */ 126 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */ 127 #define swd_priority swd_ose.ose_priority /* our priority */ 128 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */ 129 char *swd_path; /* saved pathname of device */ 130 int swd_pathlen; /* length of pathname */ 131 int swd_npages; /* #pages we can use */ 132 int swd_npginuse; /* #pages in use */ 133 int swd_npgbad; /* #pages bad */ 134 int swd_drumoffset; /* page0 offset in drum */ 135 int swd_drumsize; /* #pages in drum */ 136 struct extent *swd_ex; /* extent for this swapdev */ 137 char swd_exname[12]; /* name of extent above */ 138 struct vnode *swd_vp; /* backing vnode */ 139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */ 140 141 int swd_bsize; /* blocksize (bytes) */ 142 int swd_maxactive; /* max active i/o reqs */ 143 struct buf_queue swd_tab; /* buffer list */ 144 int swd_active; /* number of active buffers */ 145 }; 146 147 /* 148 * swap device priority entry; the list is kept sorted on `spi_priority'. 149 */ 150 struct swappri { 151 int spi_priority; /* priority */ 152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev; 153 /* circleq of swapdevs at this priority */ 154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ 155 }; 156 157 /* 158 * The following two structures are used to keep track of data transfers 159 * on swap devices associated with regular files. 160 * NOTE: this code is more or less a copy of vnd.c; we use the same 161 * structure names here to ease porting.. 162 */ 163 struct vndxfer { 164 struct buf *vx_bp; /* Pointer to parent buffer */ 165 struct swapdev *vx_sdp; 166 int vx_error; 167 int vx_pending; /* # of pending aux buffers */ 168 int vx_flags; 169 #define VX_BUSY 1 170 #define VX_DEAD 2 171 }; 172 173 struct vndbuf { 174 struct buf vb_buf; 175 struct vndxfer *vb_xfer; 176 }; 177 178 179 /* 180 * We keep a of pool vndbuf's and vndxfer structures. 181 */ 182 static struct pool vndxfer_pool; 183 static struct pool vndbuf_pool; 184 185 #define getvndxfer(vnx) do { \ 186 int s = splbio(); \ 187 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \ 188 splx(s); \ 189 } while (0) 190 191 #define putvndxfer(vnx) { \ 192 pool_put(&vndxfer_pool, (void *)(vnx)); \ 193 } 194 195 #define getvndbuf(vbp) do { \ 196 int s = splbio(); \ 197 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \ 198 splx(s); \ 199 } while (0) 200 201 #define putvndbuf(vbp) { \ 202 pool_put(&vndbuf_pool, (void *)(vbp)); \ 203 } 204 205 /* /dev/drum */ 206 bdev_decl(sw); 207 cdev_decl(sw); 208 209 /* 210 * local variables 211 */ 212 static struct extent *swapmap; /* controls the mapping of /dev/drum */ 213 214 /* list of all active swap devices [by priority] */ 215 LIST_HEAD(swap_priority, swappri); 216 static struct swap_priority swap_priority; 217 218 /* locks */ 219 struct lock swap_syscall_lock; 220 221 /* 222 * prototypes 223 */ 224 static struct swapdev *swapdrum_getsdp __P((int)); 225 226 static struct swapdev *swaplist_find __P((struct vnode *, int)); 227 static void swaplist_insert __P((struct swapdev *, 228 struct swappri *, int)); 229 static void swaplist_trim __P((void)); 230 231 static int swap_on __P((struct proc *, struct swapdev *)); 232 static int swap_off __P((struct proc *, struct swapdev *)); 233 234 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int)); 235 static void sw_reg_iodone __P((struct buf *)); 236 static void sw_reg_start __P((struct swapdev *)); 237 238 static int uvm_swap_io __P((struct vm_page **, int, int, int)); 239 240 /* 241 * uvm_swap_init: init the swap system data structures and locks 242 * 243 * => called at boot time from init_main.c after the filesystems 244 * are brought up (which happens after uvm_init()) 245 */ 246 void 247 uvm_swap_init() 248 { 249 UVMHIST_FUNC("uvm_swap_init"); 250 251 UVMHIST_CALLED(pdhist); 252 /* 253 * first, init the swap list, its counter, and its lock. 254 * then get a handle on the vnode for /dev/drum by using 255 * the its dev_t number ("swapdev", from MD conf.c). 256 */ 257 258 LIST_INIT(&swap_priority); 259 uvmexp.nswapdev = 0; 260 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0); 261 simple_lock_init(&uvm.swap_data_lock); 262 263 if (bdevvp(swapdev, &swapdev_vp)) 264 panic("uvm_swap_init: can't get vnode for swap device"); 265 266 /* 267 * create swap block resource map to map /dev/drum. the range 268 * from 1 to INT_MAX allows 2 gigablocks of swap space. note 269 * that block 0 is reserved (used to indicate an allocation 270 * failure, or no allocation). 271 */ 272 swapmap = extent_create("swapmap", 1, INT_MAX, 273 M_VMSWAP, 0, 0, EX_NOWAIT); 274 if (swapmap == 0) 275 panic("uvm_swap_init: extent_create failed"); 276 277 /* 278 * allocate pools for structures used for swapping to files. 279 */ 280 281 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, 282 "swp vnx", NULL); 283 284 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, 285 "swp vnd", NULL); 286 287 /* 288 * done! 289 */ 290 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); 291 } 292 293 /* 294 * swaplist functions: functions that operate on the list of swap 295 * devices on the system. 296 */ 297 298 /* 299 * swaplist_insert: insert swap device "sdp" into the global list 300 * 301 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 302 * => caller must provide a newly malloc'd swappri structure (we will 303 * FREE it if we don't need it... this it to prevent malloc blocking 304 * here while adding swap) 305 */ 306 static void 307 swaplist_insert(sdp, newspp, priority) 308 struct swapdev *sdp; 309 struct swappri *newspp; 310 int priority; 311 { 312 struct swappri *spp, *pspp; 313 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist); 314 315 /* 316 * find entry at or after which to insert the new device. 317 */ 318 pspp = NULL; 319 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 320 if (priority <= spp->spi_priority) 321 break; 322 pspp = spp; 323 } 324 325 /* 326 * new priority? 327 */ 328 if (spp == NULL || spp->spi_priority != priority) { 329 spp = newspp; /* use newspp! */ 330 UVMHIST_LOG(pdhist, "created new swappri = %d", 331 priority, 0, 0, 0); 332 333 spp->spi_priority = priority; 334 CIRCLEQ_INIT(&spp->spi_swapdev); 335 336 if (pspp) 337 LIST_INSERT_AFTER(pspp, spp, spi_swappri); 338 else 339 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); 340 } else { 341 /* we don't need a new priority structure, free it */ 342 FREE(newspp, M_VMSWAP); 343 } 344 345 /* 346 * priority found (or created). now insert on the priority's 347 * circleq list and bump the total number of swapdevs. 348 */ 349 sdp->swd_priority = priority; 350 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 351 uvmexp.nswapdev++; 352 } 353 354 /* 355 * swaplist_find: find and optionally remove a swap device from the 356 * global list. 357 * 358 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 359 * => we return the swapdev we found (and removed) 360 */ 361 static struct swapdev * 362 swaplist_find(vp, remove) 363 struct vnode *vp; 364 boolean_t remove; 365 { 366 struct swapdev *sdp; 367 struct swappri *spp; 368 369 /* 370 * search the lists for the requested vp 371 */ 372 373 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 374 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 375 if (sdp->swd_vp == vp) { 376 if (remove) { 377 CIRCLEQ_REMOVE(&spp->spi_swapdev, 378 sdp, swd_next); 379 uvmexp.nswapdev--; 380 } 381 return(sdp); 382 } 383 } 384 } 385 return (NULL); 386 } 387 388 389 /* 390 * swaplist_trim: scan priority list for empty priority entries and kill 391 * them. 392 * 393 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 394 */ 395 static void 396 swaplist_trim() 397 { 398 struct swappri *spp, *nextspp; 399 400 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) { 401 nextspp = LIST_NEXT(spp, spi_swappri); 402 if (CIRCLEQ_FIRST(&spp->spi_swapdev) != 403 (void *)&spp->spi_swapdev) 404 continue; 405 LIST_REMOVE(spp, spi_swappri); 406 free(spp, M_VMSWAP); 407 } 408 } 409 410 /* 411 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back 412 * to the "swapdev" that maps that section of the drum. 413 * 414 * => each swapdev takes one big contig chunk of the drum 415 * => caller must hold uvm.swap_data_lock 416 */ 417 static struct swapdev * 418 swapdrum_getsdp(pgno) 419 int pgno; 420 { 421 struct swapdev *sdp; 422 struct swappri *spp; 423 424 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 425 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 426 if (sdp->swd_flags & SWF_FAKE) 427 continue; 428 if (pgno >= sdp->swd_drumoffset && 429 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { 430 return sdp; 431 } 432 } 433 } 434 return NULL; 435 } 436 437 438 /* 439 * sys_swapctl: main entry point for swapctl(2) system call 440 * [with two helper functions: swap_on and swap_off] 441 */ 442 int 443 sys_swapctl(p, v, retval) 444 struct proc *p; 445 void *v; 446 register_t *retval; 447 { 448 struct sys_swapctl_args /* { 449 syscallarg(int) cmd; 450 syscallarg(void *) arg; 451 syscallarg(int) misc; 452 } */ *uap = (struct sys_swapctl_args *)v; 453 struct vnode *vp; 454 struct nameidata nd; 455 struct swappri *spp; 456 struct swapdev *sdp; 457 struct swapent *sep; 458 char userpath[PATH_MAX + 1]; 459 size_t len; 460 int error, misc; 461 int priority; 462 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist); 463 464 misc = SCARG(uap, misc); 465 466 /* 467 * ensure serialized syscall access by grabbing the swap_syscall_lock 468 */ 469 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL); 470 471 /* 472 * we handle the non-priv NSWAP and STATS request first. 473 * 474 * SWAP_NSWAP: return number of config'd swap devices 475 * [can also be obtained with uvmexp sysctl] 476 */ 477 if (SCARG(uap, cmd) == SWAP_NSWAP) { 478 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev, 479 0, 0, 0); 480 *retval = uvmexp.nswapdev; 481 error = 0; 482 goto out; 483 } 484 485 /* 486 * SWAP_STATS: get stats on current # of configured swap devs 487 * 488 * note that the swap_priority list can't change as long 489 * as we are holding the swap_syscall_lock. we don't want 490 * to grab the uvm.swap_data_lock because we may fault&sleep during 491 * copyout() and we don't want to be holding that lock then! 492 */ 493 if (SCARG(uap, cmd) == SWAP_STATS 494 #if defined(COMPAT_13) 495 || SCARG(uap, cmd) == SWAP_OSTATS 496 #endif 497 ) { 498 misc = MIN(uvmexp.nswapdev, misc); 499 #if defined(COMPAT_13) 500 if (SCARG(uap, cmd) == SWAP_OSTATS) 501 len = sizeof(struct oswapent) * misc; 502 else 503 #endif 504 len = sizeof(struct swapent) * misc; 505 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK); 506 507 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval); 508 error = copyout(sep, (void *)SCARG(uap, arg), len); 509 510 free(sep, M_TEMP); 511 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); 512 goto out; 513 } 514 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) { 515 dev_t *devp = (dev_t *)SCARG(uap, arg); 516 517 error = copyout(&dumpdev, devp, sizeof(dumpdev)); 518 goto out; 519 } 520 521 /* 522 * all other requests require superuser privs. verify. 523 */ 524 if ((error = suser(p->p_ucred, &p->p_acflag))) 525 goto out; 526 527 /* 528 * at this point we expect a path name in arg. we will 529 * use namei() to gain a vnode reference (vref), and lock 530 * the vnode (VOP_LOCK). 531 * 532 * XXX: a NULL arg means use the root vnode pointer (e.g. for 533 * miniroot) 534 */ 535 if (SCARG(uap, arg) == NULL) { 536 vp = rootvp; /* miniroot */ 537 if (vget(vp, LK_EXCLUSIVE)) { 538 error = EBUSY; 539 goto out; 540 } 541 if (SCARG(uap, cmd) == SWAP_ON && 542 copystr("miniroot", userpath, sizeof userpath, &len)) 543 panic("swapctl: miniroot copy failed"); 544 } else { 545 int space; 546 char *where; 547 548 if (SCARG(uap, cmd) == SWAP_ON) { 549 if ((error = copyinstr(SCARG(uap, arg), userpath, 550 sizeof userpath, &len))) 551 goto out; 552 space = UIO_SYSSPACE; 553 where = userpath; 554 } else { 555 space = UIO_USERSPACE; 556 where = (char *)SCARG(uap, arg); 557 } 558 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p); 559 if ((error = namei(&nd))) 560 goto out; 561 vp = nd.ni_vp; 562 } 563 /* note: "vp" is referenced and locked */ 564 565 error = 0; /* assume no error */ 566 switch(SCARG(uap, cmd)) { 567 568 case SWAP_DUMPDEV: 569 if (vp->v_type != VBLK) { 570 error = ENOTBLK; 571 break; 572 } 573 dumpdev = vp->v_rdev; 574 break; 575 576 case SWAP_CTL: 577 /* 578 * get new priority, remove old entry (if any) and then 579 * reinsert it in the correct place. finally, prune out 580 * any empty priority structures. 581 */ 582 priority = SCARG(uap, misc); 583 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 584 simple_lock(&uvm.swap_data_lock); 585 if ((sdp = swaplist_find(vp, 1)) == NULL) { 586 error = ENOENT; 587 } else { 588 swaplist_insert(sdp, spp, priority); 589 swaplist_trim(); 590 } 591 simple_unlock(&uvm.swap_data_lock); 592 if (error) 593 free(spp, M_VMSWAP); 594 break; 595 596 case SWAP_ON: 597 598 /* 599 * check for duplicates. if none found, then insert a 600 * dummy entry on the list to prevent someone else from 601 * trying to enable this device while we are working on 602 * it. 603 */ 604 605 priority = SCARG(uap, misc); 606 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK); 607 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 608 simple_lock(&uvm.swap_data_lock); 609 if (swaplist_find(vp, 0) != NULL) { 610 error = EBUSY; 611 simple_unlock(&uvm.swap_data_lock); 612 free(sdp, M_VMSWAP); 613 free(spp, M_VMSWAP); 614 break; 615 } 616 memset(sdp, 0, sizeof(*sdp)); 617 sdp->swd_flags = SWF_FAKE; /* placeholder only */ 618 sdp->swd_vp = vp; 619 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; 620 BUFQ_INIT(&sdp->swd_tab); 621 622 swaplist_insert(sdp, spp, priority); 623 simple_unlock(&uvm.swap_data_lock); 624 625 sdp->swd_pathlen = len; 626 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK); 627 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0) 628 panic("swapctl: copystr"); 629 630 /* 631 * we've now got a FAKE placeholder in the swap list. 632 * now attempt to enable swap on it. if we fail, undo 633 * what we've done and kill the fake entry we just inserted. 634 * if swap_on is a success, it will clear the SWF_FAKE flag 635 */ 636 637 if ((error = swap_on(p, sdp)) != 0) { 638 simple_lock(&uvm.swap_data_lock); 639 (void) swaplist_find(vp, 1); /* kill fake entry */ 640 swaplist_trim(); 641 simple_unlock(&uvm.swap_data_lock); 642 free(sdp->swd_path, M_VMSWAP); 643 free(sdp, M_VMSWAP); 644 break; 645 } 646 break; 647 648 case SWAP_OFF: 649 simple_lock(&uvm.swap_data_lock); 650 if ((sdp = swaplist_find(vp, 0)) == NULL) { 651 simple_unlock(&uvm.swap_data_lock); 652 error = ENXIO; 653 break; 654 } 655 656 /* 657 * If a device isn't in use or enabled, we 658 * can't stop swapping from it (again). 659 */ 660 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { 661 simple_unlock(&uvm.swap_data_lock); 662 error = EBUSY; 663 break; 664 } 665 666 /* 667 * do the real work. 668 */ 669 error = swap_off(p, sdp); 670 break; 671 672 default: 673 error = EINVAL; 674 } 675 676 /* 677 * done! release the ref gained by namei() and unlock. 678 */ 679 vput(vp); 680 681 out: 682 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL); 683 684 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0); 685 return (error); 686 } 687 688 /* 689 * swap_stats: implements swapctl(SWAP_STATS). The function is kept 690 * away from sys_swapctl() in order to allow COMPAT_* swapctl() 691 * emulation to use it directly without going through sys_swapctl(). 692 * The problem with using sys_swapctl() there is that it involves 693 * copying the swapent array to the stackgap, and this array's size 694 * is not known at build time. Hence it would not be possible to 695 * ensure it would fit in the stackgap in any case. 696 */ 697 void 698 uvm_swap_stats(cmd, sep, sec, retval) 699 int cmd; 700 struct swapent *sep; 701 int sec; 702 register_t *retval; 703 { 704 struct swappri *spp; 705 struct swapdev *sdp; 706 int count = 0; 707 708 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 709 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 710 sdp != (void *)&spp->spi_swapdev && sec-- > 0; 711 sdp = CIRCLEQ_NEXT(sdp, swd_next)) { 712 /* 713 * backwards compatibility for system call. 714 * note that we use 'struct oswapent' as an 715 * overlay into both 'struct swapdev' and 716 * the userland 'struct swapent', as we 717 * want to retain backwards compatibility 718 * with NetBSD 1.3. 719 */ 720 sdp->swd_ose.ose_inuse = 721 btodb((u_int64_t)sdp->swd_npginuse << 722 PAGE_SHIFT); 723 (void)memcpy(sep, &sdp->swd_ose, 724 sizeof(struct oswapent)); 725 726 /* now copy out the path if necessary */ 727 #if defined(COMPAT_13) 728 if (cmd == SWAP_STATS) 729 #endif 730 (void)memcpy(&sep->se_path, sdp->swd_path, 731 sdp->swd_pathlen); 732 733 count++; 734 #if defined(COMPAT_13) 735 if (cmd == SWAP_OSTATS) 736 sep = (struct swapent *) 737 ((struct oswapent *)sep + 1); 738 else 739 #endif 740 sep++; 741 } 742 } 743 744 *retval = count; 745 return; 746 } 747 748 /* 749 * swap_on: attempt to enable a swapdev for swapping. note that the 750 * swapdev is already on the global list, but disabled (marked 751 * SWF_FAKE). 752 * 753 * => we avoid the start of the disk (to protect disk labels) 754 * => we also avoid the miniroot, if we are swapping to root. 755 * => caller should leave uvm.swap_data_lock unlocked, we may lock it 756 * if needed. 757 */ 758 static int 759 swap_on(p, sdp) 760 struct proc *p; 761 struct swapdev *sdp; 762 { 763 static int count = 0; /* static */ 764 struct vnode *vp; 765 int error, npages, nblocks, size; 766 long addr; 767 u_long result; 768 struct vattr va; 769 #ifdef NFS 770 extern int (**nfsv2_vnodeop_p) __P((void *)); 771 #endif /* NFS */ 772 dev_t dev; 773 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist); 774 775 /* 776 * we want to enable swapping on sdp. the swd_vp contains 777 * the vnode we want (locked and ref'd), and the swd_dev 778 * contains the dev_t of the file, if it a block device. 779 */ 780 781 vp = sdp->swd_vp; 782 dev = sdp->swd_dev; 783 784 /* 785 * open the swap file (mostly useful for block device files to 786 * let device driver know what is up). 787 * 788 * we skip the open/close for root on swap because the root 789 * has already been opened when root was mounted (mountroot). 790 */ 791 if (vp != rootvp) { 792 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p))) 793 return (error); 794 } 795 796 /* XXX this only works for block devices */ 797 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0); 798 799 /* 800 * we now need to determine the size of the swap area. for 801 * block specials we can call the d_psize function. 802 * for normal files, we must stat [get attrs]. 803 * 804 * we put the result in nblks. 805 * for normal files, we also want the filesystem block size 806 * (which we get with statfs). 807 */ 808 switch (vp->v_type) { 809 case VBLK: 810 if (bdevsw[major(dev)].d_psize == 0 || 811 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) { 812 error = ENXIO; 813 goto bad; 814 } 815 break; 816 817 case VREG: 818 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) 819 goto bad; 820 nblocks = (int)btodb(va.va_size); 821 if ((error = 822 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0) 823 goto bad; 824 825 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize; 826 /* 827 * limit the max # of outstanding I/O requests we issue 828 * at any one time. take it easy on NFS servers. 829 */ 830 #ifdef NFS 831 if (vp->v_op == nfsv2_vnodeop_p) 832 sdp->swd_maxactive = 2; /* XXX */ 833 else 834 #endif /* NFS */ 835 sdp->swd_maxactive = 8; /* XXX */ 836 break; 837 838 default: 839 error = ENXIO; 840 goto bad; 841 } 842 843 /* 844 * save nblocks in a safe place and convert to pages. 845 */ 846 847 sdp->swd_ose.ose_nblks = nblocks; 848 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT; 849 850 /* 851 * for block special files, we want to make sure that leave 852 * the disklabel and bootblocks alone, so we arrange to skip 853 * over them (arbitrarily choosing to skip PAGE_SIZE bytes). 854 * note that because of this the "size" can be less than the 855 * actual number of blocks on the device. 856 */ 857 if (vp->v_type == VBLK) { 858 /* we use pages 1 to (size - 1) [inclusive] */ 859 size = npages - 1; 860 addr = 1; 861 } else { 862 /* we use pages 0 to (size - 1) [inclusive] */ 863 size = npages; 864 addr = 0; 865 } 866 867 /* 868 * make sure we have enough blocks for a reasonable sized swap 869 * area. we want at least one page. 870 */ 871 872 if (size < 1) { 873 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); 874 error = EINVAL; 875 goto bad; 876 } 877 878 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0); 879 880 /* 881 * now we need to allocate an extent to manage this swap device 882 */ 883 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x", 884 count++); 885 886 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */ 887 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP, 888 0, 0, EX_WAITOK); 889 /* allocate the `saved' region from the extent so it won't be used */ 890 if (addr) { 891 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK)) 892 panic("disklabel region"); 893 } 894 895 /* 896 * if the vnode we are swapping to is the root vnode 897 * (i.e. we are swapping to the miniroot) then we want 898 * to make sure we don't overwrite it. do a statfs to 899 * find its size and skip over it. 900 */ 901 if (vp == rootvp) { 902 struct mount *mp; 903 struct statfs *sp; 904 int rootblocks, rootpages; 905 906 mp = rootvnode->v_mount; 907 sp = &mp->mnt_stat; 908 rootblocks = sp->f_blocks * btodb(sp->f_bsize); 909 /* 910 * XXX: sp->f_blocks isn't the total number of 911 * blocks in the filesystem, it's the number of 912 * data blocks. so, our rootblocks almost 913 * definitely underestimates the total size 914 * of the filesystem - how badly depends on the 915 * details of the filesystem type. there isn't 916 * an obvious way to deal with this cleanly 917 * and perfectly, so for now we just pad our 918 * rootblocks estimate with an extra 5 percent. 919 */ 920 rootblocks += (rootblocks >> 5) + 921 (rootblocks >> 6) + 922 (rootblocks >> 7); 923 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; 924 if (rootpages > size) 925 panic("swap_on: miniroot larger than swap?"); 926 927 if (extent_alloc_region(sdp->swd_ex, addr, 928 rootpages, EX_WAITOK)) 929 panic("swap_on: unable to preserve miniroot"); 930 931 size -= rootpages; 932 printf("Preserved %d pages of miniroot ", rootpages); 933 printf("leaving %d pages of swap\n", size); 934 } 935 936 /* 937 * try to add anons to reflect the new swap space. 938 */ 939 940 error = uvm_anon_add(size); 941 if (error) { 942 goto bad; 943 } 944 945 /* 946 * add a ref to vp to reflect usage as a swap device. 947 */ 948 vref(vp); 949 950 /* 951 * now add the new swapdev to the drum and enable. 952 */ 953 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY, 954 EX_WAITOK, &result)) 955 panic("swapdrum_add"); 956 957 sdp->swd_drumoffset = (int)result; 958 sdp->swd_drumsize = npages; 959 sdp->swd_npages = size; 960 simple_lock(&uvm.swap_data_lock); 961 sdp->swd_flags &= ~SWF_FAKE; /* going live */ 962 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); 963 uvmexp.swpages += size; 964 simple_unlock(&uvm.swap_data_lock); 965 return (0); 966 967 /* 968 * failure: clean up and return error. 969 */ 970 971 bad: 972 if (sdp->swd_ex) { 973 extent_destroy(sdp->swd_ex); 974 } 975 if (vp != rootvp) { 976 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p); 977 } 978 return (error); 979 } 980 981 /* 982 * swap_off: stop swapping on swapdev 983 * 984 * => swap data should be locked, we will unlock. 985 */ 986 static int 987 swap_off(p, sdp) 988 struct proc *p; 989 struct swapdev *sdp; 990 { 991 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist); 992 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0); 993 994 /* disable the swap area being removed */ 995 sdp->swd_flags &= ~SWF_ENABLE; 996 simple_unlock(&uvm.swap_data_lock); 997 998 /* 999 * the idea is to find all the pages that are paged out to this 1000 * device, and page them all in. in uvm, swap-backed pageable 1001 * memory can take two forms: aobjs and anons. call the 1002 * swapoff hook for each subsystem to bring in pages. 1003 */ 1004 1005 if (uao_swap_off(sdp->swd_drumoffset, 1006 sdp->swd_drumoffset + sdp->swd_drumsize) || 1007 anon_swap_off(sdp->swd_drumoffset, 1008 sdp->swd_drumoffset + sdp->swd_drumsize)) { 1009 1010 simple_lock(&uvm.swap_data_lock); 1011 sdp->swd_flags |= SWF_ENABLE; 1012 simple_unlock(&uvm.swap_data_lock); 1013 return ENOMEM; 1014 } 1015 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad); 1016 1017 /* 1018 * done with the vnode. 1019 * drop our ref on the vnode before calling VOP_CLOSE() 1020 * so that spec_close() can tell if this is the last close. 1021 */ 1022 vrele(sdp->swd_vp); 1023 if (sdp->swd_vp != rootvp) { 1024 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p); 1025 } 1026 1027 /* remove anons from the system */ 1028 uvm_anon_remove(sdp->swd_npages); 1029 1030 simple_lock(&uvm.swap_data_lock); 1031 uvmexp.swpages -= sdp->swd_npages; 1032 1033 if (swaplist_find(sdp->swd_vp, 1) == NULL) 1034 panic("swap_off: swapdev not in list\n"); 1035 swaplist_trim(); 1036 simple_unlock(&uvm.swap_data_lock); 1037 1038 /* 1039 * free all resources! 1040 */ 1041 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize, 1042 EX_WAITOK); 1043 extent_destroy(sdp->swd_ex); 1044 free(sdp, M_VMSWAP); 1045 return (0); 1046 } 1047 1048 /* 1049 * /dev/drum interface and i/o functions 1050 */ 1051 1052 /* 1053 * swread: the read function for the drum (just a call to physio) 1054 */ 1055 /*ARGSUSED*/ 1056 int 1057 swread(dev, uio, ioflag) 1058 dev_t dev; 1059 struct uio *uio; 1060 int ioflag; 1061 { 1062 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist); 1063 1064 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1065 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); 1066 } 1067 1068 /* 1069 * swwrite: the write function for the drum (just a call to physio) 1070 */ 1071 /*ARGSUSED*/ 1072 int 1073 swwrite(dev, uio, ioflag) 1074 dev_t dev; 1075 struct uio *uio; 1076 int ioflag; 1077 { 1078 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist); 1079 1080 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1081 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); 1082 } 1083 1084 /* 1085 * swstrategy: perform I/O on the drum 1086 * 1087 * => we must map the i/o request from the drum to the correct swapdev. 1088 */ 1089 void 1090 swstrategy(bp) 1091 struct buf *bp; 1092 { 1093 struct swapdev *sdp; 1094 struct vnode *vp; 1095 int s, pageno, bn; 1096 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist); 1097 1098 /* 1099 * convert block number to swapdev. note that swapdev can't 1100 * be yanked out from under us because we are holding resources 1101 * in it (i.e. the blocks we are doing I/O on). 1102 */ 1103 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT; 1104 simple_lock(&uvm.swap_data_lock); 1105 sdp = swapdrum_getsdp(pageno); 1106 simple_unlock(&uvm.swap_data_lock); 1107 if (sdp == NULL) { 1108 bp->b_error = EINVAL; 1109 bp->b_flags |= B_ERROR; 1110 biodone(bp); 1111 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); 1112 return; 1113 } 1114 1115 /* 1116 * convert drum page number to block number on this swapdev. 1117 */ 1118 1119 pageno -= sdp->swd_drumoffset; /* page # on swapdev */ 1120 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */ 1121 1122 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld", 1123 ((bp->b_flags & B_READ) == 0) ? "write" : "read", 1124 sdp->swd_drumoffset, bn, bp->b_bcount); 1125 1126 /* 1127 * for block devices we finish up here. 1128 * for regular files we have to do more work which we delegate 1129 * to sw_reg_strategy(). 1130 */ 1131 1132 switch (sdp->swd_vp->v_type) { 1133 default: 1134 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type); 1135 1136 case VBLK: 1137 1138 /* 1139 * must convert "bp" from an I/O on /dev/drum to an I/O 1140 * on the swapdev (sdp). 1141 */ 1142 s = splbio(); 1143 bp->b_blkno = bn; /* swapdev block number */ 1144 vp = sdp->swd_vp; /* swapdev vnode pointer */ 1145 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ 1146 1147 /* 1148 * if we are doing a write, we have to redirect the i/o on 1149 * drum's v_numoutput counter to the swapdevs. 1150 */ 1151 if ((bp->b_flags & B_READ) == 0) { 1152 vwakeup(bp); /* kills one 'v_numoutput' on drum */ 1153 vp->v_numoutput++; /* put it on swapdev */ 1154 } 1155 1156 /* 1157 * finally plug in swapdev vnode and start I/O 1158 */ 1159 bp->b_vp = vp; 1160 splx(s); 1161 VOP_STRATEGY(bp); 1162 return; 1163 1164 case VREG: 1165 /* 1166 * delegate to sw_reg_strategy function. 1167 */ 1168 sw_reg_strategy(sdp, bp, bn); 1169 return; 1170 } 1171 /* NOTREACHED */ 1172 } 1173 1174 /* 1175 * sw_reg_strategy: handle swap i/o to regular files 1176 */ 1177 static void 1178 sw_reg_strategy(sdp, bp, bn) 1179 struct swapdev *sdp; 1180 struct buf *bp; 1181 int bn; 1182 { 1183 struct vnode *vp; 1184 struct vndxfer *vnx; 1185 daddr_t nbn; 1186 caddr_t addr; 1187 off_t byteoff; 1188 int s, off, nra, error, sz, resid; 1189 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist); 1190 1191 /* 1192 * allocate a vndxfer head for this transfer and point it to 1193 * our buffer. 1194 */ 1195 getvndxfer(vnx); 1196 vnx->vx_flags = VX_BUSY; 1197 vnx->vx_error = 0; 1198 vnx->vx_pending = 0; 1199 vnx->vx_bp = bp; 1200 vnx->vx_sdp = sdp; 1201 1202 /* 1203 * setup for main loop where we read filesystem blocks into 1204 * our buffer. 1205 */ 1206 error = 0; 1207 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */ 1208 addr = bp->b_data; /* current position in buffer */ 1209 byteoff = dbtob((u_int64_t)bn); 1210 1211 for (resid = bp->b_resid; resid; resid -= sz) { 1212 struct vndbuf *nbp; 1213 1214 /* 1215 * translate byteoffset into block number. return values: 1216 * vp = vnode of underlying device 1217 * nbn = new block number (on underlying vnode dev) 1218 * nra = num blocks we can read-ahead (excludes requested 1219 * block) 1220 */ 1221 nra = 0; 1222 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, 1223 &vp, &nbn, &nra); 1224 1225 if (error == 0 && nbn == (daddr_t)-1) { 1226 /* 1227 * this used to just set error, but that doesn't 1228 * do the right thing. Instead, it causes random 1229 * memory errors. The panic() should remain until 1230 * this condition doesn't destabilize the system. 1231 */ 1232 #if 1 1233 panic("sw_reg_strategy: swap to sparse file"); 1234 #else 1235 error = EIO; /* failure */ 1236 #endif 1237 } 1238 1239 /* 1240 * punt if there was an error or a hole in the file. 1241 * we must wait for any i/o ops we have already started 1242 * to finish before returning. 1243 * 1244 * XXX we could deal with holes here but it would be 1245 * a hassle (in the write case). 1246 */ 1247 if (error) { 1248 s = splbio(); 1249 vnx->vx_error = error; /* pass error up */ 1250 goto out; 1251 } 1252 1253 /* 1254 * compute the size ("sz") of this transfer (in bytes). 1255 */ 1256 off = byteoff % sdp->swd_bsize; 1257 sz = (1 + nra) * sdp->swd_bsize - off; 1258 if (sz > resid) 1259 sz = resid; 1260 1261 UVMHIST_LOG(pdhist, "sw_reg_strategy: " 1262 "vp %p/%p offset 0x%x/0x%x", 1263 sdp->swd_vp, vp, byteoff, nbn); 1264 1265 /* 1266 * now get a buf structure. note that the vb_buf is 1267 * at the front of the nbp structure so that you can 1268 * cast pointers between the two structure easily. 1269 */ 1270 getvndbuf(nbp); 1271 nbp->vb_buf.b_flags = bp->b_flags | B_CALL; 1272 nbp->vb_buf.b_bcount = sz; 1273 nbp->vb_buf.b_bufsize = sz; 1274 nbp->vb_buf.b_error = 0; 1275 nbp->vb_buf.b_data = addr; 1276 nbp->vb_buf.b_lblkno = 0; 1277 nbp->vb_buf.b_blkno = nbn + btodb(off); 1278 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; 1279 nbp->vb_buf.b_iodone = sw_reg_iodone; 1280 nbp->vb_buf.b_vp = vp; 1281 if (vp->v_type == VBLK) { 1282 nbp->vb_buf.b_dev = vp->v_rdev; 1283 } 1284 LIST_INIT(&nbp->vb_buf.b_dep); 1285 1286 nbp->vb_xfer = vnx; /* patch it back in to vnx */ 1287 1288 /* 1289 * Just sort by block number 1290 */ 1291 s = splbio(); 1292 if (vnx->vx_error != 0) { 1293 putvndbuf(nbp); 1294 goto out; 1295 } 1296 vnx->vx_pending++; 1297 1298 /* sort it in and start I/O if we are not over our limit */ 1299 disksort_blkno(&sdp->swd_tab, &nbp->vb_buf); 1300 sw_reg_start(sdp); 1301 splx(s); 1302 1303 /* 1304 * advance to the next I/O 1305 */ 1306 byteoff += sz; 1307 addr += sz; 1308 } 1309 1310 s = splbio(); 1311 1312 out: /* Arrive here at splbio */ 1313 vnx->vx_flags &= ~VX_BUSY; 1314 if (vnx->vx_pending == 0) { 1315 if (vnx->vx_error != 0) { 1316 bp->b_error = vnx->vx_error; 1317 bp->b_flags |= B_ERROR; 1318 } 1319 putvndxfer(vnx); 1320 biodone(bp); 1321 } 1322 splx(s); 1323 } 1324 1325 /* 1326 * sw_reg_start: start an I/O request on the requested swapdev 1327 * 1328 * => reqs are sorted by disksort (above) 1329 */ 1330 static void 1331 sw_reg_start(sdp) 1332 struct swapdev *sdp; 1333 { 1334 struct buf *bp; 1335 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist); 1336 1337 /* recursion control */ 1338 if ((sdp->swd_flags & SWF_BUSY) != 0) 1339 return; 1340 1341 sdp->swd_flags |= SWF_BUSY; 1342 1343 while (sdp->swd_active < sdp->swd_maxactive) { 1344 bp = BUFQ_FIRST(&sdp->swd_tab); 1345 if (bp == NULL) 1346 break; 1347 BUFQ_REMOVE(&sdp->swd_tab, bp); 1348 sdp->swd_active++; 1349 1350 UVMHIST_LOG(pdhist, 1351 "sw_reg_start: bp %p vp %p blkno %p cnt %lx", 1352 bp, bp->b_vp, bp->b_blkno, bp->b_bcount); 1353 if ((bp->b_flags & B_READ) == 0) 1354 bp->b_vp->v_numoutput++; 1355 1356 VOP_STRATEGY(bp); 1357 } 1358 sdp->swd_flags &= ~SWF_BUSY; 1359 } 1360 1361 /* 1362 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup 1363 * 1364 * => note that we can recover the vndbuf struct by casting the buf ptr 1365 */ 1366 static void 1367 sw_reg_iodone(bp) 1368 struct buf *bp; 1369 { 1370 struct vndbuf *vbp = (struct vndbuf *) bp; 1371 struct vndxfer *vnx = vbp->vb_xfer; 1372 struct buf *pbp = vnx->vx_bp; /* parent buffer */ 1373 struct swapdev *sdp = vnx->vx_sdp; 1374 int s, resid; 1375 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist); 1376 1377 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p", 1378 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data); 1379 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx", 1380 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); 1381 1382 /* 1383 * protect vbp at splbio and update. 1384 */ 1385 1386 s = splbio(); 1387 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; 1388 pbp->b_resid -= resid; 1389 vnx->vx_pending--; 1390 1391 if (vbp->vb_buf.b_error) { 1392 UVMHIST_LOG(pdhist, " got error=%d !", 1393 vbp->vb_buf.b_error, 0, 0, 0); 1394 1395 /* pass error upward */ 1396 vnx->vx_error = vbp->vb_buf.b_error; 1397 } 1398 1399 /* 1400 * kill vbp structure 1401 */ 1402 putvndbuf(vbp); 1403 1404 /* 1405 * wrap up this transaction if it has run to completion or, in 1406 * case of an error, when all auxiliary buffers have returned. 1407 */ 1408 if (vnx->vx_error != 0) { 1409 /* pass error upward */ 1410 pbp->b_flags |= B_ERROR; 1411 pbp->b_error = vnx->vx_error; 1412 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { 1413 putvndxfer(vnx); 1414 biodone(pbp); 1415 } 1416 } else if (pbp->b_resid == 0) { 1417 KASSERT(vnx->vx_pending == 0); 1418 if ((vnx->vx_flags & VX_BUSY) == 0) { 1419 UVMHIST_LOG(pdhist, " iodone error=%d !", 1420 pbp, vnx->vx_error, 0, 0); 1421 putvndxfer(vnx); 1422 biodone(pbp); 1423 } 1424 } 1425 1426 /* 1427 * done! start next swapdev I/O if one is pending 1428 */ 1429 sdp->swd_active--; 1430 sw_reg_start(sdp); 1431 splx(s); 1432 } 1433 1434 1435 /* 1436 * uvm_swap_alloc: allocate space on swap 1437 * 1438 * => allocation is done "round robin" down the priority list, as we 1439 * allocate in a priority we "rotate" the circle queue. 1440 * => space can be freed with uvm_swap_free 1441 * => we return the page slot number in /dev/drum (0 == invalid slot) 1442 * => we lock uvm.swap_data_lock 1443 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM 1444 */ 1445 int 1446 uvm_swap_alloc(nslots, lessok) 1447 int *nslots; /* IN/OUT */ 1448 boolean_t lessok; 1449 { 1450 struct swapdev *sdp; 1451 struct swappri *spp; 1452 u_long result; 1453 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist); 1454 1455 /* 1456 * no swap devices configured yet? definite failure. 1457 */ 1458 if (uvmexp.nswapdev < 1) 1459 return 0; 1460 1461 /* 1462 * lock data lock, convert slots into blocks, and enter loop 1463 */ 1464 simple_lock(&uvm.swap_data_lock); 1465 1466 ReTry: /* XXXMRG */ 1467 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 1468 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 1469 /* if it's not enabled, then we can't swap from it */ 1470 if ((sdp->swd_flags & SWF_ENABLE) == 0) 1471 continue; 1472 if (sdp->swd_npginuse + *nslots > sdp->swd_npages) 1473 continue; 1474 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 1475 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT, 1476 &result) != 0) { 1477 continue; 1478 } 1479 1480 /* 1481 * successful allocation! now rotate the circleq. 1482 */ 1483 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1484 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 1485 sdp->swd_npginuse += *nslots; 1486 uvmexp.swpginuse += *nslots; 1487 simple_unlock(&uvm.swap_data_lock); 1488 /* done! return drum slot number */ 1489 UVMHIST_LOG(pdhist, 1490 "success! returning %d slots starting at %d", 1491 *nslots, result + sdp->swd_drumoffset, 0, 0); 1492 return (result + sdp->swd_drumoffset); 1493 } 1494 } 1495 1496 /* XXXMRG: BEGIN HACK */ 1497 if (*nslots > 1 && lessok) { 1498 *nslots = 1; 1499 goto ReTry; /* XXXMRG: ugh! extent should support this for us */ 1500 } 1501 /* XXXMRG: END HACK */ 1502 1503 simple_unlock(&uvm.swap_data_lock); 1504 return 0; 1505 } 1506 1507 /* 1508 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors 1509 * 1510 * => we lock uvm.swap_data_lock 1511 */ 1512 void 1513 uvm_swap_markbad(startslot, nslots) 1514 int startslot; 1515 int nslots; 1516 { 1517 struct swapdev *sdp; 1518 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist); 1519 1520 simple_lock(&uvm.swap_data_lock); 1521 sdp = swapdrum_getsdp(startslot); 1522 1523 /* 1524 * we just keep track of how many pages have been marked bad 1525 * in this device, to make everything add up in swap_off(). 1526 * we assume here that the range of slots will all be within 1527 * one swap device. 1528 */ 1529 1530 sdp->swd_npgbad += nslots; 1531 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0); 1532 simple_unlock(&uvm.swap_data_lock); 1533 } 1534 1535 /* 1536 * uvm_swap_free: free swap slots 1537 * 1538 * => this can be all or part of an allocation made by uvm_swap_alloc 1539 * => we lock uvm.swap_data_lock 1540 */ 1541 void 1542 uvm_swap_free(startslot, nslots) 1543 int startslot; 1544 int nslots; 1545 { 1546 struct swapdev *sdp; 1547 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist); 1548 1549 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots, 1550 startslot, 0, 0); 1551 1552 /* 1553 * ignore attempts to free the "bad" slot. 1554 */ 1555 1556 if (startslot == SWSLOT_BAD) { 1557 return; 1558 } 1559 1560 /* 1561 * convert drum slot offset back to sdp, free the blocks 1562 * in the extent, and return. must hold pri lock to do 1563 * lookup and access the extent. 1564 */ 1565 1566 simple_lock(&uvm.swap_data_lock); 1567 sdp = swapdrum_getsdp(startslot); 1568 KASSERT(uvmexp.nswapdev >= 1); 1569 KASSERT(sdp != NULL); 1570 KASSERT(sdp->swd_npginuse >= nslots); 1571 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots, 1572 EX_MALLOCOK|EX_NOWAIT) != 0) { 1573 printf("warning: resource shortage: %d pages of swap lost\n", 1574 nslots); 1575 } 1576 sdp->swd_npginuse -= nslots; 1577 uvmexp.swpginuse -= nslots; 1578 simple_unlock(&uvm.swap_data_lock); 1579 } 1580 1581 /* 1582 * uvm_swap_put: put any number of pages into a contig place on swap 1583 * 1584 * => can be sync or async 1585 */ 1586 1587 int 1588 uvm_swap_put(swslot, ppsp, npages, flags) 1589 int swslot; 1590 struct vm_page **ppsp; 1591 int npages; 1592 int flags; 1593 { 1594 int error; 1595 1596 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE | 1597 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1598 return error; 1599 } 1600 1601 /* 1602 * uvm_swap_get: get a single page from swap 1603 * 1604 * => usually a sync op (from fault) 1605 */ 1606 1607 int 1608 uvm_swap_get(page, swslot, flags) 1609 struct vm_page *page; 1610 int swslot, flags; 1611 { 1612 int error; 1613 1614 uvmexp.nswget++; 1615 KASSERT(flags & PGO_SYNCIO); 1616 if (swslot == SWSLOT_BAD) { 1617 return EIO; 1618 } 1619 error = uvm_swap_io(&page, swslot, 1, B_READ | 1620 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1621 if (error == 0) { 1622 1623 /* 1624 * this page is no longer only in swap. 1625 */ 1626 1627 simple_lock(&uvm.swap_data_lock); 1628 KASSERT(uvmexp.swpgonly > 0); 1629 uvmexp.swpgonly--; 1630 simple_unlock(&uvm.swap_data_lock); 1631 } 1632 return error; 1633 } 1634 1635 /* 1636 * uvm_swap_io: do an i/o operation to swap 1637 */ 1638 1639 static int 1640 uvm_swap_io(pps, startslot, npages, flags) 1641 struct vm_page **pps; 1642 int startslot, npages, flags; 1643 { 1644 daddr_t startblk; 1645 struct buf *bp; 1646 vaddr_t kva; 1647 int error, s, mapinflags; 1648 boolean_t write, async; 1649 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist); 1650 1651 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d", 1652 startslot, npages, flags, 0); 1653 1654 write = (flags & B_READ) == 0; 1655 async = (flags & B_ASYNC) != 0; 1656 1657 /* 1658 * convert starting drum slot to block number 1659 */ 1660 1661 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT); 1662 1663 /* 1664 * first, map the pages into the kernel. 1665 */ 1666 1667 mapinflags = !write ? 1668 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ : 1669 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE; 1670 kva = uvm_pagermapin(pps, npages, mapinflags); 1671 1672 /* 1673 * now allocate a buf for the i/o. 1674 */ 1675 1676 s = splbio(); 1677 bp = pool_get(&bufpool, PR_WAITOK); 1678 splx(s); 1679 1680 /* 1681 * fill in the bp/sbp. we currently route our i/o through 1682 * /dev/drum's vnode [swapdev_vp]. 1683 */ 1684 1685 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC)); 1686 bp->b_proc = &proc0; /* XXX */ 1687 bp->b_vnbufs.le_next = NOLIST; 1688 bp->b_data = (caddr_t)kva; 1689 bp->b_blkno = startblk; 1690 bp->b_vp = swapdev_vp; 1691 bp->b_dev = swapdev_vp->v_rdev; 1692 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT; 1693 LIST_INIT(&bp->b_dep); 1694 1695 /* 1696 * bump v_numoutput (counter of number of active outputs). 1697 */ 1698 1699 if (write) { 1700 s = splbio(); 1701 swapdev_vp->v_numoutput++; 1702 splx(s); 1703 } 1704 1705 /* 1706 * for async ops we must set up the iodone handler. 1707 */ 1708 1709 if (async) { 1710 bp->b_flags |= B_CALL; 1711 bp->b_iodone = uvm_aio_biodone; 1712 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); 1713 } 1714 UVMHIST_LOG(pdhist, 1715 "about to start io: data = %p blkno = 0x%x, bcount = %ld", 1716 bp->b_data, bp->b_blkno, bp->b_bcount, 0); 1717 1718 /* 1719 * now we start the I/O, and if async, return. 1720 */ 1721 1722 VOP_STRATEGY(bp); 1723 if (async) 1724 return 0; 1725 1726 /* 1727 * must be sync i/o. wait for it to finish 1728 */ 1729 1730 error = biowait(bp); 1731 1732 /* 1733 * kill the pager mapping 1734 */ 1735 1736 uvm_pagermapout(kva, npages); 1737 1738 /* 1739 * now dispose of the buf and we're done. 1740 */ 1741 1742 s = splbio(); 1743 if (write) 1744 vwakeup(bp); 1745 pool_put(&bufpool, bp); 1746 splx(s); 1747 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0); 1748 return (error); 1749 } 1750