xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 4472dbe5e3bd91ef2540bada7a7ca7384627ff9b)
1 /*	$NetBSD: uvm_swap.c,v 1.37 2000/05/19 03:45:04 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/conf.h>
42 #include <sys/proc.h>
43 #include <sys/namei.h>
44 #include <sys/disklabel.h>
45 #include <sys/errno.h>
46 #include <sys/kernel.h>
47 #include <sys/malloc.h>
48 #include <sys/vnode.h>
49 #include <sys/file.h>
50 #include <sys/extent.h>
51 #include <sys/mount.h>
52 #include <sys/pool.h>
53 #include <sys/syscallargs.h>
54 #include <sys/swap.h>
55 
56 #include <vm/vm.h>
57 #include <uvm/uvm.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 
61 /*
62  * uvm_swap.c: manage configuration and i/o to swap space.
63  */
64 
65 /*
66  * swap space is managed in the following way:
67  *
68  * each swap partition or file is described by a "swapdev" structure.
69  * each "swapdev" structure contains a "swapent" structure which contains
70  * information that is passed up to the user (via system calls).
71  *
72  * each swap partition is assigned a "priority" (int) which controls
73  * swap parition usage.
74  *
75  * the system maintains a global data structure describing all swap
76  * partitions/files.   there is a sorted LIST of "swappri" structures
77  * which describe "swapdev"'s at that priority.   this LIST is headed
78  * by the "swap_priority" global var.    each "swappri" contains a
79  * CIRCLEQ of "swapdev" structures at that priority.
80  *
81  * the system maintains a fixed pool of "swapbuf" structures for use
82  * at swap i/o time.  a swapbuf includes a "buf" structure and an
83  * "aiodone" [we want to avoid malloc()'ing anything at swapout time
84  * since memory may be low].
85  *
86  * locking:
87  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap extent.
93  *  - swap_buf_lock (simple_lock): this lock protects the free swapbuf
94  *    pool.
95  *
96  * each swap device has the following info:
97  *  - swap device in use (could be disabled, preventing future use)
98  *  - swap enabled (allows new allocations on swap)
99  *  - map info in /dev/drum
100  *  - vnode pointer
101  * for swap files only:
102  *  - block size
103  *  - max byte count in buffer
104  *  - buffer
105  *  - credentials to use when doing i/o to file
106  *
107  * userland controls and configures swap with the swapctl(2) system call.
108  * the sys_swapctl performs the following operations:
109  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
110  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
111  *	(passed in via "arg") of a size passed in via "misc" ... we load
112  *	the current swap config into the array.
113  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114  *	priority in "misc", start swapping on it.
115  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
117  *	"misc")
118  */
119 
120 /*
121  * swapdev: describes a single swap partition/file
122  *
123  * note the following should be true:
124  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
125  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126  */
127 struct swapdev {
128 	struct oswapent swd_ose;
129 #define	swd_dev		swd_ose.ose_dev		/* device id */
130 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
131 #define	swd_priority	swd_ose.ose_priority	/* our priority */
132 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 	char			*swd_path;	/* saved pathname of device */
134 	int			swd_pathlen;	/* length of pathname */
135 	int			swd_npages;	/* #pages we can use */
136 	int			swd_npginuse;	/* #pages in use */
137 	int			swd_npgbad;	/* #pages bad */
138 	int			swd_drumoffset;	/* page0 offset in drum */
139 	int			swd_drumsize;	/* #pages in drum */
140 	struct extent		*swd_ex;	/* extent for this swapdev */
141 	struct vnode		*swd_vp;	/* backing vnode */
142 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
143 
144 	int			swd_bsize;	/* blocksize (bytes) */
145 	int			swd_maxactive;	/* max active i/o reqs */
146 	struct buf_queue	swd_tab;	/* buffer list */
147 	int			swd_active;	/* number of active buffers */
148 	struct ucred		*swd_cred;	/* cred for file access */
149 };
150 
151 /*
152  * swap device priority entry; the list is kept sorted on `spi_priority'.
153  */
154 struct swappri {
155 	int			spi_priority;     /* priority */
156 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
157 	/* circleq of swapdevs at this priority */
158 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
159 };
160 
161 /*
162  * swapbuf, swapbuffer plus async i/o info
163  */
164 struct swapbuf {
165 	struct buf sw_buf;		/* a buffer structure */
166 	struct uvm_aiodesc sw_aio;	/* aiodesc structure, used if ASYNC */
167 	SIMPLEQ_ENTRY(swapbuf) sw_sq;	/* free list pointer */
168 };
169 
170 /*
171  * The following two structures are used to keep track of data transfers
172  * on swap devices associated with regular files.
173  * NOTE: this code is more or less a copy of vnd.c; we use the same
174  * structure names here to ease porting..
175  */
176 struct vndxfer {
177 	struct buf	*vx_bp;		/* Pointer to parent buffer */
178 	struct swapdev	*vx_sdp;
179 	int		vx_error;
180 	int		vx_pending;	/* # of pending aux buffers */
181 	int		vx_flags;
182 #define VX_BUSY		1
183 #define VX_DEAD		2
184 };
185 
186 struct vndbuf {
187 	struct buf	vb_buf;
188 	struct vndxfer	*vb_xfer;
189 };
190 
191 
192 /*
193  * We keep a of pool vndbuf's and vndxfer structures.
194  */
195 struct pool *vndxfer_pool;
196 struct pool *vndbuf_pool;
197 
198 #define	getvndxfer(vnx)	do {						\
199 	int s = splbio();						\
200 	vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
201 	splx(s);							\
202 } while (0)
203 
204 #define putvndxfer(vnx) {						\
205 	pool_put(vndxfer_pool, (void *)(vnx));				\
206 }
207 
208 #define	getvndbuf(vbp)	do {						\
209 	int s = splbio();						\
210 	vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
211 	splx(s);							\
212 } while (0)
213 
214 #define putvndbuf(vbp) {						\
215 	pool_put(vndbuf_pool, (void *)(vbp));				\
216 }
217 
218 /* /dev/drum */
219 bdev_decl(sw);
220 cdev_decl(sw);
221 
222 /*
223  * local variables
224  */
225 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
226 SIMPLEQ_HEAD(swapbufhead, swapbuf);
227 struct pool *swapbuf_pool;
228 
229 /* list of all active swap devices [by priority] */
230 LIST_HEAD(swap_priority, swappri);
231 static struct swap_priority swap_priority;
232 
233 /* locks */
234 lock_data_t swap_syscall_lock;
235 
236 /*
237  * prototypes
238  */
239 static void		 swapdrum_add __P((struct swapdev *, int));
240 static struct swapdev	*swapdrum_getsdp __P((int));
241 
242 static struct swapdev	*swaplist_find __P((struct vnode *, int));
243 static void		 swaplist_insert __P((struct swapdev *,
244 					     struct swappri *, int));
245 static void		 swaplist_trim __P((void));
246 
247 static int swap_on __P((struct proc *, struct swapdev *));
248 static int swap_off __P((struct proc *, struct swapdev *));
249 
250 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
251 static void sw_reg_iodone __P((struct buf *));
252 static void sw_reg_start __P((struct swapdev *));
253 
254 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
255 static void uvm_swap_bufdone __P((struct buf *));
256 static int uvm_swap_io __P((struct vm_page **, int, int, int));
257 
258 /*
259  * uvm_swap_init: init the swap system data structures and locks
260  *
261  * => called at boot time from init_main.c after the filesystems
262  *	are brought up (which happens after uvm_init())
263  */
264 void
265 uvm_swap_init()
266 {
267 	UVMHIST_FUNC("uvm_swap_init");
268 
269 	UVMHIST_CALLED(pdhist);
270 	/*
271 	 * first, init the swap list, its counter, and its lock.
272 	 * then get a handle on the vnode for /dev/drum by using
273 	 * the its dev_t number ("swapdev", from MD conf.c).
274 	 */
275 
276 	LIST_INIT(&swap_priority);
277 	uvmexp.nswapdev = 0;
278 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
279 	simple_lock_init(&uvm.swap_data_lock);
280 
281 	if (bdevvp(swapdev, &swapdev_vp))
282 		panic("uvm_swap_init: can't get vnode for swap device");
283 
284 	/*
285 	 * create swap block resource map to map /dev/drum.   the range
286 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
287 	 * that block 0 is reserved (used to indicate an allocation
288 	 * failure, or no allocation).
289 	 */
290 	swapmap = extent_create("swapmap", 1, INT_MAX,
291 				M_VMSWAP, 0, 0, EX_NOWAIT);
292 	if (swapmap == 0)
293 		panic("uvm_swap_init: extent_create failed");
294 
295 	/*
296 	 * allocate our private pool of "swapbuf" structures (includes
297 	 * a "buf" structure).  ["nswbuf" comes from param.c and can
298 	 * be adjusted by MD code before we get here].
299 	 */
300 
301 	swapbuf_pool =
302 		pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
303 			    NULL, NULL, 0);
304 	if (swapbuf_pool == NULL)
305 		panic("swapinit: pool_create failed");
306 	/* XXX - set a maximum on swapbuf_pool? */
307 
308 	vndxfer_pool =
309 		pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
310 			    NULL, NULL, 0);
311 	if (vndxfer_pool == NULL)
312 		panic("swapinit: pool_create failed");
313 
314 	vndbuf_pool =
315 		pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
316 			    NULL, NULL, 0);
317 	if (vndbuf_pool == NULL)
318 		panic("swapinit: pool_create failed");
319 	/*
320 	 * done!
321 	 */
322 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
323 }
324 
325 /*
326  * swaplist functions: functions that operate on the list of swap
327  * devices on the system.
328  */
329 
330 /*
331  * swaplist_insert: insert swap device "sdp" into the global list
332  *
333  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
334  * => caller must provide a newly malloc'd swappri structure (we will
335  *	FREE it if we don't need it... this it to prevent malloc blocking
336  *	here while adding swap)
337  */
338 static void
339 swaplist_insert(sdp, newspp, priority)
340 	struct swapdev *sdp;
341 	struct swappri *newspp;
342 	int priority;
343 {
344 	struct swappri *spp, *pspp;
345 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
346 
347 	/*
348 	 * find entry at or after which to insert the new device.
349 	 */
350 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
351 	     spp = LIST_NEXT(spp, spi_swappri)) {
352 		if (priority <= spp->spi_priority)
353 			break;
354 		pspp = spp;
355 	}
356 
357 	/*
358 	 * new priority?
359 	 */
360 	if (spp == NULL || spp->spi_priority != priority) {
361 		spp = newspp;  /* use newspp! */
362 		UVMHIST_LOG(pdhist, "created new swappri = %d",
363 			    priority, 0, 0, 0);
364 
365 		spp->spi_priority = priority;
366 		CIRCLEQ_INIT(&spp->spi_swapdev);
367 
368 		if (pspp)
369 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
370 		else
371 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
372 	} else {
373 	  	/* we don't need a new priority structure, free it */
374 		FREE(newspp, M_VMSWAP);
375 	}
376 
377 	/*
378 	 * priority found (or created).   now insert on the priority's
379 	 * circleq list and bump the total number of swapdevs.
380 	 */
381 	sdp->swd_priority = priority;
382 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
383 	uvmexp.nswapdev++;
384 }
385 
386 /*
387  * swaplist_find: find and optionally remove a swap device from the
388  *	global list.
389  *
390  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
391  * => we return the swapdev we found (and removed)
392  */
393 static struct swapdev *
394 swaplist_find(vp, remove)
395 	struct vnode *vp;
396 	boolean_t remove;
397 {
398 	struct swapdev *sdp;
399 	struct swappri *spp;
400 
401 	/*
402 	 * search the lists for the requested vp
403 	 */
404 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
405 	     spp = LIST_NEXT(spp, spi_swappri)) {
406 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
407 		     sdp != (void *)&spp->spi_swapdev;
408 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
409 			if (sdp->swd_vp == vp) {
410 				if (remove) {
411 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
412 					    sdp, swd_next);
413 					uvmexp.nswapdev--;
414 				}
415 				return(sdp);
416 			}
417 	}
418 	return (NULL);
419 }
420 
421 
422 /*
423  * swaplist_trim: scan priority list for empty priority entries and kill
424  *	them.
425  *
426  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
427  */
428 static void
429 swaplist_trim()
430 {
431 	struct swappri *spp, *nextspp;
432 
433 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
434 		nextspp = LIST_NEXT(spp, spi_swappri);
435 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
436 		    (void *)&spp->spi_swapdev)
437 			continue;
438 		LIST_REMOVE(spp, spi_swappri);
439 		free(spp, M_VMSWAP);
440 	}
441 }
442 
443 /*
444  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
445  *
446  * => caller must hold swap_syscall_lock
447  * => uvm.swap_data_lock should be unlocked (we may sleep)
448  */
449 static void
450 swapdrum_add(sdp, npages)
451 	struct swapdev *sdp;
452 	int	npages;
453 {
454 	u_long result;
455 
456 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
457 	    EX_WAITOK, &result))
458 		panic("swapdrum_add");
459 
460 	sdp->swd_drumoffset = result;
461 	sdp->swd_drumsize = npages;
462 }
463 
464 /*
465  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
466  *	to the "swapdev" that maps that section of the drum.
467  *
468  * => each swapdev takes one big contig chunk of the drum
469  * => caller must hold uvm.swap_data_lock
470  */
471 static struct swapdev *
472 swapdrum_getsdp(pgno)
473 	int pgno;
474 {
475 	struct swapdev *sdp;
476 	struct swappri *spp;
477 
478 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
479 	     spp = LIST_NEXT(spp, spi_swappri))
480 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
481 		     sdp != (void *)&spp->spi_swapdev;
482 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
483 			if (pgno >= sdp->swd_drumoffset &&
484 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
485 				return sdp;
486 			}
487 	return NULL;
488 }
489 
490 
491 /*
492  * sys_swapctl: main entry point for swapctl(2) system call
493  * 	[with two helper functions: swap_on and swap_off]
494  */
495 int
496 sys_swapctl(p, v, retval)
497 	struct proc *p;
498 	void *v;
499 	register_t *retval;
500 {
501 	struct sys_swapctl_args /* {
502 		syscallarg(int) cmd;
503 		syscallarg(void *) arg;
504 		syscallarg(int) misc;
505 	} */ *uap = (struct sys_swapctl_args *)v;
506 	struct vnode *vp;
507 	struct nameidata nd;
508 	struct swappri *spp;
509 	struct swapdev *sdp;
510 	struct swapent *sep;
511 	char	userpath[PATH_MAX + 1];
512 	size_t	len;
513 	int	count, error, misc;
514 	int	priority;
515 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
516 
517 	misc = SCARG(uap, misc);
518 
519 	/*
520 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
521 	 */
522 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
523 
524 	/*
525 	 * we handle the non-priv NSWAP and STATS request first.
526 	 *
527 	 * SWAP_NSWAP: return number of config'd swap devices
528 	 * [can also be obtained with uvmexp sysctl]
529 	 */
530 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
531 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
532 		    0, 0, 0);
533 		*retval = uvmexp.nswapdev;
534 		error = 0;
535 		goto out;
536 	}
537 
538 	/*
539 	 * SWAP_STATS: get stats on current # of configured swap devs
540 	 *
541 	 * note that the swap_priority list can't change as long
542 	 * as we are holding the swap_syscall_lock.  we don't want
543 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
544 	 * copyout() and we don't want to be holding that lock then!
545 	 */
546 	if (SCARG(uap, cmd) == SWAP_STATS
547 #if defined(COMPAT_13)
548 	    || SCARG(uap, cmd) == SWAP_OSTATS
549 #endif
550 	    ) {
551 		sep = (struct swapent *)SCARG(uap, arg);
552 		count = 0;
553 
554 		for (spp = LIST_FIRST(&swap_priority); spp != NULL;
555 		    spp = LIST_NEXT(spp, spi_swappri)) {
556 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
557 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
558 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
559 			  	/*
560 				 * backwards compatibility for system call.
561 				 * note that we use 'struct oswapent' as an
562 				 * overlay into both 'struct swapdev' and
563 				 * the userland 'struct swapent', as we
564 				 * want to retain backwards compatibility
565 				 * with NetBSD 1.3.
566 				 */
567 				sdp->swd_ose.ose_inuse =
568 				    btodb(sdp->swd_npginuse << PAGE_SHIFT);
569 				error = copyout(&sdp->swd_ose, sep,
570 						sizeof(struct oswapent));
571 
572 				/* now copy out the path if necessary */
573 #if defined(COMPAT_13)
574 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
575 #else
576 				if (error == 0)
577 #endif
578 					error = copyout(sdp->swd_path,
579 					    &sep->se_path, sdp->swd_pathlen);
580 
581 				if (error)
582 					goto out;
583 				count++;
584 #if defined(COMPAT_13)
585 				if (SCARG(uap, cmd) == SWAP_OSTATS)
586 					((struct oswapent *)sep)++;
587 				else
588 #endif
589 					sep++;
590 			}
591 		}
592 
593 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
594 
595 		*retval = count;
596 		error = 0;
597 		goto out;
598 	}
599 
600 	/*
601 	 * all other requests require superuser privs.   verify.
602 	 */
603 	if ((error = suser(p->p_ucred, &p->p_acflag)))
604 		goto out;
605 
606 	/*
607 	 * at this point we expect a path name in arg.   we will
608 	 * use namei() to gain a vnode reference (vref), and lock
609 	 * the vnode (VOP_LOCK).
610 	 *
611 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
612 	 * miniroot)
613 	 */
614 	if (SCARG(uap, arg) == NULL) {
615 		vp = rootvp;		/* miniroot */
616 		if (vget(vp, LK_EXCLUSIVE)) {
617 			error = EBUSY;
618 			goto out;
619 		}
620 		if (SCARG(uap, cmd) == SWAP_ON &&
621 		    copystr("miniroot", userpath, sizeof userpath, &len))
622 			panic("swapctl: miniroot copy failed");
623 	} else {
624 		int	space;
625 		char	*where;
626 
627 		if (SCARG(uap, cmd) == SWAP_ON) {
628 			if ((error = copyinstr(SCARG(uap, arg), userpath,
629 			    sizeof userpath, &len)))
630 				goto out;
631 			space = UIO_SYSSPACE;
632 			where = userpath;
633 		} else {
634 			space = UIO_USERSPACE;
635 			where = (char *)SCARG(uap, arg);
636 		}
637 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
638 		if ((error = namei(&nd)))
639 			goto out;
640 		vp = nd.ni_vp;
641 	}
642 	/* note: "vp" is referenced and locked */
643 
644 	error = 0;		/* assume no error */
645 	switch(SCARG(uap, cmd)) {
646 	case SWAP_DUMPDEV:
647 		if (vp->v_type != VBLK) {
648 			error = ENOTBLK;
649 			goto out;
650 		}
651 		dumpdev = vp->v_rdev;
652 
653 		break;
654 
655 	case SWAP_CTL:
656 		/*
657 		 * get new priority, remove old entry (if any) and then
658 		 * reinsert it in the correct place.  finally, prune out
659 		 * any empty priority structures.
660 		 */
661 		priority = SCARG(uap, misc);
662 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
663 		simple_lock(&uvm.swap_data_lock);
664 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
665 			error = ENOENT;
666 		} else {
667 			swaplist_insert(sdp, spp, priority);
668 			swaplist_trim();
669 		}
670 		simple_unlock(&uvm.swap_data_lock);
671 		if (error)
672 			free(spp, M_VMSWAP);
673 		break;
674 
675 	case SWAP_ON:
676 
677 		/*
678 		 * check for duplicates.   if none found, then insert a
679 		 * dummy entry on the list to prevent someone else from
680 		 * trying to enable this device while we are working on
681 		 * it.
682 		 */
683 
684 		priority = SCARG(uap, misc);
685 		simple_lock(&uvm.swap_data_lock);
686 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
687 			error = EBUSY;
688 			simple_unlock(&uvm.swap_data_lock);
689 			break;
690 		}
691 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
692 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
693 		memset(sdp, 0, sizeof(*sdp));
694 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
695 		sdp->swd_vp = vp;
696 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
697 		BUFQ_INIT(&sdp->swd_tab);
698 
699 		/*
700 		 * XXX Is NFS elaboration necessary?
701 		 */
702 		if (vp->v_type == VREG) {
703 			sdp->swd_cred = crdup(p->p_ucred);
704 		}
705 
706 		swaplist_insert(sdp, spp, priority);
707 		simple_unlock(&uvm.swap_data_lock);
708 
709 		sdp->swd_pathlen = len;
710 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
711 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
712 			panic("swapctl: copystr");
713 
714 		/*
715 		 * we've now got a FAKE placeholder in the swap list.
716 		 * now attempt to enable swap on it.  if we fail, undo
717 		 * what we've done and kill the fake entry we just inserted.
718 		 * if swap_on is a success, it will clear the SWF_FAKE flag
719 		 */
720 
721 		if ((error = swap_on(p, sdp)) != 0) {
722 			simple_lock(&uvm.swap_data_lock);
723 			(void) swaplist_find(vp, 1);  /* kill fake entry */
724 			swaplist_trim();
725 			simple_unlock(&uvm.swap_data_lock);
726 			if (vp->v_type == VREG) {
727 				crfree(sdp->swd_cred);
728 			}
729 			free(sdp->swd_path, M_VMSWAP);
730 			free(sdp, M_VMSWAP);
731 			break;
732 		}
733 
734 		/*
735 		 * got it!   now add a second reference to vp so that
736 		 * we keep a reference to the vnode after we return.
737 		 */
738 		vref(vp);
739 		break;
740 
741 	case SWAP_OFF:
742 		simple_lock(&uvm.swap_data_lock);
743 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
744 			simple_unlock(&uvm.swap_data_lock);
745 			error = ENXIO;
746 			break;
747 		}
748 
749 		/*
750 		 * If a device isn't in use or enabled, we
751 		 * can't stop swapping from it (again).
752 		 */
753 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
754 			simple_unlock(&uvm.swap_data_lock);
755 			error = EBUSY;
756 			break;
757 		}
758 
759 		/*
760 		 * do the real work.
761 		 */
762 		if ((error = swap_off(p, sdp)) != 0)
763 			goto out;
764 
765 		break;
766 
767 	default:
768 		error = EINVAL;
769 	}
770 
771 	/*
772 	 * done!   use vput to drop our reference and unlock
773 	 */
774 	vput(vp);
775 out:
776 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
777 
778 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
779 	return (error);
780 }
781 
782 /*
783  * swap_on: attempt to enable a swapdev for swapping.   note that the
784  *	swapdev is already on the global list, but disabled (marked
785  *	SWF_FAKE).
786  *
787  * => we avoid the start of the disk (to protect disk labels)
788  * => we also avoid the miniroot, if we are swapping to root.
789  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
790  *	if needed.
791  */
792 static int
793 swap_on(p, sdp)
794 	struct proc *p;
795 	struct swapdev *sdp;
796 {
797 	static int count = 0;	/* static */
798 	struct vnode *vp;
799 	int error, npages, nblocks, size;
800 	long addr;
801 	struct vattr va;
802 #ifdef NFS
803 	extern int (**nfsv2_vnodeop_p) __P((void *));
804 #endif /* NFS */
805 	dev_t dev;
806 	char *name;
807 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
808 
809 	/*
810 	 * we want to enable swapping on sdp.   the swd_vp contains
811 	 * the vnode we want (locked and ref'd), and the swd_dev
812 	 * contains the dev_t of the file, if it a block device.
813 	 */
814 
815 	vp = sdp->swd_vp;
816 	dev = sdp->swd_dev;
817 
818 	/*
819 	 * open the swap file (mostly useful for block device files to
820 	 * let device driver know what is up).
821 	 *
822 	 * we skip the open/close for root on swap because the root
823 	 * has already been opened when root was mounted (mountroot).
824 	 */
825 	if (vp != rootvp) {
826 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
827 			return (error);
828 	}
829 
830 	/* XXX this only works for block devices */
831 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
832 
833 	/*
834 	 * we now need to determine the size of the swap area.   for
835 	 * block specials we can call the d_psize function.
836 	 * for normal files, we must stat [get attrs].
837 	 *
838 	 * we put the result in nblks.
839 	 * for normal files, we also want the filesystem block size
840 	 * (which we get with statfs).
841 	 */
842 	switch (vp->v_type) {
843 	case VBLK:
844 		if (bdevsw[major(dev)].d_psize == 0 ||
845 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
846 			error = ENXIO;
847 			goto bad;
848 		}
849 		break;
850 
851 	case VREG:
852 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
853 			goto bad;
854 		nblocks = (int)btodb(va.va_size);
855 		if ((error =
856 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
857 			goto bad;
858 
859 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
860 		/*
861 		 * limit the max # of outstanding I/O requests we issue
862 		 * at any one time.   take it easy on NFS servers.
863 		 */
864 #ifdef NFS
865 		if (vp->v_op == nfsv2_vnodeop_p)
866 			sdp->swd_maxactive = 2; /* XXX */
867 		else
868 #endif /* NFS */
869 			sdp->swd_maxactive = 8; /* XXX */
870 		break;
871 
872 	default:
873 		error = ENXIO;
874 		goto bad;
875 	}
876 
877 	/*
878 	 * save nblocks in a safe place and convert to pages.
879 	 */
880 
881 	sdp->swd_ose.ose_nblks = nblocks;
882 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
883 
884 	/*
885 	 * for block special files, we want to make sure that leave
886 	 * the disklabel and bootblocks alone, so we arrange to skip
887 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
888 	 * note that because of this the "size" can be less than the
889 	 * actual number of blocks on the device.
890 	 */
891 	if (vp->v_type == VBLK) {
892 		/* we use pages 1 to (size - 1) [inclusive] */
893 		size = npages - 1;
894 		addr = 1;
895 	} else {
896 		/* we use pages 0 to (size - 1) [inclusive] */
897 		size = npages;
898 		addr = 0;
899 	}
900 
901 	/*
902 	 * make sure we have enough blocks for a reasonable sized swap
903 	 * area.   we want at least one page.
904 	 */
905 
906 	if (size < 1) {
907 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
908 		error = EINVAL;
909 		goto bad;
910 	}
911 
912 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
913 
914 	/*
915 	 * now we need to allocate an extent to manage this swap device
916 	 */
917 	name = malloc(12, M_VMSWAP, M_WAITOK);
918 	sprintf(name, "swap0x%04x", count++);
919 
920 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
921 	sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
922 				    0, 0, EX_WAITOK);
923 	/* allocate the `saved' region from the extent so it won't be used */
924 	if (addr) {
925 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
926 			panic("disklabel region");
927 	}
928 
929 	/*
930 	 * if the vnode we are swapping to is the root vnode
931 	 * (i.e. we are swapping to the miniroot) then we want
932 	 * to make sure we don't overwrite it.   do a statfs to
933 	 * find its size and skip over it.
934 	 */
935 	if (vp == rootvp) {
936 		struct mount *mp;
937 		struct statfs *sp;
938 		int rootblocks, rootpages;
939 
940 		mp = rootvnode->v_mount;
941 		sp = &mp->mnt_stat;
942 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
943 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
944 		if (rootpages > size)
945 			panic("swap_on: miniroot larger than swap?");
946 
947 		if (extent_alloc_region(sdp->swd_ex, addr,
948 					rootpages, EX_WAITOK))
949 			panic("swap_on: unable to preserve miniroot");
950 
951 		size -= rootpages;
952 		printf("Preserved %d pages of miniroot ", rootpages);
953 		printf("leaving %d pages of swap\n", size);
954 	}
955 
956   	/*
957 	 * add anons to reflect the new swap space
958 	 */
959 	uvm_anon_add(size);
960 
961 	/*
962 	 * now add the new swapdev to the drum and enable.
963 	 */
964 	simple_lock(&uvm.swap_data_lock);
965 	swapdrum_add(sdp, npages);
966 	sdp->swd_npages = size;
967 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
968 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
969 	uvmexp.swpages += size;
970 	simple_unlock(&uvm.swap_data_lock);
971 	return (0);
972 
973 bad:
974 	/*
975 	 * failure: close device if necessary and return error.
976 	 */
977 	if (vp != rootvp)
978 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
979 	return (error);
980 }
981 
982 /*
983  * swap_off: stop swapping on swapdev
984  *
985  * => swap data should be locked, we will unlock.
986  */
987 static int
988 swap_off(p, sdp)
989 	struct proc *p;
990 	struct swapdev *sdp;
991 {
992 	void *name;
993 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
994 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
995 
996 	/* disable the swap area being removed */
997 	sdp->swd_flags &= ~SWF_ENABLE;
998 	simple_unlock(&uvm.swap_data_lock);
999 
1000 	/*
1001 	 * the idea is to find all the pages that are paged out to this
1002 	 * device, and page them all in.  in uvm, swap-backed pageable
1003 	 * memory can take two forms: aobjs and anons.  call the
1004 	 * swapoff hook for each subsystem to bring in pages.
1005 	 */
1006 
1007 	if (uao_swap_off(sdp->swd_drumoffset,
1008 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1009 	    anon_swap_off(sdp->swd_drumoffset,
1010 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1011 
1012 		simple_lock(&uvm.swap_data_lock);
1013 		sdp->swd_flags |= SWF_ENABLE;
1014 		simple_unlock(&uvm.swap_data_lock);
1015 		return ENOMEM;
1016 	}
1017 
1018 #ifdef DIAGNOSTIC
1019 	if (sdp->swd_npginuse != sdp->swd_npgbad) {
1020 		panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
1021 		      sdp, sdp->swd_npginuse, sdp->swd_npgbad);
1022 	}
1023 #endif
1024 
1025 	/*
1026 	 * done with the vnode.
1027 	 */
1028 	if (sdp->swd_vp->v_type == VREG) {
1029 		crfree(sdp->swd_cred);
1030 	}
1031 	if (sdp->swd_vp != rootvp) {
1032 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1033 	}
1034 	if (sdp->swd_vp) {
1035 		vrele(sdp->swd_vp);
1036 	}
1037 
1038 	/* remove anons from the system */
1039 	uvm_anon_remove(sdp->swd_npages);
1040 
1041 	simple_lock(&uvm.swap_data_lock);
1042 	uvmexp.swpages -= sdp->swd_npages;
1043 
1044 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1045 		panic("swap_off: swapdev not in list\n");
1046 	swaplist_trim();
1047 
1048 	/*
1049 	 * free all resources!
1050 	 */
1051 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1052 		    EX_WAITOK);
1053 	name = (void *)sdp->swd_ex->ex_name;
1054 	extent_destroy(sdp->swd_ex);
1055 	free(name, M_VMSWAP);
1056 	free(sdp, M_VMSWAP);
1057 	simple_unlock(&uvm.swap_data_lock);
1058 	return (0);
1059 }
1060 
1061 /*
1062  * /dev/drum interface and i/o functions
1063  */
1064 
1065 /*
1066  * swread: the read function for the drum (just a call to physio)
1067  */
1068 /*ARGSUSED*/
1069 int
1070 swread(dev, uio, ioflag)
1071 	dev_t dev;
1072 	struct uio *uio;
1073 	int ioflag;
1074 {
1075 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1076 
1077 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1078 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1079 }
1080 
1081 /*
1082  * swwrite: the write function for the drum (just a call to physio)
1083  */
1084 /*ARGSUSED*/
1085 int
1086 swwrite(dev, uio, ioflag)
1087 	dev_t dev;
1088 	struct uio *uio;
1089 	int ioflag;
1090 {
1091 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1092 
1093 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1094 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1095 }
1096 
1097 /*
1098  * swstrategy: perform I/O on the drum
1099  *
1100  * => we must map the i/o request from the drum to the correct swapdev.
1101  */
1102 void
1103 swstrategy(bp)
1104 	struct buf *bp;
1105 {
1106 	struct swapdev *sdp;
1107 	struct vnode *vp;
1108 	int s, pageno, bn;
1109 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1110 
1111 	/*
1112 	 * convert block number to swapdev.   note that swapdev can't
1113 	 * be yanked out from under us because we are holding resources
1114 	 * in it (i.e. the blocks we are doing I/O on).
1115 	 */
1116 	pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1117 	simple_lock(&uvm.swap_data_lock);
1118 	sdp = swapdrum_getsdp(pageno);
1119 	simple_unlock(&uvm.swap_data_lock);
1120 	if (sdp == NULL) {
1121 		bp->b_error = EINVAL;
1122 		bp->b_flags |= B_ERROR;
1123 		biodone(bp);
1124 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1125 		return;
1126 	}
1127 
1128 	/*
1129 	 * convert drum page number to block number on this swapdev.
1130 	 */
1131 
1132 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1133 	bn = btodb(pageno << PAGE_SHIFT);	/* convert to diskblock */
1134 
1135 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld\n",
1136 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1137 		sdp->swd_drumoffset, bn, bp->b_bcount);
1138 
1139 	/*
1140 	 * for block devices we finish up here.
1141 	 * for regular files we have to do more work which we delegate
1142 	 * to sw_reg_strategy().
1143 	 */
1144 
1145 	switch (sdp->swd_vp->v_type) {
1146 	default:
1147 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1148 
1149 	case VBLK:
1150 
1151 		/*
1152 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1153 		 * on the swapdev (sdp).
1154 		 */
1155 		s = splbio();
1156 		bp->b_blkno = bn;		/* swapdev block number */
1157 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1158 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1159 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
1160 
1161 		/*
1162 		 * if we are doing a write, we have to redirect the i/o on
1163 		 * drum's v_numoutput counter to the swapdevs.
1164 		 */
1165 		if ((bp->b_flags & B_READ) == 0) {
1166 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1167 			vp->v_numoutput++;	/* put it on swapdev */
1168 		}
1169 
1170 		/*
1171 		 * dissassocate buffer with /dev/drum vnode
1172 		 * [could be null if buf was from physio]
1173 		 */
1174 		if (bp->b_vp != NULLVP)
1175 			brelvp(bp);
1176 
1177 		/*
1178 		 * finally plug in swapdev vnode and start I/O
1179 		 */
1180 		bp->b_vp = vp;
1181 		splx(s);
1182 		VOP_STRATEGY(bp);
1183 		return;
1184 
1185 	case VREG:
1186 		/*
1187 		 * delegate to sw_reg_strategy function.
1188 		 */
1189 		sw_reg_strategy(sdp, bp, bn);
1190 		return;
1191 	}
1192 	/* NOTREACHED */
1193 }
1194 
1195 /*
1196  * sw_reg_strategy: handle swap i/o to regular files
1197  */
1198 static void
1199 sw_reg_strategy(sdp, bp, bn)
1200 	struct swapdev	*sdp;
1201 	struct buf	*bp;
1202 	int		bn;
1203 {
1204 	struct vnode	*vp;
1205 	struct vndxfer	*vnx;
1206 	daddr_t		nbn, byteoff;
1207 	caddr_t		addr;
1208 	int		s, off, nra, error, sz, resid;
1209 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1210 
1211 	/*
1212 	 * allocate a vndxfer head for this transfer and point it to
1213 	 * our buffer.
1214 	 */
1215 	getvndxfer(vnx);
1216 	vnx->vx_flags = VX_BUSY;
1217 	vnx->vx_error = 0;
1218 	vnx->vx_pending = 0;
1219 	vnx->vx_bp = bp;
1220 	vnx->vx_sdp = sdp;
1221 
1222 	/*
1223 	 * setup for main loop where we read filesystem blocks into
1224 	 * our buffer.
1225 	 */
1226 	error = 0;
1227 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1228 	addr = bp->b_data;		/* current position in buffer */
1229 	byteoff = dbtob(bn);
1230 
1231 	for (resid = bp->b_resid; resid; resid -= sz) {
1232 		struct vndbuf	*nbp;
1233 
1234 		/*
1235 		 * translate byteoffset into block number.  return values:
1236 		 *   vp = vnode of underlying device
1237 		 *  nbn = new block number (on underlying vnode dev)
1238 		 *  nra = num blocks we can read-ahead (excludes requested
1239 		 *	block)
1240 		 */
1241 		nra = 0;
1242 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1243 				 	&vp, &nbn, &nra);
1244 
1245 		if (error == 0 && nbn == (daddr_t)-1) {
1246 			/*
1247 			 * this used to just set error, but that doesn't
1248 			 * do the right thing.  Instead, it causes random
1249 			 * memory errors.  The panic() should remain until
1250 			 * this condition doesn't destabilize the system.
1251 			 */
1252 #if 1
1253 			panic("sw_reg_strategy: swap to sparse file");
1254 #else
1255 			error = EIO;	/* failure */
1256 #endif
1257 		}
1258 
1259 		/*
1260 		 * punt if there was an error or a hole in the file.
1261 		 * we must wait for any i/o ops we have already started
1262 		 * to finish before returning.
1263 		 *
1264 		 * XXX we could deal with holes here but it would be
1265 		 * a hassle (in the write case).
1266 		 */
1267 		if (error) {
1268 			s = splbio();
1269 			vnx->vx_error = error;	/* pass error up */
1270 			goto out;
1271 		}
1272 
1273 		/*
1274 		 * compute the size ("sz") of this transfer (in bytes).
1275 		 * XXXCDC: ignores read-ahead for non-zero offset
1276 		 */
1277 		if ((off = (byteoff % sdp->swd_bsize)) != 0)
1278 			sz = sdp->swd_bsize - off;
1279 		else
1280 			sz = (1 + nra) * sdp->swd_bsize;
1281 
1282 		if (resid < sz)
1283 			sz = resid;
1284 
1285 		UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1286 				sdp->swd_vp, vp, byteoff, nbn);
1287 
1288 		/*
1289 		 * now get a buf structure.   note that the vb_buf is
1290 		 * at the front of the nbp structure so that you can
1291 		 * cast pointers between the two structure easily.
1292 		 */
1293 		getvndbuf(nbp);
1294 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1295 		nbp->vb_buf.b_bcount   = sz;
1296 		nbp->vb_buf.b_bufsize  = sz;
1297 		nbp->vb_buf.b_error    = 0;
1298 		nbp->vb_buf.b_data     = addr;
1299 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1300 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1301 		nbp->vb_buf.b_proc     = bp->b_proc;
1302 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1303 		nbp->vb_buf.b_vp       = NULLVP;
1304 		nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1305 		nbp->vb_buf.b_rcred    = sdp->swd_cred;
1306 		nbp->vb_buf.b_wcred    = sdp->swd_cred;
1307 		LIST_INIT(&nbp->vb_buf.b_dep);
1308 
1309 		/*
1310 		 * set b_dirtyoff/end and b_validoff/end.   this is
1311 		 * required by the NFS client code (otherwise it will
1312 		 * just discard our I/O request).
1313 		 */
1314 		if (bp->b_dirtyend == 0) {
1315 			nbp->vb_buf.b_dirtyoff = 0;
1316 			nbp->vb_buf.b_dirtyend = sz;
1317 		} else {
1318 			nbp->vb_buf.b_dirtyoff =
1319 			    max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1320 			nbp->vb_buf.b_dirtyend =
1321 			    min(sz,
1322 				max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1323 		}
1324 		if (bp->b_validend == 0) {
1325 			nbp->vb_buf.b_validoff = 0;
1326 			nbp->vb_buf.b_validend = sz;
1327 		} else {
1328 			nbp->vb_buf.b_validoff =
1329 			    max(0, bp->b_validoff - (bp->b_bcount-resid));
1330 			nbp->vb_buf.b_validend =
1331 			    min(sz,
1332 				max(0, bp->b_validend - (bp->b_bcount-resid)));
1333 		}
1334 
1335 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1336 
1337 		/*
1338 		 * Just sort by block number
1339 		 */
1340 		s = splbio();
1341 		if (vnx->vx_error != 0) {
1342 			putvndbuf(nbp);
1343 			goto out;
1344 		}
1345 		vnx->vx_pending++;
1346 
1347 		/* assoc new buffer with underlying vnode */
1348 		bgetvp(vp, &nbp->vb_buf);
1349 
1350 		/* sort it in and start I/O if we are not over our limit */
1351 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1352 		sw_reg_start(sdp);
1353 		splx(s);
1354 
1355 		/*
1356 		 * advance to the next I/O
1357 		 */
1358 		byteoff += sz;
1359 		addr += sz;
1360 	}
1361 
1362 	s = splbio();
1363 
1364 out: /* Arrive here at splbio */
1365 	vnx->vx_flags &= ~VX_BUSY;
1366 	if (vnx->vx_pending == 0) {
1367 		if (vnx->vx_error != 0) {
1368 			bp->b_error = vnx->vx_error;
1369 			bp->b_flags |= B_ERROR;
1370 		}
1371 		putvndxfer(vnx);
1372 		biodone(bp);
1373 	}
1374 	splx(s);
1375 }
1376 
1377 /*
1378  * sw_reg_start: start an I/O request on the requested swapdev
1379  *
1380  * => reqs are sorted by disksort (above)
1381  */
1382 static void
1383 sw_reg_start(sdp)
1384 	struct swapdev	*sdp;
1385 {
1386 	struct buf	*bp;
1387 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1388 
1389 	/* recursion control */
1390 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1391 		return;
1392 
1393 	sdp->swd_flags |= SWF_BUSY;
1394 
1395 	while (sdp->swd_active < sdp->swd_maxactive) {
1396 		bp = BUFQ_FIRST(&sdp->swd_tab);
1397 		if (bp == NULL)
1398 			break;
1399 		BUFQ_REMOVE(&sdp->swd_tab, bp);
1400 		sdp->swd_active++;
1401 
1402 		UVMHIST_LOG(pdhist,
1403 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1404 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1405 		if ((bp->b_flags & B_READ) == 0)
1406 			bp->b_vp->v_numoutput++;
1407 		VOP_STRATEGY(bp);
1408 	}
1409 	sdp->swd_flags &= ~SWF_BUSY;
1410 }
1411 
1412 /*
1413  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1414  *
1415  * => note that we can recover the vndbuf struct by casting the buf ptr
1416  */
1417 static void
1418 sw_reg_iodone(bp)
1419 	struct buf *bp;
1420 {
1421 	struct vndbuf *vbp = (struct vndbuf *) bp;
1422 	struct vndxfer *vnx = vbp->vb_xfer;
1423 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1424 	struct swapdev	*sdp = vnx->vx_sdp;
1425 	int		s, resid;
1426 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1427 
1428 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1429 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1430 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1431 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1432 
1433 	/*
1434 	 * protect vbp at splbio and update.
1435 	 */
1436 
1437 	s = splbio();
1438 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1439 	pbp->b_resid -= resid;
1440 	vnx->vx_pending--;
1441 
1442 	if (vbp->vb_buf.b_error) {
1443 		UVMHIST_LOG(pdhist, "  got error=%d !",
1444 		    vbp->vb_buf.b_error, 0, 0, 0);
1445 
1446 		/* pass error upward */
1447 		vnx->vx_error = vbp->vb_buf.b_error;
1448 	}
1449 
1450 	/*
1451 	 * disassociate this buffer from the vnode (if any).
1452 	 */
1453 	if (vbp->vb_buf.b_vp != NULLVP) {
1454 		brelvp(&vbp->vb_buf);
1455 	}
1456 
1457 	/*
1458 	 * kill vbp structure
1459 	 */
1460 	putvndbuf(vbp);
1461 
1462 	/*
1463 	 * wrap up this transaction if it has run to completion or, in
1464 	 * case of an error, when all auxiliary buffers have returned.
1465 	 */
1466 	if (vnx->vx_error != 0) {
1467 		/* pass error upward */
1468 		pbp->b_flags |= B_ERROR;
1469 		pbp->b_error = vnx->vx_error;
1470 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1471 			putvndxfer(vnx);
1472 			biodone(pbp);
1473 		}
1474 	} else if (pbp->b_resid == 0) {
1475 #ifdef DIAGNOSTIC
1476 		if (vnx->vx_pending != 0)
1477 			panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1478 #endif
1479 
1480 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1481 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1482 			    pbp, vnx->vx_error, 0, 0);
1483 			putvndxfer(vnx);
1484 			biodone(pbp);
1485 		}
1486 	}
1487 
1488 	/*
1489 	 * done!   start next swapdev I/O if one is pending
1490 	 */
1491 	sdp->swd_active--;
1492 	sw_reg_start(sdp);
1493 	splx(s);
1494 }
1495 
1496 
1497 /*
1498  * uvm_swap_alloc: allocate space on swap
1499  *
1500  * => allocation is done "round robin" down the priority list, as we
1501  *	allocate in a priority we "rotate" the circle queue.
1502  * => space can be freed with uvm_swap_free
1503  * => we return the page slot number in /dev/drum (0 == invalid slot)
1504  * => we lock uvm.swap_data_lock
1505  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1506  */
1507 int
1508 uvm_swap_alloc(nslots, lessok)
1509 	int *nslots;	/* IN/OUT */
1510 	boolean_t lessok;
1511 {
1512 	struct swapdev *sdp;
1513 	struct swappri *spp;
1514 	u_long	result;
1515 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1516 
1517 	/*
1518 	 * no swap devices configured yet?   definite failure.
1519 	 */
1520 	if (uvmexp.nswapdev < 1)
1521 		return 0;
1522 
1523 	/*
1524 	 * lock data lock, convert slots into blocks, and enter loop
1525 	 */
1526 	simple_lock(&uvm.swap_data_lock);
1527 
1528 ReTry:	/* XXXMRG */
1529 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1530 	     spp = LIST_NEXT(spp, spi_swappri)) {
1531 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1532 		     sdp != (void *)&spp->spi_swapdev;
1533 		     sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1534 			/* if it's not enabled, then we can't swap from it */
1535 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1536 				continue;
1537 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1538 				continue;
1539 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1540 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1541 					 &result) != 0) {
1542 				continue;
1543 			}
1544 
1545 			/*
1546 			 * successful allocation!  now rotate the circleq.
1547 			 */
1548 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1549 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1550 			sdp->swd_npginuse += *nslots;
1551 			uvmexp.swpginuse += *nslots;
1552 			simple_unlock(&uvm.swap_data_lock);
1553 			/* done!  return drum slot number */
1554 			UVMHIST_LOG(pdhist,
1555 			    "success!  returning %d slots starting at %d",
1556 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1557 			return(result + sdp->swd_drumoffset);
1558 		}
1559 	}
1560 
1561 	/* XXXMRG: BEGIN HACK */
1562 	if (*nslots > 1 && lessok) {
1563 		*nslots = 1;
1564 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
1565 	}
1566 	/* XXXMRG: END HACK */
1567 
1568 	simple_unlock(&uvm.swap_data_lock);
1569 	return 0;		/* failed */
1570 }
1571 
1572 /*
1573  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1574  *
1575  * => we lock uvm.swap_data_lock
1576  */
1577 void
1578 uvm_swap_markbad(startslot, nslots)
1579 	int startslot;
1580 	int nslots;
1581 {
1582 	struct swapdev *sdp;
1583 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1584 
1585 	simple_lock(&uvm.swap_data_lock);
1586 	sdp = swapdrum_getsdp(startslot);
1587 
1588 	/*
1589 	 * we just keep track of how many pages have been marked bad
1590 	 * in this device, to make everything add up in swap_off().
1591 	 * we assume here that the range of slots will all be within
1592 	 * one swap device.
1593 	 */
1594 	sdp->swd_npgbad += nslots;
1595 
1596 	simple_unlock(&uvm.swap_data_lock);
1597 }
1598 
1599 /*
1600  * uvm_swap_free: free swap slots
1601  *
1602  * => this can be all or part of an allocation made by uvm_swap_alloc
1603  * => we lock uvm.swap_data_lock
1604  */
1605 void
1606 uvm_swap_free(startslot, nslots)
1607 	int startslot;
1608 	int nslots;
1609 {
1610 	struct swapdev *sdp;
1611 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1612 
1613 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1614 	    startslot, 0, 0);
1615 
1616 	/*
1617 	 * ignore attempts to free the "bad" slot.
1618 	 */
1619 	if (startslot == SWSLOT_BAD) {
1620 		return;
1621 	}
1622 
1623 	/*
1624 	 * convert drum slot offset back to sdp, free the blocks
1625 	 * in the extent, and return.   must hold pri lock to do
1626 	 * lookup and access the extent.
1627 	 */
1628 	simple_lock(&uvm.swap_data_lock);
1629 	sdp = swapdrum_getsdp(startslot);
1630 
1631 #ifdef DIAGNOSTIC
1632 	if (uvmexp.nswapdev < 1)
1633 		panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1634 	if (sdp == NULL) {
1635 		printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1636 		    nslots);
1637 		panic("uvm_swap_free: unmapped address\n");
1638 	}
1639 #endif
1640 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1641 			EX_MALLOCOK|EX_NOWAIT) != 0) {
1642 		printf("warning: resource shortage: %d pages of swap lost\n",
1643 			nslots);
1644 	}
1645 
1646 	sdp->swd_npginuse -= nslots;
1647 	uvmexp.swpginuse -= nslots;
1648 #ifdef DIAGNOSTIC
1649 	if (sdp->swd_npginuse < 0)
1650 		panic("uvm_swap_free: inuse < 0");
1651 #endif
1652 	simple_unlock(&uvm.swap_data_lock);
1653 }
1654 
1655 /*
1656  * uvm_swap_put: put any number of pages into a contig place on swap
1657  *
1658  * => can be sync or async
1659  * => XXXMRG: consider making it an inline or macro
1660  */
1661 int
1662 uvm_swap_put(swslot, ppsp, npages, flags)
1663 	int swslot;
1664 	struct vm_page **ppsp;
1665 	int	npages;
1666 	int	flags;
1667 {
1668 	int	result;
1669 
1670 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1671 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1672 
1673 	return (result);
1674 }
1675 
1676 /*
1677  * uvm_swap_get: get a single page from swap
1678  *
1679  * => usually a sync op (from fault)
1680  * => XXXMRG: consider making it an inline or macro
1681  */
1682 int
1683 uvm_swap_get(page, swslot, flags)
1684 	struct vm_page *page;
1685 	int swslot, flags;
1686 {
1687 	int	result;
1688 
1689 	uvmexp.nswget++;
1690 #ifdef DIAGNOSTIC
1691 	if ((flags & PGO_SYNCIO) == 0)
1692 		printf("uvm_swap_get: ASYNC get requested?\n");
1693 #endif
1694 
1695 	if (swslot == SWSLOT_BAD) {
1696 		return VM_PAGER_ERROR;
1697 	}
1698 
1699 	/*
1700 	 * this page is (about to be) no longer only in swap.
1701 	 */
1702 	simple_lock(&uvm.swap_data_lock);
1703 	uvmexp.swpgonly--;
1704 	simple_unlock(&uvm.swap_data_lock);
1705 
1706 	result = uvm_swap_io(&page, swslot, 1, B_READ |
1707 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1708 
1709 	if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1710 		/*
1711 		 * oops, the read failed so it really is still only in swap.
1712 		 */
1713 		simple_lock(&uvm.swap_data_lock);
1714 		uvmexp.swpgonly++;
1715 		simple_unlock(&uvm.swap_data_lock);
1716 	}
1717 
1718 	return (result);
1719 }
1720 
1721 /*
1722  * uvm_swap_io: do an i/o operation to swap
1723  */
1724 
1725 static int
1726 uvm_swap_io(pps, startslot, npages, flags)
1727 	struct vm_page **pps;
1728 	int startslot, npages, flags;
1729 {
1730 	daddr_t startblk;
1731 	struct swapbuf *sbp;
1732 	struct	buf *bp;
1733 	vaddr_t kva;
1734 	int	result, s, mapinflags, pflag;
1735 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1736 
1737 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1738 	    startslot, npages, flags, 0);
1739 
1740 	/*
1741 	 * convert starting drum slot to block number
1742 	 */
1743 	startblk = btodb(startslot << PAGE_SHIFT);
1744 
1745 	/*
1746 	 * first, map the pages into the kernel (XXX: currently required
1747 	 * by buffer system).   note that we don't let pagermapin alloc
1748 	 * an aiodesc structure because we don't want to chance a malloc.
1749 	 * we've got our own pool of aiodesc structures (in swapbuf).
1750 	 */
1751 	mapinflags = (flags & B_READ) ? UVMPAGER_MAPIN_READ :
1752 	    UVMPAGER_MAPIN_WRITE;
1753 	if ((flags & B_ASYNC) == 0)
1754 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
1755 	kva = uvm_pagermapin(pps, npages, NULL, mapinflags);
1756 	if (kva == 0)
1757 		return (VM_PAGER_AGAIN);
1758 
1759 	/*
1760 	 * now allocate a swap buffer off of freesbufs
1761 	 * [make sure we don't put the pagedaemon to sleep...]
1762 	 */
1763 	s = splbio();
1764 	pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1765 		? 0
1766 		: PR_WAITOK;
1767 	sbp = pool_get(swapbuf_pool, pflag);
1768 	splx(s);		/* drop splbio */
1769 
1770 	/*
1771 	 * if we failed to get a swapbuf, return "try again"
1772 	 */
1773 	if (sbp == NULL)
1774 		return (VM_PAGER_AGAIN);
1775 
1776 	/*
1777 	 * fill in the bp/sbp.   we currently route our i/o through
1778 	 * /dev/drum's vnode [swapdev_vp].
1779 	 */
1780 	bp = &sbp->sw_buf;
1781 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1782 	bp->b_proc = &proc0;	/* XXX */
1783 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1784 	bp->b_vnbufs.le_next = NOLIST;
1785 	bp->b_data = (caddr_t)kva;
1786 	bp->b_blkno = startblk;
1787 	s = splbio();
1788 	VHOLD(swapdev_vp);
1789 	bp->b_vp = swapdev_vp;
1790 	splx(s);
1791 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
1792 	/* XXXMRG: probably -- this is obviously something inherited... */
1793 	if (swapdev_vp->v_type == VBLK)
1794 		bp->b_dev = swapdev_vp->v_rdev;
1795 	bp->b_bcount = npages << PAGE_SHIFT;
1796 	LIST_INIT(&bp->b_dep);
1797 
1798 	/*
1799 	 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1800 	 * and we bump v_numoutput (counter of number of active outputs).
1801 	 */
1802 	if ((bp->b_flags & B_READ) == 0) {
1803 		bp->b_dirtyoff = 0;
1804 		bp->b_dirtyend = npages << PAGE_SHIFT;
1805 		s = splbio();
1806 		swapdev_vp->v_numoutput++;
1807 		splx(s);
1808 	}
1809 
1810 	/*
1811 	 * for async ops we must set up the aiodesc and setup the callback
1812 	 * XXX: we expect no async-reads, but we don't prevent it here.
1813 	 */
1814 	if (flags & B_ASYNC) {
1815 		sbp->sw_aio.aiodone = uvm_swap_aiodone;
1816 		sbp->sw_aio.kva = kva;
1817 		sbp->sw_aio.npages = npages;
1818 		sbp->sw_aio.pd_ptr = sbp;	/* backpointer */
1819 		bp->b_flags |= B_CALL;		/* set callback */
1820 		bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1821 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1822 	}
1823 	UVMHIST_LOG(pdhist,
1824 	    "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1825 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1826 
1827 	/*
1828 	 * now we start the I/O, and if async, return.
1829 	 */
1830 	VOP_STRATEGY(bp);
1831 	if (flags & B_ASYNC)
1832 		return (VM_PAGER_PEND);
1833 
1834 	/*
1835 	 * must be sync i/o.   wait for it to finish
1836 	 */
1837 	bp->b_error = biowait(bp);
1838 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1839 
1840 	/*
1841 	 * kill the pager mapping
1842 	 */
1843 	uvm_pagermapout(kva, npages);
1844 
1845 	/*
1846 	 * now dispose of the swap buffer
1847 	 */
1848 	s = splbio();
1849 	if (bp->b_vp)
1850 		brelvp(bp);
1851 
1852 	pool_put(swapbuf_pool, sbp);
1853 	splx(s);
1854 
1855 	/*
1856 	 * finally return.
1857 	 */
1858 	UVMHIST_LOG(pdhist, "<- done (sync)  result=%d", result, 0, 0, 0);
1859 	return (result);
1860 }
1861 
1862 /*
1863  * uvm_swap_bufdone: called from the buffer system when the i/o is done
1864  */
1865 static void
1866 uvm_swap_bufdone(bp)
1867 	struct buf *bp;
1868 {
1869 	struct swapbuf *sbp = (struct swapbuf *) bp;
1870 	int	s = splbio();
1871 	UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1872 
1873 	UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1874 #ifdef DIAGNOSTIC
1875 	/*
1876 	 * sanity check: swapbufs are private, so they shouldn't be wanted
1877 	 */
1878 	if (bp->b_flags & B_WANTED)
1879 		panic("uvm_swap_bufdone: private buf wanted");
1880 #endif
1881 
1882 	/*
1883 	 * drop the buffer's reference to the vnode.
1884 	 */
1885 	if (bp->b_vp)
1886 		brelvp(bp);
1887 
1888 	/*
1889 	 * now put the aio on the uvm.aio_done list and wake the
1890 	 * pagedaemon (which will finish up our job in its context).
1891 	 */
1892 	simple_lock(&uvm.pagedaemon_lock);	/* locks uvm.aio_done */
1893 	TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1894 	simple_unlock(&uvm.pagedaemon_lock);
1895 
1896 	wakeup(&uvm.pagedaemon);
1897 	splx(s);
1898 }
1899 
1900 /*
1901  * uvm_swap_aiodone: aiodone function for anonymous memory
1902  *
1903  * => this is called in the context of the pagedaemon (but with the
1904  *	page queues unlocked!)
1905  * => our "aio" structure must be part of a "swapbuf"
1906  */
1907 static void
1908 uvm_swap_aiodone(aio)
1909 	struct uvm_aiodesc *aio;
1910 {
1911 	struct swapbuf *sbp = aio->pd_ptr;
1912 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1913 	int lcv, s;
1914 	vaddr_t addr;
1915 	UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1916 
1917 	UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1918 #ifdef DIAGNOSTIC
1919 	/*
1920 	 * sanity check
1921 	 */
1922 	if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1923 		panic("uvm_swap_aiodone: aio too big!");
1924 #endif
1925 
1926 	/*
1927 	 * first, we have to recover the page pointers (pps) by poking in the
1928 	 * kernel pmap (XXX: should be saved in the buf structure).
1929 	 */
1930 	for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1931 		addr += PAGE_SIZE, lcv++) {
1932 		pps[lcv] = uvm_pageratop(addr);
1933 	}
1934 
1935 	/*
1936 	 * now we can dispose of the kernel mappings of the buffer
1937 	 */
1938 	uvm_pagermapout(aio->kva, aio->npages);
1939 
1940 	/*
1941 	 * now we can dispose of the pages by using the dropcluster function
1942 	 * [note that we have no "page of interest" so we pass in null]
1943 	 */
1944 	uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1945 				PGO_PDFREECLUST);
1946 
1947 	/*
1948 	 * finally, we can dispose of the swapbuf
1949 	 */
1950 	s = splbio();
1951 	pool_put(swapbuf_pool, sbp);
1952 	splx(s);
1953 }
1954