xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 3b01aba77a7a698587faaae455bbfe740923c1f5)
1 /*	$NetBSD: uvm_swap.c,v 1.52 2001/05/26 16:32:47 chs Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/conf.h>
43 #include <sys/proc.h>
44 #include <sys/namei.h>
45 #include <sys/disklabel.h>
46 #include <sys/errno.h>
47 #include <sys/kernel.h>
48 #include <sys/malloc.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/extent.h>
52 #include <sys/mount.h>
53 #include <sys/pool.h>
54 #include <sys/syscallargs.h>
55 #include <sys/swap.h>
56 
57 #include <uvm/uvm.h>
58 
59 #include <miscfs/specfs/specdev.h>
60 
61 /*
62  * uvm_swap.c: manage configuration and i/o to swap space.
63  */
64 
65 /*
66  * swap space is managed in the following way:
67  *
68  * each swap partition or file is described by a "swapdev" structure.
69  * each "swapdev" structure contains a "swapent" structure which contains
70  * information that is passed up to the user (via system calls).
71  *
72  * each swap partition is assigned a "priority" (int) which controls
73  * swap parition usage.
74  *
75  * the system maintains a global data structure describing all swap
76  * partitions/files.   there is a sorted LIST of "swappri" structures
77  * which describe "swapdev"'s at that priority.   this LIST is headed
78  * by the "swap_priority" global var.    each "swappri" contains a
79  * CIRCLEQ of "swapdev" structures at that priority.
80  *
81  * locking:
82  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
83  *    system call and prevents the swap priority list from changing
84  *    while we are in the middle of a system call (e.g. SWAP_STATS).
85  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
86  *    structures including the priority list, the swapdev structures,
87  *    and the swapmap extent.
88  *
89  * each swap device has the following info:
90  *  - swap device in use (could be disabled, preventing future use)
91  *  - swap enabled (allows new allocations on swap)
92  *  - map info in /dev/drum
93  *  - vnode pointer
94  * for swap files only:
95  *  - block size
96  *  - max byte count in buffer
97  *  - buffer
98  *  - credentials to use when doing i/o to file
99  *
100  * userland controls and configures swap with the swapctl(2) system call.
101  * the sys_swapctl performs the following operations:
102  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
103  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
104  *	(passed in via "arg") of a size passed in via "misc" ... we load
105  *	the current swap config into the array.
106  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
107  *	priority in "misc", start swapping on it.
108  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
109  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
110  *	"misc")
111  */
112 
113 /*
114  * swapdev: describes a single swap partition/file
115  *
116  * note the following should be true:
117  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
118  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
119  */
120 struct swapdev {
121 	struct oswapent swd_ose;
122 #define	swd_dev		swd_ose.ose_dev		/* device id */
123 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
124 #define	swd_priority	swd_ose.ose_priority	/* our priority */
125 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
126 	char			*swd_path;	/* saved pathname of device */
127 	int			swd_pathlen;	/* length of pathname */
128 	int			swd_npages;	/* #pages we can use */
129 	int			swd_npginuse;	/* #pages in use */
130 	int			swd_npgbad;	/* #pages bad */
131 	int			swd_drumoffset;	/* page0 offset in drum */
132 	int			swd_drumsize;	/* #pages in drum */
133 	struct extent		*swd_ex;	/* extent for this swapdev */
134 	char			swd_exname[12];	/* name of extent above */
135 	struct vnode		*swd_vp;	/* backing vnode */
136 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
137 
138 	int			swd_bsize;	/* blocksize (bytes) */
139 	int			swd_maxactive;	/* max active i/o reqs */
140 	struct buf_queue	swd_tab;	/* buffer list */
141 	int			swd_active;	/* number of active buffers */
142 	struct ucred		*swd_cred;	/* cred for file access */
143 };
144 
145 /*
146  * swap device priority entry; the list is kept sorted on `spi_priority'.
147  */
148 struct swappri {
149 	int			spi_priority;     /* priority */
150 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
151 	/* circleq of swapdevs at this priority */
152 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
153 };
154 
155 /*
156  * The following two structures are used to keep track of data transfers
157  * on swap devices associated with regular files.
158  * NOTE: this code is more or less a copy of vnd.c; we use the same
159  * structure names here to ease porting..
160  */
161 struct vndxfer {
162 	struct buf	*vx_bp;		/* Pointer to parent buffer */
163 	struct swapdev	*vx_sdp;
164 	int		vx_error;
165 	int		vx_pending;	/* # of pending aux buffers */
166 	int		vx_flags;
167 #define VX_BUSY		1
168 #define VX_DEAD		2
169 };
170 
171 struct vndbuf {
172 	struct buf	vb_buf;
173 	struct vndxfer	*vb_xfer;
174 };
175 
176 
177 /*
178  * We keep a of pool vndbuf's and vndxfer structures.
179  */
180 static struct pool vndxfer_pool;
181 static struct pool vndbuf_pool;
182 
183 #define	getvndxfer(vnx)	do {						\
184 	int s = splbio();						\
185 	vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
186 	splx(s);							\
187 } while (0)
188 
189 #define putvndxfer(vnx) {						\
190 	pool_put(&vndxfer_pool, (void *)(vnx));				\
191 }
192 
193 #define	getvndbuf(vbp)	do {						\
194 	int s = splbio();						\
195 	vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
196 	splx(s);							\
197 } while (0)
198 
199 #define putvndbuf(vbp) {						\
200 	pool_put(&vndbuf_pool, (void *)(vbp));				\
201 }
202 
203 /* /dev/drum */
204 bdev_decl(sw);
205 cdev_decl(sw);
206 
207 /*
208  * local variables
209  */
210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
211 
212 /* list of all active swap devices [by priority] */
213 LIST_HEAD(swap_priority, swappri);
214 static struct swap_priority swap_priority;
215 
216 /* locks */
217 struct lock swap_syscall_lock;
218 
219 /*
220  * prototypes
221  */
222 static struct swapdev	*swapdrum_getsdp __P((int));
223 
224 static struct swapdev	*swaplist_find __P((struct vnode *, int));
225 static void		 swaplist_insert __P((struct swapdev *,
226 					     struct swappri *, int));
227 static void		 swaplist_trim __P((void));
228 
229 static int swap_on __P((struct proc *, struct swapdev *));
230 static int swap_off __P((struct proc *, struct swapdev *));
231 
232 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
233 static void sw_reg_iodone __P((struct buf *));
234 static void sw_reg_start __P((struct swapdev *));
235 
236 static int uvm_swap_io __P((struct vm_page **, int, int, int));
237 
238 /*
239  * uvm_swap_init: init the swap system data structures and locks
240  *
241  * => called at boot time from init_main.c after the filesystems
242  *	are brought up (which happens after uvm_init())
243  */
244 void
245 uvm_swap_init()
246 {
247 	UVMHIST_FUNC("uvm_swap_init");
248 
249 	UVMHIST_CALLED(pdhist);
250 	/*
251 	 * first, init the swap list, its counter, and its lock.
252 	 * then get a handle on the vnode for /dev/drum by using
253 	 * the its dev_t number ("swapdev", from MD conf.c).
254 	 */
255 
256 	LIST_INIT(&swap_priority);
257 	uvmexp.nswapdev = 0;
258 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
259 	simple_lock_init(&uvm.swap_data_lock);
260 
261 	if (bdevvp(swapdev, &swapdev_vp))
262 		panic("uvm_swap_init: can't get vnode for swap device");
263 
264 	/*
265 	 * create swap block resource map to map /dev/drum.   the range
266 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
267 	 * that block 0 is reserved (used to indicate an allocation
268 	 * failure, or no allocation).
269 	 */
270 	swapmap = extent_create("swapmap", 1, INT_MAX,
271 				M_VMSWAP, 0, 0, EX_NOWAIT);
272 	if (swapmap == 0)
273 		panic("uvm_swap_init: extent_create failed");
274 
275 	/*
276 	 * allocate pools for structures used for swapping to files.
277 	 */
278 
279 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
280 	    "swp vnx", 0, NULL, NULL, 0);
281 
282 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
283 	    "swp vnd", 0, NULL, NULL, 0);
284 
285 	/*
286 	 * done!
287 	 */
288 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
289 }
290 
291 /*
292  * swaplist functions: functions that operate on the list of swap
293  * devices on the system.
294  */
295 
296 /*
297  * swaplist_insert: insert swap device "sdp" into the global list
298  *
299  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
300  * => caller must provide a newly malloc'd swappri structure (we will
301  *	FREE it if we don't need it... this it to prevent malloc blocking
302  *	here while adding swap)
303  */
304 static void
305 swaplist_insert(sdp, newspp, priority)
306 	struct swapdev *sdp;
307 	struct swappri *newspp;
308 	int priority;
309 {
310 	struct swappri *spp, *pspp;
311 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
312 
313 	/*
314 	 * find entry at or after which to insert the new device.
315 	 */
316 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
317 	     spp = LIST_NEXT(spp, spi_swappri)) {
318 		if (priority <= spp->spi_priority)
319 			break;
320 		pspp = spp;
321 	}
322 
323 	/*
324 	 * new priority?
325 	 */
326 	if (spp == NULL || spp->spi_priority != priority) {
327 		spp = newspp;  /* use newspp! */
328 		UVMHIST_LOG(pdhist, "created new swappri = %d",
329 			    priority, 0, 0, 0);
330 
331 		spp->spi_priority = priority;
332 		CIRCLEQ_INIT(&spp->spi_swapdev);
333 
334 		if (pspp)
335 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
336 		else
337 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
338 	} else {
339 	  	/* we don't need a new priority structure, free it */
340 		FREE(newspp, M_VMSWAP);
341 	}
342 
343 	/*
344 	 * priority found (or created).   now insert on the priority's
345 	 * circleq list and bump the total number of swapdevs.
346 	 */
347 	sdp->swd_priority = priority;
348 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
349 	uvmexp.nswapdev++;
350 }
351 
352 /*
353  * swaplist_find: find and optionally remove a swap device from the
354  *	global list.
355  *
356  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
357  * => we return the swapdev we found (and removed)
358  */
359 static struct swapdev *
360 swaplist_find(vp, remove)
361 	struct vnode *vp;
362 	boolean_t remove;
363 {
364 	struct swapdev *sdp;
365 	struct swappri *spp;
366 
367 	/*
368 	 * search the lists for the requested vp
369 	 */
370 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
371 	     spp = LIST_NEXT(spp, spi_swappri)) {
372 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
373 		     sdp != (void *)&spp->spi_swapdev;
374 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
375 			if (sdp->swd_vp == vp) {
376 				if (remove) {
377 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
378 					    sdp, swd_next);
379 					uvmexp.nswapdev--;
380 				}
381 				return(sdp);
382 			}
383 	}
384 	return (NULL);
385 }
386 
387 
388 /*
389  * swaplist_trim: scan priority list for empty priority entries and kill
390  *	them.
391  *
392  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
393  */
394 static void
395 swaplist_trim()
396 {
397 	struct swappri *spp, *nextspp;
398 
399 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
400 		nextspp = LIST_NEXT(spp, spi_swappri);
401 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
402 		    (void *)&spp->spi_swapdev)
403 			continue;
404 		LIST_REMOVE(spp, spi_swappri);
405 		free(spp, M_VMSWAP);
406 	}
407 }
408 
409 /*
410  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
411  *	to the "swapdev" that maps that section of the drum.
412  *
413  * => each swapdev takes one big contig chunk of the drum
414  * => caller must hold uvm.swap_data_lock
415  */
416 static struct swapdev *
417 swapdrum_getsdp(pgno)
418 	int pgno;
419 {
420 	struct swapdev *sdp;
421 	struct swappri *spp;
422 
423 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
424 	     spp = LIST_NEXT(spp, spi_swappri))
425 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
426 		     sdp != (void *)&spp->spi_swapdev;
427 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
428 			if (sdp->swd_flags & SWF_FAKE)
429 				continue;
430 			if (pgno >= sdp->swd_drumoffset &&
431 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 				return sdp;
433 			}
434 		}
435 	return NULL;
436 }
437 
438 
439 /*
440  * sys_swapctl: main entry point for swapctl(2) system call
441  * 	[with two helper functions: swap_on and swap_off]
442  */
443 int
444 sys_swapctl(p, v, retval)
445 	struct proc *p;
446 	void *v;
447 	register_t *retval;
448 {
449 	struct sys_swapctl_args /* {
450 		syscallarg(int) cmd;
451 		syscallarg(void *) arg;
452 		syscallarg(int) misc;
453 	} */ *uap = (struct sys_swapctl_args *)v;
454 	struct vnode *vp;
455 	struct nameidata nd;
456 	struct swappri *spp;
457 	struct swapdev *sdp;
458 	struct swapent *sep;
459 	char	userpath[PATH_MAX + 1];
460 	size_t	len;
461 	int	count, error, misc;
462 	int	priority;
463 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
464 
465 	misc = SCARG(uap, misc);
466 
467 	/*
468 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
469 	 */
470 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
471 
472 	/*
473 	 * we handle the non-priv NSWAP and STATS request first.
474 	 *
475 	 * SWAP_NSWAP: return number of config'd swap devices
476 	 * [can also be obtained with uvmexp sysctl]
477 	 */
478 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
479 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
480 		    0, 0, 0);
481 		*retval = uvmexp.nswapdev;
482 		error = 0;
483 		goto out;
484 	}
485 
486 	/*
487 	 * SWAP_STATS: get stats on current # of configured swap devs
488 	 *
489 	 * note that the swap_priority list can't change as long
490 	 * as we are holding the swap_syscall_lock.  we don't want
491 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
492 	 * copyout() and we don't want to be holding that lock then!
493 	 */
494 	if (SCARG(uap, cmd) == SWAP_STATS
495 #if defined(COMPAT_13)
496 	    || SCARG(uap, cmd) == SWAP_OSTATS
497 #endif
498 	    ) {
499 		sep = (struct swapent *)SCARG(uap, arg);
500 		count = 0;
501 
502 		for (spp = LIST_FIRST(&swap_priority); spp != NULL;
503 		    spp = LIST_NEXT(spp, spi_swappri)) {
504 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
505 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
506 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
507 			  	/*
508 				 * backwards compatibility for system call.
509 				 * note that we use 'struct oswapent' as an
510 				 * overlay into both 'struct swapdev' and
511 				 * the userland 'struct swapent', as we
512 				 * want to retain backwards compatibility
513 				 * with NetBSD 1.3.
514 				 */
515 				sdp->swd_ose.ose_inuse =
516 				    btodb((u_int64_t)sdp->swd_npginuse <<
517 				    PAGE_SHIFT);
518 				error = copyout(&sdp->swd_ose, sep,
519 						sizeof(struct oswapent));
520 
521 				/* now copy out the path if necessary */
522 #if defined(COMPAT_13)
523 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
524 #else
525 				if (error == 0)
526 #endif
527 					error = copyout(sdp->swd_path,
528 					    &sep->se_path, sdp->swd_pathlen);
529 
530 				if (error)
531 					goto out;
532 				count++;
533 #if defined(COMPAT_13)
534 				if (SCARG(uap, cmd) == SWAP_OSTATS)
535 					sep = (struct swapent *)
536 					    ((struct oswapent *)sep + 1);
537 				else
538 #endif
539 					sep++;
540 			}
541 		}
542 
543 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
544 
545 		*retval = count;
546 		error = 0;
547 		goto out;
548 	}
549 
550 	/*
551 	 * all other requests require superuser privs.   verify.
552 	 */
553 	if ((error = suser(p->p_ucred, &p->p_acflag)))
554 		goto out;
555 
556 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
557 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
558 
559 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
560 		goto out;
561 	}
562 
563 	/*
564 	 * at this point we expect a path name in arg.   we will
565 	 * use namei() to gain a vnode reference (vref), and lock
566 	 * the vnode (VOP_LOCK).
567 	 *
568 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
569 	 * miniroot)
570 	 */
571 	if (SCARG(uap, arg) == NULL) {
572 		vp = rootvp;		/* miniroot */
573 		if (vget(vp, LK_EXCLUSIVE)) {
574 			error = EBUSY;
575 			goto out;
576 		}
577 		if (SCARG(uap, cmd) == SWAP_ON &&
578 		    copystr("miniroot", userpath, sizeof userpath, &len))
579 			panic("swapctl: miniroot copy failed");
580 	} else {
581 		int	space;
582 		char	*where;
583 
584 		if (SCARG(uap, cmd) == SWAP_ON) {
585 			if ((error = copyinstr(SCARG(uap, arg), userpath,
586 			    sizeof userpath, &len)))
587 				goto out;
588 			space = UIO_SYSSPACE;
589 			where = userpath;
590 		} else {
591 			space = UIO_USERSPACE;
592 			where = (char *)SCARG(uap, arg);
593 		}
594 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
595 		if ((error = namei(&nd)))
596 			goto out;
597 		vp = nd.ni_vp;
598 	}
599 	/* note: "vp" is referenced and locked */
600 
601 	error = 0;		/* assume no error */
602 	switch(SCARG(uap, cmd)) {
603 
604 	case SWAP_DUMPDEV:
605 		if (vp->v_type != VBLK) {
606 			error = ENOTBLK;
607 			break;
608 		}
609 		dumpdev = vp->v_rdev;
610 		break;
611 
612 	case SWAP_CTL:
613 		/*
614 		 * get new priority, remove old entry (if any) and then
615 		 * reinsert it in the correct place.  finally, prune out
616 		 * any empty priority structures.
617 		 */
618 		priority = SCARG(uap, misc);
619 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
620 		simple_lock(&uvm.swap_data_lock);
621 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
622 			error = ENOENT;
623 		} else {
624 			swaplist_insert(sdp, spp, priority);
625 			swaplist_trim();
626 		}
627 		simple_unlock(&uvm.swap_data_lock);
628 		if (error)
629 			free(spp, M_VMSWAP);
630 		break;
631 
632 	case SWAP_ON:
633 
634 		/*
635 		 * check for duplicates.   if none found, then insert a
636 		 * dummy entry on the list to prevent someone else from
637 		 * trying to enable this device while we are working on
638 		 * it.
639 		 */
640 
641 		priority = SCARG(uap, misc);
642 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
643 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
644 		simple_lock(&uvm.swap_data_lock);
645 		if (swaplist_find(vp, 0) != NULL) {
646 			error = EBUSY;
647 			simple_unlock(&uvm.swap_data_lock);
648 			free(sdp, M_VMSWAP);
649 			free(spp, M_VMSWAP);
650 			break;
651 		}
652 		memset(sdp, 0, sizeof(*sdp));
653 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
654 		sdp->swd_vp = vp;
655 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
656 		BUFQ_INIT(&sdp->swd_tab);
657 
658 		/*
659 		 * XXX Is NFS elaboration necessary?
660 		 */
661 		if (vp->v_type == VREG) {
662 			sdp->swd_cred = crdup(p->p_ucred);
663 		}
664 
665 		swaplist_insert(sdp, spp, priority);
666 		simple_unlock(&uvm.swap_data_lock);
667 
668 		sdp->swd_pathlen = len;
669 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
670 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
671 			panic("swapctl: copystr");
672 
673 		/*
674 		 * we've now got a FAKE placeholder in the swap list.
675 		 * now attempt to enable swap on it.  if we fail, undo
676 		 * what we've done and kill the fake entry we just inserted.
677 		 * if swap_on is a success, it will clear the SWF_FAKE flag
678 		 */
679 
680 		if ((error = swap_on(p, sdp)) != 0) {
681 			simple_lock(&uvm.swap_data_lock);
682 			(void) swaplist_find(vp, 1);  /* kill fake entry */
683 			swaplist_trim();
684 			simple_unlock(&uvm.swap_data_lock);
685 			if (vp->v_type == VREG) {
686 				crfree(sdp->swd_cred);
687 			}
688 			free(sdp->swd_path, M_VMSWAP);
689 			free(sdp, M_VMSWAP);
690 			break;
691 		}
692 		break;
693 
694 	case SWAP_OFF:
695 		simple_lock(&uvm.swap_data_lock);
696 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
697 			simple_unlock(&uvm.swap_data_lock);
698 			error = ENXIO;
699 			break;
700 		}
701 
702 		/*
703 		 * If a device isn't in use or enabled, we
704 		 * can't stop swapping from it (again).
705 		 */
706 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
707 			simple_unlock(&uvm.swap_data_lock);
708 			error = EBUSY;
709 			break;
710 		}
711 
712 		/*
713 		 * do the real work.
714 		 */
715 		error = swap_off(p, sdp);
716 		break;
717 
718 	default:
719 		error = EINVAL;
720 	}
721 
722 	/*
723 	 * done!  release the ref gained by namei() and unlock.
724 	 */
725 	vput(vp);
726 
727 out:
728 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
729 
730 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
731 	return (error);
732 }
733 
734 /*
735  * swap_on: attempt to enable a swapdev for swapping.   note that the
736  *	swapdev is already on the global list, but disabled (marked
737  *	SWF_FAKE).
738  *
739  * => we avoid the start of the disk (to protect disk labels)
740  * => we also avoid the miniroot, if we are swapping to root.
741  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
742  *	if needed.
743  */
744 static int
745 swap_on(p, sdp)
746 	struct proc *p;
747 	struct swapdev *sdp;
748 {
749 	static int count = 0;	/* static */
750 	struct vnode *vp;
751 	int error, npages, nblocks, size;
752 	long addr;
753 	u_long result;
754 	struct vattr va;
755 #ifdef NFS
756 	extern int (**nfsv2_vnodeop_p) __P((void *));
757 #endif /* NFS */
758 	dev_t dev;
759 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
760 
761 	/*
762 	 * we want to enable swapping on sdp.   the swd_vp contains
763 	 * the vnode we want (locked and ref'd), and the swd_dev
764 	 * contains the dev_t of the file, if it a block device.
765 	 */
766 
767 	vp = sdp->swd_vp;
768 	dev = sdp->swd_dev;
769 
770 	/*
771 	 * open the swap file (mostly useful for block device files to
772 	 * let device driver know what is up).
773 	 *
774 	 * we skip the open/close for root on swap because the root
775 	 * has already been opened when root was mounted (mountroot).
776 	 */
777 	if (vp != rootvp) {
778 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
779 			return (error);
780 	}
781 
782 	/* XXX this only works for block devices */
783 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
784 
785 	/*
786 	 * we now need to determine the size of the swap area.   for
787 	 * block specials we can call the d_psize function.
788 	 * for normal files, we must stat [get attrs].
789 	 *
790 	 * we put the result in nblks.
791 	 * for normal files, we also want the filesystem block size
792 	 * (which we get with statfs).
793 	 */
794 	switch (vp->v_type) {
795 	case VBLK:
796 		if (bdevsw[major(dev)].d_psize == 0 ||
797 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
798 			error = ENXIO;
799 			goto bad;
800 		}
801 		break;
802 
803 	case VREG:
804 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
805 			goto bad;
806 		nblocks = (int)btodb(va.va_size);
807 		if ((error =
808 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
809 			goto bad;
810 
811 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
812 		/*
813 		 * limit the max # of outstanding I/O requests we issue
814 		 * at any one time.   take it easy on NFS servers.
815 		 */
816 #ifdef NFS
817 		if (vp->v_op == nfsv2_vnodeop_p)
818 			sdp->swd_maxactive = 2; /* XXX */
819 		else
820 #endif /* NFS */
821 			sdp->swd_maxactive = 8; /* XXX */
822 		break;
823 
824 	default:
825 		error = ENXIO;
826 		goto bad;
827 	}
828 
829 	/*
830 	 * save nblocks in a safe place and convert to pages.
831 	 */
832 
833 	sdp->swd_ose.ose_nblks = nblocks;
834 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
835 
836 	/*
837 	 * for block special files, we want to make sure that leave
838 	 * the disklabel and bootblocks alone, so we arrange to skip
839 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
840 	 * note that because of this the "size" can be less than the
841 	 * actual number of blocks on the device.
842 	 */
843 	if (vp->v_type == VBLK) {
844 		/* we use pages 1 to (size - 1) [inclusive] */
845 		size = npages - 1;
846 		addr = 1;
847 	} else {
848 		/* we use pages 0 to (size - 1) [inclusive] */
849 		size = npages;
850 		addr = 0;
851 	}
852 
853 	/*
854 	 * make sure we have enough blocks for a reasonable sized swap
855 	 * area.   we want at least one page.
856 	 */
857 
858 	if (size < 1) {
859 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
860 		error = EINVAL;
861 		goto bad;
862 	}
863 
864 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
865 
866 	/*
867 	 * now we need to allocate an extent to manage this swap device
868 	 */
869 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
870 	    count++);
871 
872 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
873 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
874 				    0, 0, EX_WAITOK);
875 	/* allocate the `saved' region from the extent so it won't be used */
876 	if (addr) {
877 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
878 			panic("disklabel region");
879 	}
880 
881 	/*
882 	 * if the vnode we are swapping to is the root vnode
883 	 * (i.e. we are swapping to the miniroot) then we want
884 	 * to make sure we don't overwrite it.   do a statfs to
885 	 * find its size and skip over it.
886 	 */
887 	if (vp == rootvp) {
888 		struct mount *mp;
889 		struct statfs *sp;
890 		int rootblocks, rootpages;
891 
892 		mp = rootvnode->v_mount;
893 		sp = &mp->mnt_stat;
894 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
895 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
896 		if (rootpages > size)
897 			panic("swap_on: miniroot larger than swap?");
898 
899 		if (extent_alloc_region(sdp->swd_ex, addr,
900 					rootpages, EX_WAITOK))
901 			panic("swap_on: unable to preserve miniroot");
902 
903 		size -= rootpages;
904 		printf("Preserved %d pages of miniroot ", rootpages);
905 		printf("leaving %d pages of swap\n", size);
906 	}
907 
908   	/*
909 	 * try to add anons to reflect the new swap space.
910 	 */
911 
912 	error = uvm_anon_add(size);
913 	if (error) {
914 		goto bad;
915 	}
916 
917 	/*
918 	 * add a ref to vp to reflect usage as a swap device.
919 	 */
920 	vref(vp);
921 
922 	/*
923 	 * now add the new swapdev to the drum and enable.
924 	 */
925 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
926 	    EX_WAITOK, &result))
927 		panic("swapdrum_add");
928 
929 	sdp->swd_drumoffset = (int)result;
930 	sdp->swd_drumsize = npages;
931 	sdp->swd_npages = size;
932 	simple_lock(&uvm.swap_data_lock);
933 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
934 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
935 	uvmexp.swpages += size;
936 	simple_unlock(&uvm.swap_data_lock);
937 	return (0);
938 
939 	/*
940 	 * failure: clean up and return error.
941 	 */
942 
943 bad:
944 	if (sdp->swd_ex) {
945 		extent_destroy(sdp->swd_ex);
946 	}
947 	if (vp != rootvp) {
948 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
949 	}
950 	return (error);
951 }
952 
953 /*
954  * swap_off: stop swapping on swapdev
955  *
956  * => swap data should be locked, we will unlock.
957  */
958 static int
959 swap_off(p, sdp)
960 	struct proc *p;
961 	struct swapdev *sdp;
962 {
963 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
964 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
965 
966 	/* disable the swap area being removed */
967 	sdp->swd_flags &= ~SWF_ENABLE;
968 	simple_unlock(&uvm.swap_data_lock);
969 
970 	/*
971 	 * the idea is to find all the pages that are paged out to this
972 	 * device, and page them all in.  in uvm, swap-backed pageable
973 	 * memory can take two forms: aobjs and anons.  call the
974 	 * swapoff hook for each subsystem to bring in pages.
975 	 */
976 
977 	if (uao_swap_off(sdp->swd_drumoffset,
978 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
979 	    anon_swap_off(sdp->swd_drumoffset,
980 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
981 
982 		simple_lock(&uvm.swap_data_lock);
983 		sdp->swd_flags |= SWF_ENABLE;
984 		simple_unlock(&uvm.swap_data_lock);
985 		return ENOMEM;
986 	}
987 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
988 
989 	/*
990 	 * done with the vnode and saved creds.
991 	 * drop our ref on the vnode before calling VOP_CLOSE()
992 	 * so that spec_close() can tell if this is the last close.
993 	 */
994 	if (sdp->swd_vp->v_type == VREG) {
995 		crfree(sdp->swd_cred);
996 	}
997 	vrele(sdp->swd_vp);
998 	if (sdp->swd_vp != rootvp) {
999 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1000 	}
1001 
1002 	/* remove anons from the system */
1003 	uvm_anon_remove(sdp->swd_npages);
1004 
1005 	simple_lock(&uvm.swap_data_lock);
1006 	uvmexp.swpages -= sdp->swd_npages;
1007 
1008 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1009 		panic("swap_off: swapdev not in list\n");
1010 	swaplist_trim();
1011 	simple_unlock(&uvm.swap_data_lock);
1012 
1013 	/*
1014 	 * free all resources!
1015 	 */
1016 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1017 		    EX_WAITOK);
1018 	extent_destroy(sdp->swd_ex);
1019 	free(sdp, M_VMSWAP);
1020 	return (0);
1021 }
1022 
1023 /*
1024  * /dev/drum interface and i/o functions
1025  */
1026 
1027 /*
1028  * swread: the read function for the drum (just a call to physio)
1029  */
1030 /*ARGSUSED*/
1031 int
1032 swread(dev, uio, ioflag)
1033 	dev_t dev;
1034 	struct uio *uio;
1035 	int ioflag;
1036 {
1037 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1038 
1039 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1040 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1041 }
1042 
1043 /*
1044  * swwrite: the write function for the drum (just a call to physio)
1045  */
1046 /*ARGSUSED*/
1047 int
1048 swwrite(dev, uio, ioflag)
1049 	dev_t dev;
1050 	struct uio *uio;
1051 	int ioflag;
1052 {
1053 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1054 
1055 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1056 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1057 }
1058 
1059 /*
1060  * swstrategy: perform I/O on the drum
1061  *
1062  * => we must map the i/o request from the drum to the correct swapdev.
1063  */
1064 void
1065 swstrategy(bp)
1066 	struct buf *bp;
1067 {
1068 	struct swapdev *sdp;
1069 	struct vnode *vp;
1070 	int s, pageno, bn;
1071 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1072 
1073 	/*
1074 	 * convert block number to swapdev.   note that swapdev can't
1075 	 * be yanked out from under us because we are holding resources
1076 	 * in it (i.e. the blocks we are doing I/O on).
1077 	 */
1078 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1079 	simple_lock(&uvm.swap_data_lock);
1080 	sdp = swapdrum_getsdp(pageno);
1081 	simple_unlock(&uvm.swap_data_lock);
1082 	if (sdp == NULL) {
1083 		bp->b_error = EINVAL;
1084 		bp->b_flags |= B_ERROR;
1085 		biodone(bp);
1086 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1087 		return;
1088 	}
1089 
1090 	/*
1091 	 * convert drum page number to block number on this swapdev.
1092 	 */
1093 
1094 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1095 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1096 
1097 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1098 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1099 		sdp->swd_drumoffset, bn, bp->b_bcount);
1100 
1101 	/*
1102 	 * for block devices we finish up here.
1103 	 * for regular files we have to do more work which we delegate
1104 	 * to sw_reg_strategy().
1105 	 */
1106 
1107 	switch (sdp->swd_vp->v_type) {
1108 	default:
1109 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1110 
1111 	case VBLK:
1112 
1113 		/*
1114 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1115 		 * on the swapdev (sdp).
1116 		 */
1117 		s = splbio();
1118 		bp->b_blkno = bn;		/* swapdev block number */
1119 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1120 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1121 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
1122 
1123 		/*
1124 		 * if we are doing a write, we have to redirect the i/o on
1125 		 * drum's v_numoutput counter to the swapdevs.
1126 		 */
1127 		if ((bp->b_flags & B_READ) == 0) {
1128 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1129 			vp->v_numoutput++;	/* put it on swapdev */
1130 		}
1131 
1132 		/*
1133 		 * dissassocate buffer with /dev/drum vnode
1134 		 * [could be null if buf was from physio]
1135 		 */
1136 		if (bp->b_vp != NULL)
1137 			brelvp(bp);
1138 
1139 		/*
1140 		 * finally plug in swapdev vnode and start I/O
1141 		 */
1142 		bp->b_vp = vp;
1143 		splx(s);
1144 		VOP_STRATEGY(bp);
1145 		return;
1146 
1147 	case VREG:
1148 		/*
1149 		 * delegate to sw_reg_strategy function.
1150 		 */
1151 		sw_reg_strategy(sdp, bp, bn);
1152 		return;
1153 	}
1154 	/* NOTREACHED */
1155 }
1156 
1157 /*
1158  * sw_reg_strategy: handle swap i/o to regular files
1159  */
1160 static void
1161 sw_reg_strategy(sdp, bp, bn)
1162 	struct swapdev	*sdp;
1163 	struct buf	*bp;
1164 	int		bn;
1165 {
1166 	struct vnode	*vp;
1167 	struct vndxfer	*vnx;
1168 	daddr_t		nbn;
1169 	caddr_t		addr;
1170 	off_t		byteoff;
1171 	int		s, off, nra, error, sz, resid;
1172 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1173 
1174 	/*
1175 	 * allocate a vndxfer head for this transfer and point it to
1176 	 * our buffer.
1177 	 */
1178 	getvndxfer(vnx);
1179 	vnx->vx_flags = VX_BUSY;
1180 	vnx->vx_error = 0;
1181 	vnx->vx_pending = 0;
1182 	vnx->vx_bp = bp;
1183 	vnx->vx_sdp = sdp;
1184 
1185 	/*
1186 	 * setup for main loop where we read filesystem blocks into
1187 	 * our buffer.
1188 	 */
1189 	error = 0;
1190 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1191 	addr = bp->b_data;		/* current position in buffer */
1192 	byteoff = dbtob((u_int64_t)bn);
1193 
1194 	for (resid = bp->b_resid; resid; resid -= sz) {
1195 		struct vndbuf	*nbp;
1196 
1197 		/*
1198 		 * translate byteoffset into block number.  return values:
1199 		 *   vp = vnode of underlying device
1200 		 *  nbn = new block number (on underlying vnode dev)
1201 		 *  nra = num blocks we can read-ahead (excludes requested
1202 		 *	block)
1203 		 */
1204 		nra = 0;
1205 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1206 				 	&vp, &nbn, &nra);
1207 
1208 		if (error == 0 && nbn == (daddr_t)-1) {
1209 			/*
1210 			 * this used to just set error, but that doesn't
1211 			 * do the right thing.  Instead, it causes random
1212 			 * memory errors.  The panic() should remain until
1213 			 * this condition doesn't destabilize the system.
1214 			 */
1215 #if 1
1216 			panic("sw_reg_strategy: swap to sparse file");
1217 #else
1218 			error = EIO;	/* failure */
1219 #endif
1220 		}
1221 
1222 		/*
1223 		 * punt if there was an error or a hole in the file.
1224 		 * we must wait for any i/o ops we have already started
1225 		 * to finish before returning.
1226 		 *
1227 		 * XXX we could deal with holes here but it would be
1228 		 * a hassle (in the write case).
1229 		 */
1230 		if (error) {
1231 			s = splbio();
1232 			vnx->vx_error = error;	/* pass error up */
1233 			goto out;
1234 		}
1235 
1236 		/*
1237 		 * compute the size ("sz") of this transfer (in bytes).
1238 		 */
1239 		off = byteoff % sdp->swd_bsize;
1240 		sz = (1 + nra) * sdp->swd_bsize - off;
1241 		if (sz > resid)
1242 			sz = resid;
1243 
1244 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1245 			    "vp %p/%p offset 0x%x/0x%x",
1246 			    sdp->swd_vp, vp, byteoff, nbn);
1247 
1248 		/*
1249 		 * now get a buf structure.   note that the vb_buf is
1250 		 * at the front of the nbp structure so that you can
1251 		 * cast pointers between the two structure easily.
1252 		 */
1253 		getvndbuf(nbp);
1254 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1255 		nbp->vb_buf.b_bcount   = sz;
1256 		nbp->vb_buf.b_bufsize  = sz;
1257 		nbp->vb_buf.b_error    = 0;
1258 		nbp->vb_buf.b_data     = addr;
1259 		nbp->vb_buf.b_lblkno   = 0;
1260 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1261 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1262 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1263 		nbp->vb_buf.b_vp       = NULL;
1264 		LIST_INIT(&nbp->vb_buf.b_dep);
1265 
1266 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1267 
1268 		/*
1269 		 * Just sort by block number
1270 		 */
1271 		s = splbio();
1272 		if (vnx->vx_error != 0) {
1273 			putvndbuf(nbp);
1274 			goto out;
1275 		}
1276 		vnx->vx_pending++;
1277 
1278 		/* assoc new buffer with underlying vnode */
1279 		bgetvp(vp, &nbp->vb_buf);
1280 
1281 		/* sort it in and start I/O if we are not over our limit */
1282 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1283 		sw_reg_start(sdp);
1284 		splx(s);
1285 
1286 		/*
1287 		 * advance to the next I/O
1288 		 */
1289 		byteoff += sz;
1290 		addr += sz;
1291 	}
1292 
1293 	s = splbio();
1294 
1295 out: /* Arrive here at splbio */
1296 	vnx->vx_flags &= ~VX_BUSY;
1297 	if (vnx->vx_pending == 0) {
1298 		if (vnx->vx_error != 0) {
1299 			bp->b_error = vnx->vx_error;
1300 			bp->b_flags |= B_ERROR;
1301 		}
1302 		putvndxfer(vnx);
1303 		biodone(bp);
1304 	}
1305 	splx(s);
1306 }
1307 
1308 /*
1309  * sw_reg_start: start an I/O request on the requested swapdev
1310  *
1311  * => reqs are sorted by disksort (above)
1312  */
1313 static void
1314 sw_reg_start(sdp)
1315 	struct swapdev	*sdp;
1316 {
1317 	struct buf	*bp;
1318 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1319 
1320 	/* recursion control */
1321 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1322 		return;
1323 
1324 	sdp->swd_flags |= SWF_BUSY;
1325 
1326 	while (sdp->swd_active < sdp->swd_maxactive) {
1327 		bp = BUFQ_FIRST(&sdp->swd_tab);
1328 		if (bp == NULL)
1329 			break;
1330 		BUFQ_REMOVE(&sdp->swd_tab, bp);
1331 		sdp->swd_active++;
1332 
1333 		UVMHIST_LOG(pdhist,
1334 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1335 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1336 		if ((bp->b_flags & B_READ) == 0)
1337 			bp->b_vp->v_numoutput++;
1338 
1339 		VOP_STRATEGY(bp);
1340 	}
1341 	sdp->swd_flags &= ~SWF_BUSY;
1342 }
1343 
1344 /*
1345  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1346  *
1347  * => note that we can recover the vndbuf struct by casting the buf ptr
1348  */
1349 static void
1350 sw_reg_iodone(bp)
1351 	struct buf *bp;
1352 {
1353 	struct vndbuf *vbp = (struct vndbuf *) bp;
1354 	struct vndxfer *vnx = vbp->vb_xfer;
1355 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1356 	struct swapdev	*sdp = vnx->vx_sdp;
1357 	int		s, resid;
1358 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1359 
1360 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1361 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1362 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1363 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1364 
1365 	/*
1366 	 * protect vbp at splbio and update.
1367 	 */
1368 
1369 	s = splbio();
1370 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1371 	pbp->b_resid -= resid;
1372 	vnx->vx_pending--;
1373 
1374 	if (vbp->vb_buf.b_error) {
1375 		UVMHIST_LOG(pdhist, "  got error=%d !",
1376 		    vbp->vb_buf.b_error, 0, 0, 0);
1377 
1378 		/* pass error upward */
1379 		vnx->vx_error = vbp->vb_buf.b_error;
1380 	}
1381 
1382 	/*
1383 	 * disassociate this buffer from the vnode.
1384 	 */
1385 	brelvp(&vbp->vb_buf);
1386 
1387 	/*
1388 	 * kill vbp structure
1389 	 */
1390 	putvndbuf(vbp);
1391 
1392 	/*
1393 	 * wrap up this transaction if it has run to completion or, in
1394 	 * case of an error, when all auxiliary buffers have returned.
1395 	 */
1396 	if (vnx->vx_error != 0) {
1397 		/* pass error upward */
1398 		pbp->b_flags |= B_ERROR;
1399 		pbp->b_error = vnx->vx_error;
1400 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1401 			putvndxfer(vnx);
1402 			biodone(pbp);
1403 		}
1404 	} else if (pbp->b_resid == 0) {
1405 		KASSERT(vnx->vx_pending == 0);
1406 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1407 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1408 			    pbp, vnx->vx_error, 0, 0);
1409 			putvndxfer(vnx);
1410 			biodone(pbp);
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * done!   start next swapdev I/O if one is pending
1416 	 */
1417 	sdp->swd_active--;
1418 	sw_reg_start(sdp);
1419 	splx(s);
1420 }
1421 
1422 
1423 /*
1424  * uvm_swap_alloc: allocate space on swap
1425  *
1426  * => allocation is done "round robin" down the priority list, as we
1427  *	allocate in a priority we "rotate" the circle queue.
1428  * => space can be freed with uvm_swap_free
1429  * => we return the page slot number in /dev/drum (0 == invalid slot)
1430  * => we lock uvm.swap_data_lock
1431  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1432  */
1433 int
1434 uvm_swap_alloc(nslots, lessok)
1435 	int *nslots;	/* IN/OUT */
1436 	boolean_t lessok;
1437 {
1438 	struct swapdev *sdp;
1439 	struct swappri *spp;
1440 	u_long	result;
1441 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1442 
1443 	/*
1444 	 * no swap devices configured yet?   definite failure.
1445 	 */
1446 	if (uvmexp.nswapdev < 1)
1447 		return 0;
1448 
1449 	/*
1450 	 * lock data lock, convert slots into blocks, and enter loop
1451 	 */
1452 	simple_lock(&uvm.swap_data_lock);
1453 
1454 ReTry:	/* XXXMRG */
1455 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1456 	     spp = LIST_NEXT(spp, spi_swappri)) {
1457 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1458 		     sdp != (void *)&spp->spi_swapdev;
1459 		     sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1460 			/* if it's not enabled, then we can't swap from it */
1461 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1462 				continue;
1463 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1464 				continue;
1465 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1466 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1467 					 &result) != 0) {
1468 				continue;
1469 			}
1470 
1471 			/*
1472 			 * successful allocation!  now rotate the circleq.
1473 			 */
1474 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1475 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1476 			sdp->swd_npginuse += *nslots;
1477 			uvmexp.swpginuse += *nslots;
1478 			simple_unlock(&uvm.swap_data_lock);
1479 			/* done!  return drum slot number */
1480 			UVMHIST_LOG(pdhist,
1481 			    "success!  returning %d slots starting at %d",
1482 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1483 			return(result + sdp->swd_drumoffset);
1484 		}
1485 	}
1486 
1487 	/* XXXMRG: BEGIN HACK */
1488 	if (*nslots > 1 && lessok) {
1489 		*nslots = 1;
1490 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
1491 	}
1492 	/* XXXMRG: END HACK */
1493 
1494 	simple_unlock(&uvm.swap_data_lock);
1495 	return 0;		/* failed */
1496 }
1497 
1498 /*
1499  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1500  *
1501  * => we lock uvm.swap_data_lock
1502  */
1503 void
1504 uvm_swap_markbad(startslot, nslots)
1505 	int startslot;
1506 	int nslots;
1507 {
1508 	struct swapdev *sdp;
1509 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1510 
1511 	simple_lock(&uvm.swap_data_lock);
1512 	sdp = swapdrum_getsdp(startslot);
1513 
1514 	/*
1515 	 * we just keep track of how many pages have been marked bad
1516 	 * in this device, to make everything add up in swap_off().
1517 	 * we assume here that the range of slots will all be within
1518 	 * one swap device.
1519 	 */
1520 
1521 	sdp->swd_npgbad += nslots;
1522 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1523 	simple_unlock(&uvm.swap_data_lock);
1524 }
1525 
1526 /*
1527  * uvm_swap_free: free swap slots
1528  *
1529  * => this can be all or part of an allocation made by uvm_swap_alloc
1530  * => we lock uvm.swap_data_lock
1531  */
1532 void
1533 uvm_swap_free(startslot, nslots)
1534 	int startslot;
1535 	int nslots;
1536 {
1537 	struct swapdev *sdp;
1538 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1539 
1540 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1541 	    startslot, 0, 0);
1542 
1543 	/*
1544 	 * ignore attempts to free the "bad" slot.
1545 	 */
1546 
1547 	if (startslot == SWSLOT_BAD) {
1548 		return;
1549 	}
1550 
1551 	/*
1552 	 * convert drum slot offset back to sdp, free the blocks
1553 	 * in the extent, and return.   must hold pri lock to do
1554 	 * lookup and access the extent.
1555 	 */
1556 
1557 	simple_lock(&uvm.swap_data_lock);
1558 	sdp = swapdrum_getsdp(startslot);
1559 	KASSERT(uvmexp.nswapdev >= 1);
1560 	KASSERT(sdp != NULL);
1561 	KASSERT(sdp->swd_npginuse >= nslots);
1562 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1563 			EX_MALLOCOK|EX_NOWAIT) != 0) {
1564 		printf("warning: resource shortage: %d pages of swap lost\n",
1565 			nslots);
1566 	}
1567 	sdp->swd_npginuse -= nslots;
1568 	uvmexp.swpginuse -= nslots;
1569 	simple_unlock(&uvm.swap_data_lock);
1570 }
1571 
1572 /*
1573  * uvm_swap_put: put any number of pages into a contig place on swap
1574  *
1575  * => can be sync or async
1576  * => XXXMRG: consider making it an inline or macro
1577  */
1578 int
1579 uvm_swap_put(swslot, ppsp, npages, flags)
1580 	int swslot;
1581 	struct vm_page **ppsp;
1582 	int	npages;
1583 	int	flags;
1584 {
1585 	int	result;
1586 
1587 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1588 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1589 
1590 	return (result);
1591 }
1592 
1593 /*
1594  * uvm_swap_get: get a single page from swap
1595  *
1596  * => usually a sync op (from fault)
1597  * => XXXMRG: consider making it an inline or macro
1598  */
1599 int
1600 uvm_swap_get(page, swslot, flags)
1601 	struct vm_page *page;
1602 	int swslot, flags;
1603 {
1604 	int	result;
1605 
1606 	uvmexp.nswget++;
1607 	KASSERT(flags & PGO_SYNCIO);
1608 	if (swslot == SWSLOT_BAD) {
1609 		return EIO;
1610 	}
1611 
1612 	/*
1613 	 * this page is (about to be) no longer only in swap.
1614 	 */
1615 
1616 	simple_lock(&uvm.swap_data_lock);
1617 	uvmexp.swpgonly--;
1618 	simple_unlock(&uvm.swap_data_lock);
1619 
1620 	result = uvm_swap_io(&page, swslot, 1, B_READ |
1621 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1622 
1623 	if (result != 0) {
1624 
1625 		/*
1626 		 * oops, the read failed so it really is still only in swap.
1627 		 */
1628 
1629 		simple_lock(&uvm.swap_data_lock);
1630 		uvmexp.swpgonly++;
1631 		simple_unlock(&uvm.swap_data_lock);
1632 	}
1633 
1634 	return (result);
1635 }
1636 
1637 /*
1638  * uvm_swap_io: do an i/o operation to swap
1639  */
1640 
1641 static int
1642 uvm_swap_io(pps, startslot, npages, flags)
1643 	struct vm_page **pps;
1644 	int startslot, npages, flags;
1645 {
1646 	daddr_t startblk;
1647 	struct	buf *bp;
1648 	vaddr_t kva;
1649 	int	error, s, mapinflags, pflag;
1650 	boolean_t write, async;
1651 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1652 
1653 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1654 	    startslot, npages, flags, 0);
1655 
1656 	write = (flags & B_READ) == 0;
1657 	async = (flags & B_ASYNC) != 0;
1658 
1659 	/*
1660 	 * convert starting drum slot to block number
1661 	 */
1662 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1663 
1664 	/*
1665 	 * first, map the pages into the kernel (XXX: currently required
1666 	 * by buffer system).
1667 	 */
1668 
1669 	mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
1670 	if (!async)
1671 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
1672 	kva = uvm_pagermapin(pps, npages, mapinflags);
1673 	if (kva == 0)
1674 		return (EAGAIN);
1675 
1676 	/*
1677 	 * now allocate a buf for the i/o.
1678 	 * [make sure we don't put the pagedaemon to sleep...]
1679 	 */
1680 	s = splbio();
1681 	pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
1682 	bp = pool_get(&bufpool, pflag);
1683 	splx(s);
1684 
1685 	/*
1686 	 * if we failed to get a buf, return "try again"
1687 	 */
1688 	if (bp == NULL)
1689 		return (EAGAIN);
1690 
1691 	/*
1692 	 * fill in the bp/sbp.   we currently route our i/o through
1693 	 * /dev/drum's vnode [swapdev_vp].
1694 	 */
1695 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1696 	bp->b_proc = &proc0;	/* XXX */
1697 	bp->b_vnbufs.le_next = NOLIST;
1698 	bp->b_data = (caddr_t)kva;
1699 	bp->b_blkno = startblk;
1700 	s = splbio();
1701 	VHOLD(swapdev_vp);
1702 	bp->b_vp = swapdev_vp;
1703 	splx(s);
1704 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
1705 	/* XXXMRG: probably -- this is obviously something inherited... */
1706 	if (swapdev_vp->v_type == VBLK)
1707 		bp->b_dev = swapdev_vp->v_rdev;
1708 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1709 	LIST_INIT(&bp->b_dep);
1710 
1711 	/*
1712 	 * bump v_numoutput (counter of number of active outputs).
1713 	 */
1714 	if (write) {
1715 		s = splbio();
1716 		swapdev_vp->v_numoutput++;
1717 		splx(s);
1718 	}
1719 
1720 	/*
1721 	 * for async ops we must set up the iodone handler.
1722 	 */
1723 	if (async) {
1724 		/* XXXUBC pagedaemon */
1725 		bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
1726 					 B_PDAEMON : 0);
1727 		bp->b_iodone = uvm_aio_biodone;
1728 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1729 	}
1730 	UVMHIST_LOG(pdhist,
1731 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1732 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1733 
1734 	/*
1735 	 * now we start the I/O, and if async, return.
1736 	 */
1737 	VOP_STRATEGY(bp);
1738 	if (async)
1739 		return 0;
1740 
1741 	/*
1742 	 * must be sync i/o.   wait for it to finish
1743 	 */
1744 	error = biowait(bp);
1745 
1746 	/*
1747 	 * kill the pager mapping
1748 	 */
1749 	uvm_pagermapout(kva, npages);
1750 
1751 	/*
1752 	 * now dispose of the buf
1753 	 */
1754 	s = splbio();
1755 	if (bp->b_vp)
1756 		brelvp(bp);
1757 	if (write)
1758 		vwakeup(bp);
1759 	pool_put(&bufpool, bp);
1760 	splx(s);
1761 
1762 	/*
1763 	 * finally return.
1764 	 */
1765 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1766 	return (error);
1767 }
1768