xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 2c6fc41c810f5088457889d00eba558e8bc74d9e)
1 /*	$NetBSD: uvm_swap.c,v 1.168 2014/03/16 05:20:30 dholland Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.168 2014/03/16 05:20:30 dholland Exp $");
34 
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38 
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * TAILQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap arena.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats() function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	dev_t			swd_dev;	/* device id */
127 	int			swd_flags;	/* flags:inuse/enable/fake */
128 	int			swd_priority;	/* our priority */
129 	int			swd_nblks;	/* blocks in this device */
130 	char			*swd_path;	/* saved pathname of device */
131 	int			swd_pathlen;	/* length of pathname */
132 	int			swd_npages;	/* #pages we can use */
133 	int			swd_npginuse;	/* #pages in use */
134 	int			swd_npgbad;	/* #pages bad */
135 	int			swd_drumoffset;	/* page0 offset in drum */
136 	int			swd_drumsize;	/* #pages in drum */
137 	blist_t			swd_blist;	/* blist for this swapdev */
138 	struct vnode		*swd_vp;	/* backing vnode */
139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
140 
141 	int			swd_bsize;	/* blocksize (bytes) */
142 	int			swd_maxactive;	/* max active i/o reqs */
143 	struct bufq_state	*swd_tab;	/* buffer list */
144 	int			swd_active;	/* number of active buffers */
145 };
146 
147 /*
148  * swap device priority entry; the list is kept sorted on `spi_priority'.
149  */
150 struct swappri {
151 	int			spi_priority;     /* priority */
152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
153 	/* tailq of swapdevs at this priority */
154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
155 };
156 
157 /*
158  * The following two structures are used to keep track of data transfers
159  * on swap devices associated with regular files.
160  * NOTE: this code is more or less a copy of vnd.c; we use the same
161  * structure names here to ease porting..
162  */
163 struct vndxfer {
164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
165 	struct swapdev	*vx_sdp;
166 	int		vx_error;
167 	int		vx_pending;	/* # of pending aux buffers */
168 	int		vx_flags;
169 #define VX_BUSY		1
170 #define VX_DEAD		2
171 };
172 
173 struct vndbuf {
174 	struct buf	vb_buf;
175 	struct vndxfer	*vb_xfer;
176 };
177 
178 /*
179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180  * dev_t and has no se_path[] member.
181  */
182 struct swapent13 {
183 	int32_t	se13_dev;		/* device id */
184 	int	se13_flags;		/* flags */
185 	int	se13_nblks;		/* total blocks */
186 	int	se13_inuse;		/* blocks in use */
187 	int	se13_priority;		/* priority of this device */
188 };
189 
190 /*
191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192  * dev_t.
193  */
194 struct swapent50 {
195 	int32_t	se50_dev;		/* device id */
196 	int	se50_flags;		/* flags */
197 	int	se50_nblks;		/* total blocks */
198 	int	se50_inuse;		/* blocks in use */
199 	int	se50_priority;		/* priority of this device */
200 	char	se50_path[PATH_MAX+1];	/* path name */
201 };
202 
203 /*
204  * We keep a of pool vndbuf's and vndxfer structures.
205  */
206 static struct pool vndxfer_pool, vndbuf_pool;
207 
208 /*
209  * local variables
210  */
211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
212 
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216 
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219 
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223 
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226 
227 /*
228  * prototypes
229  */
230 static struct swapdev	*swapdrum_getsdp(int);
231 
232 static struct swapdev	*swaplist_find(struct vnode *, bool);
233 static void		 swaplist_insert(struct swapdev *,
234 					 struct swappri *, int);
235 static void		 swaplist_trim(void);
236 
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239 
240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 static void sw_reg_biodone(struct buf *);
242 static void sw_reg_iodone(struct work *wk, void *dummy);
243 static void sw_reg_start(struct swapdev *);
244 
245 static int uvm_swap_io(struct vm_page **, int, int, int);
246 
247 /*
248  * uvm_swap_init: init the swap system data structures and locks
249  *
250  * => called at boot time from init_main.c after the filesystems
251  *	are brought up (which happens after uvm_init())
252  */
253 void
254 uvm_swap_init(void)
255 {
256 	UVMHIST_FUNC("uvm_swap_init");
257 
258 	UVMHIST_CALLED(pdhist);
259 	/*
260 	 * first, init the swap list, its counter, and its lock.
261 	 * then get a handle on the vnode for /dev/drum by using
262 	 * the its dev_t number ("swapdev", from MD conf.c).
263 	 */
264 
265 	LIST_INIT(&swap_priority);
266 	uvmexp.nswapdev = 0;
267 	rw_init(&swap_syscall_lock);
268 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269 
270 	if (bdevvp(swapdev, &swapdev_vp))
271 		panic("%s: can't get vnode for swap device", __func__);
272 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 		panic("%s: can't lock swap device", __func__);
274 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 		panic("%s: can't open swap device", __func__);
276 	VOP_UNLOCK(swapdev_vp);
277 
278 	/*
279 	 * create swap block resource map to map /dev/drum.   the range
280 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
281 	 * that block 0 is reserved (used to indicate an allocation
282 	 * failure, or no allocation).
283 	 */
284 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 	    VM_NOSLEEP, IPL_NONE);
286 	if (swapmap == 0) {
287 		panic("%s: vmem_create failed", __func__);
288 	}
289 
290 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 	    NULL, IPL_BIO);
292 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 	    NULL, IPL_BIO);
294 
295 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 }
297 
298 /*
299  * swaplist functions: functions that operate on the list of swap
300  * devices on the system.
301  */
302 
303 /*
304  * swaplist_insert: insert swap device "sdp" into the global list
305  *
306  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307  * => caller must provide a newly allocated swappri structure (we will
308  *	FREE it if we don't need it... this it to prevent allocation
309  *	blocking here while adding swap)
310  */
311 static void
312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 {
314 	struct swappri *spp, *pspp;
315 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316 
317 	/*
318 	 * find entry at or after which to insert the new device.
319 	 */
320 	pspp = NULL;
321 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 		if (priority <= spp->spi_priority)
323 			break;
324 		pspp = spp;
325 	}
326 
327 	/*
328 	 * new priority?
329 	 */
330 	if (spp == NULL || spp->spi_priority != priority) {
331 		spp = newspp;  /* use newspp! */
332 		UVMHIST_LOG(pdhist, "created new swappri = %d",
333 			    priority, 0, 0, 0);
334 
335 		spp->spi_priority = priority;
336 		TAILQ_INIT(&spp->spi_swapdev);
337 
338 		if (pspp)
339 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 		else
341 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 	} else {
343 	  	/* we don't need a new priority structure, free it */
344 		kmem_free(newspp, sizeof(*newspp));
345 	}
346 
347 	/*
348 	 * priority found (or created).   now insert on the priority's
349 	 * tailq list and bump the total number of swapdevs.
350 	 */
351 	sdp->swd_priority = priority;
352 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 	uvmexp.nswapdev++;
354 }
355 
356 /*
357  * swaplist_find: find and optionally remove a swap device from the
358  *	global list.
359  *
360  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361  * => we return the swapdev we found (and removed)
362  */
363 static struct swapdev *
364 swaplist_find(struct vnode *vp, bool remove)
365 {
366 	struct swapdev *sdp;
367 	struct swappri *spp;
368 
369 	/*
370 	 * search the lists for the requested vp
371 	 */
372 
373 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 			if (sdp->swd_vp == vp) {
376 				if (remove) {
377 					TAILQ_REMOVE(&spp->spi_swapdev,
378 					    sdp, swd_next);
379 					uvmexp.nswapdev--;
380 				}
381 				return(sdp);
382 			}
383 		}
384 	}
385 	return (NULL);
386 }
387 
388 /*
389  * swaplist_trim: scan priority list for empty priority entries and kill
390  *	them.
391  *
392  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393  */
394 static void
395 swaplist_trim(void)
396 {
397 	struct swappri *spp, *nextspp;
398 
399 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 			continue;
402 		LIST_REMOVE(spp, spi_swappri);
403 		kmem_free(spp, sizeof(*spp));
404 	}
405 }
406 
407 /*
408  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409  *	to the "swapdev" that maps that section of the drum.
410  *
411  * => each swapdev takes one big contig chunk of the drum
412  * => caller must hold uvm_swap_data_lock
413  */
414 static struct swapdev *
415 swapdrum_getsdp(int pgno)
416 {
417 	struct swapdev *sdp;
418 	struct swappri *spp;
419 
420 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 			if (sdp->swd_flags & SWF_FAKE)
423 				continue;
424 			if (pgno >= sdp->swd_drumoffset &&
425 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 				return sdp;
427 			}
428 		}
429 	}
430 	return NULL;
431 }
432 
433 
434 /*
435  * sys_swapctl: main entry point for swapctl(2) system call
436  * 	[with two helper functions: swap_on and swap_off]
437  */
438 int
439 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
440 {
441 	/* {
442 		syscallarg(int) cmd;
443 		syscallarg(void *) arg;
444 		syscallarg(int) misc;
445 	} */
446 	struct vnode *vp;
447 	struct nameidata nd;
448 	struct swappri *spp;
449 	struct swapdev *sdp;
450 	struct swapent *sep;
451 #define SWAP_PATH_MAX (PATH_MAX + 1)
452 	char	*userpath;
453 	size_t	len = 0;
454 	int	error, misc;
455 	int	priority;
456 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
457 
458 	/*
459 	 * we handle the non-priv NSWAP and STATS request first.
460 	 *
461 	 * SWAP_NSWAP: return number of config'd swap devices
462 	 * [can also be obtained with uvmexp sysctl]
463 	 */
464 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 		const int nswapdev = uvmexp.nswapdev;
466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
467 		*retval = nswapdev;
468 		return 0;
469 	}
470 
471 	misc = SCARG(uap, misc);
472 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
473 
474 	/*
475 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
476 	 */
477 	rw_enter(&swap_syscall_lock, RW_WRITER);
478 
479 	/*
480 	 * SWAP_STATS: get stats on current # of configured swap devs
481 	 *
482 	 * note that the swap_priority list can't change as long
483 	 * as we are holding the swap_syscall_lock.  we don't want
484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
485 	 * copyout() and we don't want to be holding that lock then!
486 	 */
487 	if (SCARG(uap, cmd) == SWAP_STATS
488 #if defined(COMPAT_50)
489 	    || SCARG(uap, cmd) == SWAP_STATS50
490 #endif
491 #if defined(COMPAT_13)
492 	    || SCARG(uap, cmd) == SWAP_STATS13
493 #endif
494 	    ) {
495 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
496 			misc = uvmexp.nswapdev;
497 
498 		if (misc == 0) {
499 			error = EINVAL;
500 			goto out;
501 		}
502 		KASSERT(misc > 0);
503 #if defined(COMPAT_13)
504 		if (SCARG(uap, cmd) == SWAP_STATS13)
505 			len = sizeof(struct swapent13) * misc;
506 		else
507 #endif
508 #if defined(COMPAT_50)
509 		if (SCARG(uap, cmd) == SWAP_STATS50)
510 			len = sizeof(struct swapent50) * misc;
511 		else
512 #endif
513 			len = sizeof(struct swapent) * misc;
514 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
515 
516 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
517 		error = copyout(sep, SCARG(uap, arg), len);
518 
519 		kmem_free(sep, len);
520 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 		goto out;
522 	}
523 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
525 
526 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 		goto out;
528 	}
529 
530 	/*
531 	 * all other requests require superuser privs.   verify.
532 	 */
533 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
534 	    0, NULL, NULL, NULL)))
535 		goto out;
536 
537 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
538 		/* drop the current dump device */
539 		dumpdev = NODEV;
540 		dumpcdev = NODEV;
541 		cpu_dumpconf();
542 		goto out;
543 	}
544 
545 	/*
546 	 * at this point we expect a path name in arg.   we will
547 	 * use namei() to gain a vnode reference (vref), and lock
548 	 * the vnode (VOP_LOCK).
549 	 *
550 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
551 	 * miniroot)
552 	 */
553 	if (SCARG(uap, arg) == NULL) {
554 		vp = rootvp;		/* miniroot */
555 		vref(vp);
556 		if (vn_lock(vp, LK_EXCLUSIVE)) {
557 			vrele(vp);
558 			error = EBUSY;
559 			goto out;
560 		}
561 		if (SCARG(uap, cmd) == SWAP_ON &&
562 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
563 			panic("swapctl: miniroot copy failed");
564 		KASSERT(len > 0);
565 	} else {
566 		struct pathbuf *pb;
567 
568 		/*
569 		 * This used to allow copying in one extra byte
570 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
571 		 * This was completely pointless because if anyone
572 		 * used that extra byte namei would fail with
573 		 * ENAMETOOLONG anyway, so I've removed the excess
574 		 * logic. - dholland 20100215
575 		 */
576 
577 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
578 		if (error) {
579 			goto out;
580 		}
581 		if (SCARG(uap, cmd) == SWAP_ON) {
582 			/* get a copy of the string */
583 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
584 			len = strlen(userpath) + 1;
585 		}
586 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
587 		if ((error = namei(&nd))) {
588 			pathbuf_destroy(pb);
589 			goto out;
590 		}
591 		vp = nd.ni_vp;
592 		pathbuf_destroy(pb);
593 	}
594 	/* note: "vp" is referenced and locked */
595 
596 	error = 0;		/* assume no error */
597 	switch(SCARG(uap, cmd)) {
598 
599 	case SWAP_DUMPDEV:
600 		if (vp->v_type != VBLK) {
601 			error = ENOTBLK;
602 			break;
603 		}
604 		if (bdevsw_lookup(vp->v_rdev)) {
605 			dumpdev = vp->v_rdev;
606 			dumpcdev = devsw_blk2chr(dumpdev);
607 		} else
608 			dumpdev = NODEV;
609 		cpu_dumpconf();
610 		break;
611 
612 	case SWAP_CTL:
613 		/*
614 		 * get new priority, remove old entry (if any) and then
615 		 * reinsert it in the correct place.  finally, prune out
616 		 * any empty priority structures.
617 		 */
618 		priority = SCARG(uap, misc);
619 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
620 		mutex_enter(&uvm_swap_data_lock);
621 		if ((sdp = swaplist_find(vp, true)) == NULL) {
622 			error = ENOENT;
623 		} else {
624 			swaplist_insert(sdp, spp, priority);
625 			swaplist_trim();
626 		}
627 		mutex_exit(&uvm_swap_data_lock);
628 		if (error)
629 			kmem_free(spp, sizeof(*spp));
630 		break;
631 
632 	case SWAP_ON:
633 
634 		/*
635 		 * check for duplicates.   if none found, then insert a
636 		 * dummy entry on the list to prevent someone else from
637 		 * trying to enable this device while we are working on
638 		 * it.
639 		 */
640 
641 		priority = SCARG(uap, misc);
642 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
643 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
644 		sdp->swd_flags = SWF_FAKE;
645 		sdp->swd_vp = vp;
646 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
647 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
648 		mutex_enter(&uvm_swap_data_lock);
649 		if (swaplist_find(vp, false) != NULL) {
650 			error = EBUSY;
651 			mutex_exit(&uvm_swap_data_lock);
652 			bufq_free(sdp->swd_tab);
653 			kmem_free(sdp, sizeof(*sdp));
654 			kmem_free(spp, sizeof(*spp));
655 			break;
656 		}
657 		swaplist_insert(sdp, spp, priority);
658 		mutex_exit(&uvm_swap_data_lock);
659 
660 		KASSERT(len > 0);
661 		sdp->swd_pathlen = len;
662 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
663 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
664 			panic("swapctl: copystr");
665 
666 		/*
667 		 * we've now got a FAKE placeholder in the swap list.
668 		 * now attempt to enable swap on it.  if we fail, undo
669 		 * what we've done and kill the fake entry we just inserted.
670 		 * if swap_on is a success, it will clear the SWF_FAKE flag
671 		 */
672 
673 		if ((error = swap_on(l, sdp)) != 0) {
674 			mutex_enter(&uvm_swap_data_lock);
675 			(void) swaplist_find(vp, true);  /* kill fake entry */
676 			swaplist_trim();
677 			mutex_exit(&uvm_swap_data_lock);
678 			bufq_free(sdp->swd_tab);
679 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
680 			kmem_free(sdp, sizeof(*sdp));
681 			break;
682 		}
683 		break;
684 
685 	case SWAP_OFF:
686 		mutex_enter(&uvm_swap_data_lock);
687 		if ((sdp = swaplist_find(vp, false)) == NULL) {
688 			mutex_exit(&uvm_swap_data_lock);
689 			error = ENXIO;
690 			break;
691 		}
692 
693 		/*
694 		 * If a device isn't in use or enabled, we
695 		 * can't stop swapping from it (again).
696 		 */
697 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
698 			mutex_exit(&uvm_swap_data_lock);
699 			error = EBUSY;
700 			break;
701 		}
702 
703 		/*
704 		 * do the real work.
705 		 */
706 		error = swap_off(l, sdp);
707 		break;
708 
709 	default:
710 		error = EINVAL;
711 	}
712 
713 	/*
714 	 * done!  release the ref gained by namei() and unlock.
715 	 */
716 	vput(vp);
717 out:
718 	rw_exit(&swap_syscall_lock);
719 	kmem_free(userpath, SWAP_PATH_MAX);
720 
721 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
722 	return (error);
723 }
724 
725 /*
726  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
727  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
728  * emulation to use it directly without going through sys_swapctl().
729  * The problem with using sys_swapctl() there is that it involves
730  * copying the swapent array to the stackgap, and this array's size
731  * is not known at build time. Hence it would not be possible to
732  * ensure it would fit in the stackgap in any case.
733  */
734 void
735 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
736 {
737 	struct swappri *spp;
738 	struct swapdev *sdp;
739 	int count = 0;
740 
741 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
742 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
743 			int inuse;
744 
745 			if (sec-- <= 0)
746 				break;
747 
748 			/*
749 			 * backwards compatibility for system call.
750 			 * For NetBSD 1.3 and 5.0, we have to use
751 			 * the 32 bit dev_t.  For 5.0 and -current
752 			 * we have to add the path.
753 			 */
754 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
755 			    PAGE_SHIFT);
756 
757 #if defined(COMPAT_13) || defined(COMPAT_50)
758 			if (cmd == SWAP_STATS) {
759 #endif
760 				sep->se_dev = sdp->swd_dev;
761 				sep->se_flags = sdp->swd_flags;
762 				sep->se_nblks = sdp->swd_nblks;
763 				sep->se_inuse = inuse;
764 				sep->se_priority = sdp->swd_priority;
765 				KASSERT(sdp->swd_pathlen <
766 				    sizeof(sep->se_path));
767 				strcpy(sep->se_path, sdp->swd_path);
768 				sep++;
769 #if defined(COMPAT_13)
770 			} else if (cmd == SWAP_STATS13) {
771 				struct swapent13 *sep13 =
772 				    (struct swapent13 *)sep;
773 
774 				sep13->se13_dev = sdp->swd_dev;
775 				sep13->se13_flags = sdp->swd_flags;
776 				sep13->se13_nblks = sdp->swd_nblks;
777 				sep13->se13_inuse = inuse;
778 				sep13->se13_priority = sdp->swd_priority;
779 				sep = (struct swapent *)(sep13 + 1);
780 #endif
781 #if defined(COMPAT_50)
782 			} else if (cmd == SWAP_STATS50) {
783 				struct swapent50 *sep50 =
784 				    (struct swapent50 *)sep;
785 
786 				sep50->se50_dev = sdp->swd_dev;
787 				sep50->se50_flags = sdp->swd_flags;
788 				sep50->se50_nblks = sdp->swd_nblks;
789 				sep50->se50_inuse = inuse;
790 				sep50->se50_priority = sdp->swd_priority;
791 				KASSERT(sdp->swd_pathlen <
792 				    sizeof(sep50->se50_path));
793 				strcpy(sep50->se50_path, sdp->swd_path);
794 				sep = (struct swapent *)(sep50 + 1);
795 #endif
796 #if defined(COMPAT_13) || defined(COMPAT_50)
797 			}
798 #endif
799 			count++;
800 		}
801 	}
802 	*retval = count;
803 }
804 
805 /*
806  * swap_on: attempt to enable a swapdev for swapping.   note that the
807  *	swapdev is already on the global list, but disabled (marked
808  *	SWF_FAKE).
809  *
810  * => we avoid the start of the disk (to protect disk labels)
811  * => we also avoid the miniroot, if we are swapping to root.
812  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
813  *	if needed.
814  */
815 static int
816 swap_on(struct lwp *l, struct swapdev *sdp)
817 {
818 	struct vnode *vp;
819 	int error, npages, nblocks, size;
820 	long addr;
821 	vmem_addr_t result;
822 	struct vattr va;
823 	dev_t dev;
824 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
825 
826 	/*
827 	 * we want to enable swapping on sdp.   the swd_vp contains
828 	 * the vnode we want (locked and ref'd), and the swd_dev
829 	 * contains the dev_t of the file, if it a block device.
830 	 */
831 
832 	vp = sdp->swd_vp;
833 	dev = sdp->swd_dev;
834 
835 	/*
836 	 * open the swap file (mostly useful for block device files to
837 	 * let device driver know what is up).
838 	 *
839 	 * we skip the open/close for root on swap because the root
840 	 * has already been opened when root was mounted (mountroot).
841 	 */
842 	if (vp != rootvp) {
843 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
844 			return (error);
845 	}
846 
847 	/* XXX this only works for block devices */
848 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
849 
850 	/*
851 	 * we now need to determine the size of the swap area.   for
852 	 * block specials we can call the d_psize function.
853 	 * for normal files, we must stat [get attrs].
854 	 *
855 	 * we put the result in nblks.
856 	 * for normal files, we also want the filesystem block size
857 	 * (which we get with statfs).
858 	 */
859 	switch (vp->v_type) {
860 	case VBLK:
861 		if ((nblocks = bdev_size(dev)) == -1) {
862 			error = ENXIO;
863 			goto bad;
864 		}
865 		break;
866 
867 	case VREG:
868 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
869 			goto bad;
870 		nblocks = (int)btodb(va.va_size);
871 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
872 		/*
873 		 * limit the max # of outstanding I/O requests we issue
874 		 * at any one time.   take it easy on NFS servers.
875 		 */
876 		if (vp->v_tag == VT_NFS)
877 			sdp->swd_maxactive = 2; /* XXX */
878 		else
879 			sdp->swd_maxactive = 8; /* XXX */
880 		break;
881 
882 	default:
883 		error = ENXIO;
884 		goto bad;
885 	}
886 
887 	/*
888 	 * save nblocks in a safe place and convert to pages.
889 	 */
890 
891 	sdp->swd_nblks = nblocks;
892 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
893 
894 	/*
895 	 * for block special files, we want to make sure that leave
896 	 * the disklabel and bootblocks alone, so we arrange to skip
897 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
898 	 * note that because of this the "size" can be less than the
899 	 * actual number of blocks on the device.
900 	 */
901 	if (vp->v_type == VBLK) {
902 		/* we use pages 1 to (size - 1) [inclusive] */
903 		size = npages - 1;
904 		addr = 1;
905 	} else {
906 		/* we use pages 0 to (size - 1) [inclusive] */
907 		size = npages;
908 		addr = 0;
909 	}
910 
911 	/*
912 	 * make sure we have enough blocks for a reasonable sized swap
913 	 * area.   we want at least one page.
914 	 */
915 
916 	if (size < 1) {
917 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
918 		error = EINVAL;
919 		goto bad;
920 	}
921 
922 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
923 
924 	/*
925 	 * now we need to allocate an extent to manage this swap device
926 	 */
927 
928 	sdp->swd_blist = blist_create(npages);
929 	/* mark all expect the `saved' region free. */
930 	blist_free(sdp->swd_blist, addr, size);
931 
932 	/*
933 	 * if the vnode we are swapping to is the root vnode
934 	 * (i.e. we are swapping to the miniroot) then we want
935 	 * to make sure we don't overwrite it.   do a statfs to
936 	 * find its size and skip over it.
937 	 */
938 	if (vp == rootvp) {
939 		struct mount *mp;
940 		struct statvfs *sp;
941 		int rootblocks, rootpages;
942 
943 		mp = rootvnode->v_mount;
944 		sp = &mp->mnt_stat;
945 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
946 		/*
947 		 * XXX: sp->f_blocks isn't the total number of
948 		 * blocks in the filesystem, it's the number of
949 		 * data blocks.  so, our rootblocks almost
950 		 * definitely underestimates the total size
951 		 * of the filesystem - how badly depends on the
952 		 * details of the filesystem type.  there isn't
953 		 * an obvious way to deal with this cleanly
954 		 * and perfectly, so for now we just pad our
955 		 * rootblocks estimate with an extra 5 percent.
956 		 */
957 		rootblocks += (rootblocks >> 5) +
958 			(rootblocks >> 6) +
959 			(rootblocks >> 7);
960 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
961 		if (rootpages > size)
962 			panic("swap_on: miniroot larger than swap?");
963 
964 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
965 			panic("swap_on: unable to preserve miniroot");
966 		}
967 
968 		size -= rootpages;
969 		printf("Preserved %d pages of miniroot ", rootpages);
970 		printf("leaving %d pages of swap\n", size);
971 	}
972 
973 	/*
974 	 * add a ref to vp to reflect usage as a swap device.
975 	 */
976 	vref(vp);
977 
978 	/*
979 	 * now add the new swapdev to the drum and enable.
980 	 */
981 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
982 	if (error != 0)
983 		panic("swapdrum_add");
984 	/*
985 	 * If this is the first regular swap create the workqueue.
986 	 * => Protected by swap_syscall_lock.
987 	 */
988 	if (vp->v_type != VBLK) {
989 		if (sw_reg_count++ == 0) {
990 			KASSERT(sw_reg_workqueue == NULL);
991 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
992 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
993 				panic("%s: workqueue_create failed", __func__);
994 		}
995 	}
996 
997 	sdp->swd_drumoffset = (int)result;
998 	sdp->swd_drumsize = npages;
999 	sdp->swd_npages = size;
1000 	mutex_enter(&uvm_swap_data_lock);
1001 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1002 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1003 	uvmexp.swpages += size;
1004 	uvmexp.swpgavail += size;
1005 	mutex_exit(&uvm_swap_data_lock);
1006 	return (0);
1007 
1008 	/*
1009 	 * failure: clean up and return error.
1010 	 */
1011 
1012 bad:
1013 	if (sdp->swd_blist) {
1014 		blist_destroy(sdp->swd_blist);
1015 	}
1016 	if (vp != rootvp) {
1017 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1018 	}
1019 	return (error);
1020 }
1021 
1022 /*
1023  * swap_off: stop swapping on swapdev
1024  *
1025  * => swap data should be locked, we will unlock.
1026  */
1027 static int
1028 swap_off(struct lwp *l, struct swapdev *sdp)
1029 {
1030 	int npages = sdp->swd_npages;
1031 	int error = 0;
1032 
1033 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1034 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1035 
1036 	/* disable the swap area being removed */
1037 	sdp->swd_flags &= ~SWF_ENABLE;
1038 	uvmexp.swpgavail -= npages;
1039 	mutex_exit(&uvm_swap_data_lock);
1040 
1041 	/*
1042 	 * the idea is to find all the pages that are paged out to this
1043 	 * device, and page them all in.  in uvm, swap-backed pageable
1044 	 * memory can take two forms: aobjs and anons.  call the
1045 	 * swapoff hook for each subsystem to bring in pages.
1046 	 */
1047 
1048 	if (uao_swap_off(sdp->swd_drumoffset,
1049 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1050 	    amap_swap_off(sdp->swd_drumoffset,
1051 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1052 		error = ENOMEM;
1053 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1054 		error = EBUSY;
1055 	}
1056 
1057 	if (error) {
1058 		mutex_enter(&uvm_swap_data_lock);
1059 		sdp->swd_flags |= SWF_ENABLE;
1060 		uvmexp.swpgavail += npages;
1061 		mutex_exit(&uvm_swap_data_lock);
1062 
1063 		return error;
1064 	}
1065 
1066 	/*
1067 	 * If this is the last regular swap destroy the workqueue.
1068 	 * => Protected by swap_syscall_lock.
1069 	 */
1070 	if (sdp->swd_vp->v_type != VBLK) {
1071 		KASSERT(sw_reg_count > 0);
1072 		KASSERT(sw_reg_workqueue != NULL);
1073 		if (--sw_reg_count == 0) {
1074 			workqueue_destroy(sw_reg_workqueue);
1075 			sw_reg_workqueue = NULL;
1076 		}
1077 	}
1078 
1079 	/*
1080 	 * done with the vnode.
1081 	 * drop our ref on the vnode before calling VOP_CLOSE()
1082 	 * so that spec_close() can tell if this is the last close.
1083 	 */
1084 	vrele(sdp->swd_vp);
1085 	if (sdp->swd_vp != rootvp) {
1086 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1087 	}
1088 
1089 	mutex_enter(&uvm_swap_data_lock);
1090 	uvmexp.swpages -= npages;
1091 	uvmexp.swpginuse -= sdp->swd_npgbad;
1092 
1093 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1094 		panic("%s: swapdev not in list", __func__);
1095 	swaplist_trim();
1096 	mutex_exit(&uvm_swap_data_lock);
1097 
1098 	/*
1099 	 * free all resources!
1100 	 */
1101 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1102 	blist_destroy(sdp->swd_blist);
1103 	bufq_free(sdp->swd_tab);
1104 	kmem_free(sdp, sizeof(*sdp));
1105 	return (0);
1106 }
1107 
1108 void
1109 uvm_swap_shutdown(struct lwp *l)
1110 {
1111 	struct swapdev *sdp;
1112 	struct swappri *spp;
1113 	struct vnode *vp;
1114 	int error;
1115 
1116 	printf("turning of swap...");
1117 	rw_enter(&swap_syscall_lock, RW_WRITER);
1118 	mutex_enter(&uvm_swap_data_lock);
1119 again:
1120 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
1121 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1122 			if (sdp->swd_flags & SWF_FAKE)
1123 				continue;
1124 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1125 				continue;
1126 #ifdef DEBUG
1127 			printf("\nturning off swap on %s...",
1128 			    sdp->swd_path);
1129 #endif
1130 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1131 				error = EBUSY;
1132 				vp = NULL;
1133 			} else
1134 				error = 0;
1135 			if (!error) {
1136 				error = swap_off(l, sdp);
1137 				mutex_enter(&uvm_swap_data_lock);
1138 			}
1139 			if (error) {
1140 				printf("stopping swap on %s failed "
1141 				    "with error %d\n", sdp->swd_path, error);
1142 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1143 				    swd_next);
1144 				uvmexp.nswapdev--;
1145 				swaplist_trim();
1146 				if (vp)
1147 					vput(vp);
1148 			}
1149 			goto again;
1150 		}
1151 	printf(" done\n");
1152 	mutex_exit(&uvm_swap_data_lock);
1153 	rw_exit(&swap_syscall_lock);
1154 }
1155 
1156 
1157 /*
1158  * /dev/drum interface and i/o functions
1159  */
1160 
1161 /*
1162  * swstrategy: perform I/O on the drum
1163  *
1164  * => we must map the i/o request from the drum to the correct swapdev.
1165  */
1166 static void
1167 swstrategy(struct buf *bp)
1168 {
1169 	struct swapdev *sdp;
1170 	struct vnode *vp;
1171 	int pageno, bn;
1172 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1173 
1174 	/*
1175 	 * convert block number to swapdev.   note that swapdev can't
1176 	 * be yanked out from under us because we are holding resources
1177 	 * in it (i.e. the blocks we are doing I/O on).
1178 	 */
1179 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1180 	mutex_enter(&uvm_swap_data_lock);
1181 	sdp = swapdrum_getsdp(pageno);
1182 	mutex_exit(&uvm_swap_data_lock);
1183 	if (sdp == NULL) {
1184 		bp->b_error = EINVAL;
1185 		bp->b_resid = bp->b_bcount;
1186 		biodone(bp);
1187 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1188 		return;
1189 	}
1190 
1191 	/*
1192 	 * convert drum page number to block number on this swapdev.
1193 	 */
1194 
1195 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1196 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1197 
1198 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1199 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1200 		sdp->swd_drumoffset, bn, bp->b_bcount);
1201 
1202 	/*
1203 	 * for block devices we finish up here.
1204 	 * for regular files we have to do more work which we delegate
1205 	 * to sw_reg_strategy().
1206 	 */
1207 
1208 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1209 	switch (vp->v_type) {
1210 	default:
1211 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1212 
1213 	case VBLK:
1214 
1215 		/*
1216 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1217 		 * on the swapdev (sdp).
1218 		 */
1219 		bp->b_blkno = bn;		/* swapdev block number */
1220 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1221 
1222 		/*
1223 		 * if we are doing a write, we have to redirect the i/o on
1224 		 * drum's v_numoutput counter to the swapdevs.
1225 		 */
1226 		if ((bp->b_flags & B_READ) == 0) {
1227 			mutex_enter(bp->b_objlock);
1228 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1229 			mutex_exit(bp->b_objlock);
1230 			mutex_enter(vp->v_interlock);
1231 			vp->v_numoutput++;	/* put it on swapdev */
1232 			mutex_exit(vp->v_interlock);
1233 		}
1234 
1235 		/*
1236 		 * finally plug in swapdev vnode and start I/O
1237 		 */
1238 		bp->b_vp = vp;
1239 		bp->b_objlock = vp->v_interlock;
1240 		VOP_STRATEGY(vp, bp);
1241 		return;
1242 
1243 	case VREG:
1244 		/*
1245 		 * delegate to sw_reg_strategy function.
1246 		 */
1247 		sw_reg_strategy(sdp, bp, bn);
1248 		return;
1249 	}
1250 	/* NOTREACHED */
1251 }
1252 
1253 /*
1254  * swread: the read function for the drum (just a call to physio)
1255  */
1256 /*ARGSUSED*/
1257 static int
1258 swread(dev_t dev, struct uio *uio, int ioflag)
1259 {
1260 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1261 
1262 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1263 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1264 }
1265 
1266 /*
1267  * swwrite: the write function for the drum (just a call to physio)
1268  */
1269 /*ARGSUSED*/
1270 static int
1271 swwrite(dev_t dev, struct uio *uio, int ioflag)
1272 {
1273 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1274 
1275 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1276 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1277 }
1278 
1279 const struct bdevsw swap_bdevsw = {
1280 	.d_open = nullopen,
1281 	.d_close = nullclose,
1282 	.d_strategy = swstrategy,
1283 	.d_ioctl = noioctl,
1284 	.d_dump = nodump,
1285 	.d_psize = nosize,
1286 	.d_flag = D_OTHER
1287 };
1288 
1289 const struct cdevsw swap_cdevsw = {
1290 	.d_open = nullopen,
1291 	.d_close = nullclose,
1292 	.d_read = swread,
1293 	.d_write = swwrite,
1294 	.d_ioctl = noioctl,
1295 	.d_stop = nostop,
1296 	.d_tty = notty,
1297 	.d_poll = nopoll,
1298 	.d_mmap = nommap,
1299 	.d_kqfilter = nokqfilter,
1300 	.d_flag = D_OTHER,
1301 };
1302 
1303 /*
1304  * sw_reg_strategy: handle swap i/o to regular files
1305  */
1306 static void
1307 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1308 {
1309 	struct vnode	*vp;
1310 	struct vndxfer	*vnx;
1311 	daddr_t		nbn;
1312 	char 		*addr;
1313 	off_t		byteoff;
1314 	int		s, off, nra, error, sz, resid;
1315 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1316 
1317 	/*
1318 	 * allocate a vndxfer head for this transfer and point it to
1319 	 * our buffer.
1320 	 */
1321 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1322 	vnx->vx_flags = VX_BUSY;
1323 	vnx->vx_error = 0;
1324 	vnx->vx_pending = 0;
1325 	vnx->vx_bp = bp;
1326 	vnx->vx_sdp = sdp;
1327 
1328 	/*
1329 	 * setup for main loop where we read filesystem blocks into
1330 	 * our buffer.
1331 	 */
1332 	error = 0;
1333 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1334 	addr = bp->b_data;		/* current position in buffer */
1335 	byteoff = dbtob((uint64_t)bn);
1336 
1337 	for (resid = bp->b_resid; resid; resid -= sz) {
1338 		struct vndbuf	*nbp;
1339 
1340 		/*
1341 		 * translate byteoffset into block number.  return values:
1342 		 *   vp = vnode of underlying device
1343 		 *  nbn = new block number (on underlying vnode dev)
1344 		 *  nra = num blocks we can read-ahead (excludes requested
1345 		 *	block)
1346 		 */
1347 		nra = 0;
1348 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1349 				 	&vp, &nbn, &nra);
1350 
1351 		if (error == 0 && nbn == (daddr_t)-1) {
1352 			/*
1353 			 * this used to just set error, but that doesn't
1354 			 * do the right thing.  Instead, it causes random
1355 			 * memory errors.  The panic() should remain until
1356 			 * this condition doesn't destabilize the system.
1357 			 */
1358 #if 1
1359 			panic("%s: swap to sparse file", __func__);
1360 #else
1361 			error = EIO;	/* failure */
1362 #endif
1363 		}
1364 
1365 		/*
1366 		 * punt if there was an error or a hole in the file.
1367 		 * we must wait for any i/o ops we have already started
1368 		 * to finish before returning.
1369 		 *
1370 		 * XXX we could deal with holes here but it would be
1371 		 * a hassle (in the write case).
1372 		 */
1373 		if (error) {
1374 			s = splbio();
1375 			vnx->vx_error = error;	/* pass error up */
1376 			goto out;
1377 		}
1378 
1379 		/*
1380 		 * compute the size ("sz") of this transfer (in bytes).
1381 		 */
1382 		off = byteoff % sdp->swd_bsize;
1383 		sz = (1 + nra) * sdp->swd_bsize - off;
1384 		if (sz > resid)
1385 			sz = resid;
1386 
1387 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1388 			    "vp %p/%p offset 0x%x/0x%x",
1389 			    sdp->swd_vp, vp, byteoff, nbn);
1390 
1391 		/*
1392 		 * now get a buf structure.   note that the vb_buf is
1393 		 * at the front of the nbp structure so that you can
1394 		 * cast pointers between the two structure easily.
1395 		 */
1396 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1397 		buf_init(&nbp->vb_buf);
1398 		nbp->vb_buf.b_flags    = bp->b_flags;
1399 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1400 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1401 		nbp->vb_buf.b_bcount   = sz;
1402 		nbp->vb_buf.b_bufsize  = sz;
1403 		nbp->vb_buf.b_error    = 0;
1404 		nbp->vb_buf.b_data     = addr;
1405 		nbp->vb_buf.b_lblkno   = 0;
1406 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1407 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1408 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1409 		nbp->vb_buf.b_vp       = vp;
1410 		nbp->vb_buf.b_objlock  = vp->v_interlock;
1411 		if (vp->v_type == VBLK) {
1412 			nbp->vb_buf.b_dev = vp->v_rdev;
1413 		}
1414 
1415 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1416 
1417 		/*
1418 		 * Just sort by block number
1419 		 */
1420 		s = splbio();
1421 		if (vnx->vx_error != 0) {
1422 			buf_destroy(&nbp->vb_buf);
1423 			pool_put(&vndbuf_pool, nbp);
1424 			goto out;
1425 		}
1426 		vnx->vx_pending++;
1427 
1428 		/* sort it in and start I/O if we are not over our limit */
1429 		/* XXXAD locking */
1430 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1431 		sw_reg_start(sdp);
1432 		splx(s);
1433 
1434 		/*
1435 		 * advance to the next I/O
1436 		 */
1437 		byteoff += sz;
1438 		addr += sz;
1439 	}
1440 
1441 	s = splbio();
1442 
1443 out: /* Arrive here at splbio */
1444 	vnx->vx_flags &= ~VX_BUSY;
1445 	if (vnx->vx_pending == 0) {
1446 		error = vnx->vx_error;
1447 		pool_put(&vndxfer_pool, vnx);
1448 		bp->b_error = error;
1449 		biodone(bp);
1450 	}
1451 	splx(s);
1452 }
1453 
1454 /*
1455  * sw_reg_start: start an I/O request on the requested swapdev
1456  *
1457  * => reqs are sorted by b_rawblkno (above)
1458  */
1459 static void
1460 sw_reg_start(struct swapdev *sdp)
1461 {
1462 	struct buf	*bp;
1463 	struct vnode	*vp;
1464 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1465 
1466 	/* recursion control */
1467 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1468 		return;
1469 
1470 	sdp->swd_flags |= SWF_BUSY;
1471 
1472 	while (sdp->swd_active < sdp->swd_maxactive) {
1473 		bp = bufq_get(sdp->swd_tab);
1474 		if (bp == NULL)
1475 			break;
1476 		sdp->swd_active++;
1477 
1478 		UVMHIST_LOG(pdhist,
1479 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1480 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1481 		vp = bp->b_vp;
1482 		KASSERT(bp->b_objlock == vp->v_interlock);
1483 		if ((bp->b_flags & B_READ) == 0) {
1484 			mutex_enter(vp->v_interlock);
1485 			vp->v_numoutput++;
1486 			mutex_exit(vp->v_interlock);
1487 		}
1488 		VOP_STRATEGY(vp, bp);
1489 	}
1490 	sdp->swd_flags &= ~SWF_BUSY;
1491 }
1492 
1493 /*
1494  * sw_reg_biodone: one of our i/o's has completed
1495  */
1496 static void
1497 sw_reg_biodone(struct buf *bp)
1498 {
1499 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1500 }
1501 
1502 /*
1503  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1504  *
1505  * => note that we can recover the vndbuf struct by casting the buf ptr
1506  */
1507 static void
1508 sw_reg_iodone(struct work *wk, void *dummy)
1509 {
1510 	struct vndbuf *vbp = (void *)wk;
1511 	struct vndxfer *vnx = vbp->vb_xfer;
1512 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1513 	struct swapdev	*sdp = vnx->vx_sdp;
1514 	int s, resid, error;
1515 	KASSERT(&vbp->vb_buf.b_work == wk);
1516 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1517 
1518 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1519 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1520 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1521 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1522 
1523 	/*
1524 	 * protect vbp at splbio and update.
1525 	 */
1526 
1527 	s = splbio();
1528 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1529 	pbp->b_resid -= resid;
1530 	vnx->vx_pending--;
1531 
1532 	if (vbp->vb_buf.b_error != 0) {
1533 		/* pass error upward */
1534 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1535 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1536 		vnx->vx_error = error;
1537 	}
1538 
1539 	/*
1540 	 * kill vbp structure
1541 	 */
1542 	buf_destroy(&vbp->vb_buf);
1543 	pool_put(&vndbuf_pool, vbp);
1544 
1545 	/*
1546 	 * wrap up this transaction if it has run to completion or, in
1547 	 * case of an error, when all auxiliary buffers have returned.
1548 	 */
1549 	if (vnx->vx_error != 0) {
1550 		/* pass error upward */
1551 		error = vnx->vx_error;
1552 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1553 			pbp->b_error = error;
1554 			biodone(pbp);
1555 			pool_put(&vndxfer_pool, vnx);
1556 		}
1557 	} else if (pbp->b_resid == 0) {
1558 		KASSERT(vnx->vx_pending == 0);
1559 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1560 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1561 			    pbp, vnx->vx_error, 0, 0);
1562 			biodone(pbp);
1563 			pool_put(&vndxfer_pool, vnx);
1564 		}
1565 	}
1566 
1567 	/*
1568 	 * done!   start next swapdev I/O if one is pending
1569 	 */
1570 	sdp->swd_active--;
1571 	sw_reg_start(sdp);
1572 	splx(s);
1573 }
1574 
1575 
1576 /*
1577  * uvm_swap_alloc: allocate space on swap
1578  *
1579  * => allocation is done "round robin" down the priority list, as we
1580  *	allocate in a priority we "rotate" the circle queue.
1581  * => space can be freed with uvm_swap_free
1582  * => we return the page slot number in /dev/drum (0 == invalid slot)
1583  * => we lock uvm_swap_data_lock
1584  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1585  */
1586 int
1587 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1588 {
1589 	struct swapdev *sdp;
1590 	struct swappri *spp;
1591 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1592 
1593 	/*
1594 	 * no swap devices configured yet?   definite failure.
1595 	 */
1596 	if (uvmexp.nswapdev < 1)
1597 		return 0;
1598 
1599 	/*
1600 	 * XXXJAK: BEGIN HACK
1601 	 *
1602 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
1603 	 * too many slots.
1604 	 */
1605 	if (*nslots > BLIST_MAX_ALLOC) {
1606 		if (__predict_false(lessok == false))
1607 			return 0;
1608 		*nslots = BLIST_MAX_ALLOC;
1609 	}
1610 	/* XXXJAK: END HACK */
1611 
1612 	/*
1613 	 * lock data lock, convert slots into blocks, and enter loop
1614 	 */
1615 	mutex_enter(&uvm_swap_data_lock);
1616 
1617 ReTry:	/* XXXMRG */
1618 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1619 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1620 			uint64_t result;
1621 
1622 			/* if it's not enabled, then we can't swap from it */
1623 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1624 				continue;
1625 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1626 				continue;
1627 			result = blist_alloc(sdp->swd_blist, *nslots);
1628 			if (result == BLIST_NONE) {
1629 				continue;
1630 			}
1631 			KASSERT(result < sdp->swd_drumsize);
1632 
1633 			/*
1634 			 * successful allocation!  now rotate the tailq.
1635 			 */
1636 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1637 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1638 			sdp->swd_npginuse += *nslots;
1639 			uvmexp.swpginuse += *nslots;
1640 			mutex_exit(&uvm_swap_data_lock);
1641 			/* done!  return drum slot number */
1642 			UVMHIST_LOG(pdhist,
1643 			    "success!  returning %d slots starting at %d",
1644 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1645 			return (result + sdp->swd_drumoffset);
1646 		}
1647 	}
1648 
1649 	/* XXXMRG: BEGIN HACK */
1650 	if (*nslots > 1 && lessok) {
1651 		*nslots = 1;
1652 		/* XXXMRG: ugh!  blist should support this for us */
1653 		goto ReTry;
1654 	}
1655 	/* XXXMRG: END HACK */
1656 
1657 	mutex_exit(&uvm_swap_data_lock);
1658 	return 0;
1659 }
1660 
1661 /*
1662  * uvm_swapisfull: return true if most of available swap is allocated
1663  * and in use.  we don't count some small portion as it may be inaccessible
1664  * to us at any given moment, for example if there is lock contention or if
1665  * pages are busy.
1666  */
1667 bool
1668 uvm_swapisfull(void)
1669 {
1670 	int swpgonly;
1671 	bool rv;
1672 
1673 	mutex_enter(&uvm_swap_data_lock);
1674 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1675 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1676 	    uvm_swapisfull_factor);
1677 	rv = (swpgonly >= uvmexp.swpgavail);
1678 	mutex_exit(&uvm_swap_data_lock);
1679 
1680 	return (rv);
1681 }
1682 
1683 /*
1684  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1685  *
1686  * => we lock uvm_swap_data_lock
1687  */
1688 void
1689 uvm_swap_markbad(int startslot, int nslots)
1690 {
1691 	struct swapdev *sdp;
1692 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1693 
1694 	mutex_enter(&uvm_swap_data_lock);
1695 	sdp = swapdrum_getsdp(startslot);
1696 	KASSERT(sdp != NULL);
1697 
1698 	/*
1699 	 * we just keep track of how many pages have been marked bad
1700 	 * in this device, to make everything add up in swap_off().
1701 	 * we assume here that the range of slots will all be within
1702 	 * one swap device.
1703 	 */
1704 
1705 	KASSERT(uvmexp.swpgonly >= nslots);
1706 	uvmexp.swpgonly -= nslots;
1707 	sdp->swd_npgbad += nslots;
1708 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1709 	mutex_exit(&uvm_swap_data_lock);
1710 }
1711 
1712 /*
1713  * uvm_swap_free: free swap slots
1714  *
1715  * => this can be all or part of an allocation made by uvm_swap_alloc
1716  * => we lock uvm_swap_data_lock
1717  */
1718 void
1719 uvm_swap_free(int startslot, int nslots)
1720 {
1721 	struct swapdev *sdp;
1722 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1723 
1724 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1725 	    startslot, 0, 0);
1726 
1727 	/*
1728 	 * ignore attempts to free the "bad" slot.
1729 	 */
1730 
1731 	if (startslot == SWSLOT_BAD) {
1732 		return;
1733 	}
1734 
1735 	/*
1736 	 * convert drum slot offset back to sdp, free the blocks
1737 	 * in the extent, and return.   must hold pri lock to do
1738 	 * lookup and access the extent.
1739 	 */
1740 
1741 	mutex_enter(&uvm_swap_data_lock);
1742 	sdp = swapdrum_getsdp(startslot);
1743 	KASSERT(uvmexp.nswapdev >= 1);
1744 	KASSERT(sdp != NULL);
1745 	KASSERT(sdp->swd_npginuse >= nslots);
1746 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1747 	sdp->swd_npginuse -= nslots;
1748 	uvmexp.swpginuse -= nslots;
1749 	mutex_exit(&uvm_swap_data_lock);
1750 }
1751 
1752 /*
1753  * uvm_swap_put: put any number of pages into a contig place on swap
1754  *
1755  * => can be sync or async
1756  */
1757 
1758 int
1759 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1760 {
1761 	int error;
1762 
1763 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1764 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1765 	return error;
1766 }
1767 
1768 /*
1769  * uvm_swap_get: get a single page from swap
1770  *
1771  * => usually a sync op (from fault)
1772  */
1773 
1774 int
1775 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1776 {
1777 	int error;
1778 
1779 	uvmexp.nswget++;
1780 	KASSERT(flags & PGO_SYNCIO);
1781 	if (swslot == SWSLOT_BAD) {
1782 		return EIO;
1783 	}
1784 
1785 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1786 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1787 	if (error == 0) {
1788 
1789 		/*
1790 		 * this page is no longer only in swap.
1791 		 */
1792 
1793 		mutex_enter(&uvm_swap_data_lock);
1794 		KASSERT(uvmexp.swpgonly > 0);
1795 		uvmexp.swpgonly--;
1796 		mutex_exit(&uvm_swap_data_lock);
1797 	}
1798 	return error;
1799 }
1800 
1801 /*
1802  * uvm_swap_io: do an i/o operation to swap
1803  */
1804 
1805 static int
1806 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1807 {
1808 	daddr_t startblk;
1809 	struct	buf *bp;
1810 	vaddr_t kva;
1811 	int	error, mapinflags;
1812 	bool write, async;
1813 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1814 
1815 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1816 	    startslot, npages, flags, 0);
1817 
1818 	write = (flags & B_READ) == 0;
1819 	async = (flags & B_ASYNC) != 0;
1820 
1821 	/*
1822 	 * allocate a buf for the i/o.
1823 	 */
1824 
1825 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1826 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1827 	if (bp == NULL) {
1828 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1829 		return ENOMEM;
1830 	}
1831 
1832 	/*
1833 	 * convert starting drum slot to block number
1834 	 */
1835 
1836 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1837 
1838 	/*
1839 	 * first, map the pages into the kernel.
1840 	 */
1841 
1842 	mapinflags = !write ?
1843 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1844 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1845 	kva = uvm_pagermapin(pps, npages, mapinflags);
1846 
1847 	/*
1848 	 * fill in the bp/sbp.   we currently route our i/o through
1849 	 * /dev/drum's vnode [swapdev_vp].
1850 	 */
1851 
1852 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1853 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1854 	bp->b_proc = &proc0;	/* XXX */
1855 	bp->b_vnbufs.le_next = NOLIST;
1856 	bp->b_data = (void *)kva;
1857 	bp->b_blkno = startblk;
1858 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1859 
1860 	/*
1861 	 * bump v_numoutput (counter of number of active outputs).
1862 	 */
1863 
1864 	if (write) {
1865 		mutex_enter(swapdev_vp->v_interlock);
1866 		swapdev_vp->v_numoutput++;
1867 		mutex_exit(swapdev_vp->v_interlock);
1868 	}
1869 
1870 	/*
1871 	 * for async ops we must set up the iodone handler.
1872 	 */
1873 
1874 	if (async) {
1875 		bp->b_iodone = uvm_aio_biodone;
1876 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1877 		if (curlwp == uvm.pagedaemon_lwp)
1878 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1879 		else
1880 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1881 	} else {
1882 		bp->b_iodone = NULL;
1883 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1884 	}
1885 	UVMHIST_LOG(pdhist,
1886 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1887 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1888 
1889 	/*
1890 	 * now we start the I/O, and if async, return.
1891 	 */
1892 
1893 	VOP_STRATEGY(swapdev_vp, bp);
1894 	if (async)
1895 		return 0;
1896 
1897 	/*
1898 	 * must be sync i/o.   wait for it to finish
1899 	 */
1900 
1901 	error = biowait(bp);
1902 
1903 	/*
1904 	 * kill the pager mapping
1905 	 */
1906 
1907 	uvm_pagermapout(kva, npages);
1908 
1909 	/*
1910 	 * now dispose of the buf and we're done.
1911 	 */
1912 
1913 	if (write) {
1914 		mutex_enter(swapdev_vp->v_interlock);
1915 		vwakeup(bp);
1916 		mutex_exit(swapdev_vp->v_interlock);
1917 	}
1918 	putiobuf(bp);
1919 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1920 
1921 	return (error);
1922 }
1923