xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 274254cdae52594c1aa480a736aef78313d15c9c)
1 /*	$NetBSD: uvm_swap.c,v 1.145 2009/03/01 01:13:14 mrg Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30  */
31 
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.145 2009/03/01 01:13:14 mrg Exp $");
34 
35 #include "fs_nfs.h"
36 #include "opt_uvmhist.h"
37 #include "opt_compat_netbsd.h"
38 #include "opt_ddb.h"
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/proc.h>
46 #include <sys/namei.h>
47 #include <sys/disklabel.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59 #include <sys/kauth.h>
60 #include <sys/sysctl.h>
61 #include <sys/workqueue.h>
62 
63 #include <uvm/uvm.h>
64 
65 #include <miscfs/specfs/specdev.h>
66 
67 /*
68  * uvm_swap.c: manage configuration and i/o to swap space.
69  */
70 
71 /*
72  * swap space is managed in the following way:
73  *
74  * each swap partition or file is described by a "swapdev" structure.
75  * each "swapdev" structure contains a "swapent" structure which contains
76  * information that is passed up to the user (via system calls).
77  *
78  * each swap partition is assigned a "priority" (int) which controls
79  * swap parition usage.
80  *
81  * the system maintains a global data structure describing all swap
82  * partitions/files.   there is a sorted LIST of "swappri" structures
83  * which describe "swapdev"'s at that priority.   this LIST is headed
84  * by the "swap_priority" global var.    each "swappri" contains a
85  * CIRCLEQ of "swapdev" structures at that priority.
86  *
87  * locking:
88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
89  *    system call and prevents the swap priority list from changing
90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
92  *    structures including the priority list, the swapdev structures,
93  *    and the swapmap arena.
94  *
95  * each swap device has the following info:
96  *  - swap device in use (could be disabled, preventing future use)
97  *  - swap enabled (allows new allocations on swap)
98  *  - map info in /dev/drum
99  *  - vnode pointer
100  * for swap files only:
101  *  - block size
102  *  - max byte count in buffer
103  *  - buffer
104  *
105  * userland controls and configures swap with the swapctl(2) system call.
106  * the sys_swapctl performs the following operations:
107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
109  *	(passed in via "arg") of a size passed in via "misc" ... we load
110  *	the current swap config into the array. The actual work is done
111  *	in the uvm_swap_stats(9) function.
112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113  *	priority in "misc", start swapping on it.
114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
116  *	"misc")
117  */
118 
119 /*
120  * swapdev: describes a single swap partition/file
121  *
122  * note the following should be true:
123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125  */
126 struct swapdev {
127 	dev_t			swd_dev;	/* device id */
128 	int			swd_flags;	/* flags:inuse/enable/fake */
129 	int			swd_priority;	/* our priority */
130 	int			swd_nblks;	/* blocks in this device */
131 	char			*swd_path;	/* saved pathname of device */
132 	int			swd_pathlen;	/* length of pathname */
133 	int			swd_npages;	/* #pages we can use */
134 	int			swd_npginuse;	/* #pages in use */
135 	int			swd_npgbad;	/* #pages bad */
136 	int			swd_drumoffset;	/* page0 offset in drum */
137 	int			swd_drumsize;	/* #pages in drum */
138 	blist_t			swd_blist;	/* blist for this swapdev */
139 	struct vnode		*swd_vp;	/* backing vnode */
140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
141 
142 	int			swd_bsize;	/* blocksize (bytes) */
143 	int			swd_maxactive;	/* max active i/o reqs */
144 	struct bufq_state	*swd_tab;	/* buffer list */
145 	int			swd_active;	/* number of active buffers */
146 };
147 
148 /*
149  * swap device priority entry; the list is kept sorted on `spi_priority'.
150  */
151 struct swappri {
152 	int			spi_priority;     /* priority */
153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
154 	/* circleq of swapdevs at this priority */
155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
156 };
157 
158 /*
159  * The following two structures are used to keep track of data transfers
160  * on swap devices associated with regular files.
161  * NOTE: this code is more or less a copy of vnd.c; we use the same
162  * structure names here to ease porting..
163  */
164 struct vndxfer {
165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
166 	struct swapdev	*vx_sdp;
167 	int		vx_error;
168 	int		vx_pending;	/* # of pending aux buffers */
169 	int		vx_flags;
170 #define VX_BUSY		1
171 #define VX_DEAD		2
172 };
173 
174 struct vndbuf {
175 	struct buf	vb_buf;
176 	struct vndxfer	*vb_xfer;
177 };
178 
179 /*
180  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
181  * dev_t and has no se_path[] member.
182  */
183 struct swapent13 {
184 	int32_t	se13_dev;		/* device id */
185 	int	se13_flags;		/* flags */
186 	int	se13_nblks;		/* total blocks */
187 	int	se13_inuse;		/* blocks in use */
188 	int	se13_priority;		/* priority of this device */
189 };
190 
191 /*
192  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
193  * dev_t.
194  */
195 struct swapent50 {
196 	int32_t	se50_dev;		/* device id */
197 	int	se50_flags;		/* flags */
198 	int	se50_nblks;		/* total blocks */
199 	int	se50_inuse;		/* blocks in use */
200 	int	se50_priority;		/* priority of this device */
201 	char	se50_path[PATH_MAX+1];	/* path name */
202 };
203 
204 /*
205  * We keep a of pool vndbuf's and vndxfer structures.
206  */
207 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
208     IPL_BIO);
209 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
210     IPL_BIO);
211 
212 /*
213  * local variables
214  */
215 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
216 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
217 
218 /* list of all active swap devices [by priority] */
219 LIST_HEAD(swap_priority, swappri);
220 static struct swap_priority swap_priority;
221 
222 /* locks */
223 static krwlock_t swap_syscall_lock;
224 
225 /* workqueue and use counter for swap to regular files */
226 static int sw_reg_count = 0;
227 static struct workqueue *sw_reg_workqueue;
228 
229 /* tuneables */
230 u_int uvm_swapisfull_factor = 99;
231 
232 /*
233  * prototypes
234  */
235 static struct swapdev	*swapdrum_getsdp(int);
236 
237 static struct swapdev	*swaplist_find(struct vnode *, bool);
238 static void		 swaplist_insert(struct swapdev *,
239 					 struct swappri *, int);
240 static void		 swaplist_trim(void);
241 
242 static int swap_on(struct lwp *, struct swapdev *);
243 static int swap_off(struct lwp *, struct swapdev *);
244 
245 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
246 
247 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
248 static void sw_reg_biodone(struct buf *);
249 static void sw_reg_iodone(struct work *wk, void *dummy);
250 static void sw_reg_start(struct swapdev *);
251 
252 static int uvm_swap_io(struct vm_page **, int, int, int);
253 
254 /*
255  * uvm_swap_init: init the swap system data structures and locks
256  *
257  * => called at boot time from init_main.c after the filesystems
258  *	are brought up (which happens after uvm_init())
259  */
260 void
261 uvm_swap_init(void)
262 {
263 	UVMHIST_FUNC("uvm_swap_init");
264 
265 	UVMHIST_CALLED(pdhist);
266 	/*
267 	 * first, init the swap list, its counter, and its lock.
268 	 * then get a handle on the vnode for /dev/drum by using
269 	 * the its dev_t number ("swapdev", from MD conf.c).
270 	 */
271 
272 	LIST_INIT(&swap_priority);
273 	uvmexp.nswapdev = 0;
274 	rw_init(&swap_syscall_lock);
275 	cv_init(&uvm.scheduler_cv, "schedule");
276 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
277 
278 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
279 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
280 
281 	if (bdevvp(swapdev, &swapdev_vp))
282 		panic("%s: can't get vnode for swap device", __func__);
283 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
284 		panic("%s: can't lock swap device", __func__);
285 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
286 		panic("%s: can't open swap device", __func__);
287 	VOP_UNLOCK(swapdev_vp, 0);
288 
289 	/*
290 	 * create swap block resource map to map /dev/drum.   the range
291 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
292 	 * that block 0 is reserved (used to indicate an allocation
293 	 * failure, or no allocation).
294 	 */
295 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
296 	    VM_NOSLEEP, IPL_NONE);
297 	if (swapmap == 0)
298 		panic("%s: vmem_create failed", __func__);
299 
300 	/*
301 	 * done!
302 	 */
303 	uvm.swap_running = true;
304 #ifdef __SWAP_BROKEN
305 	uvm.swapout_enabled = 0;
306 #else
307 	uvm.swapout_enabled = 1;
308 #endif
309 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
310 
311         sysctl_createv(NULL, 0, NULL, NULL,
312             CTLFLAG_READWRITE,
313             CTLTYPE_INT, "swapout",
314             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
315             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
316 }
317 
318 /*
319  * swaplist functions: functions that operate on the list of swap
320  * devices on the system.
321  */
322 
323 /*
324  * swaplist_insert: insert swap device "sdp" into the global list
325  *
326  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
327  * => caller must provide a newly malloc'd swappri structure (we will
328  *	FREE it if we don't need it... this it to prevent malloc blocking
329  *	here while adding swap)
330  */
331 static void
332 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
333 {
334 	struct swappri *spp, *pspp;
335 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
336 
337 	/*
338 	 * find entry at or after which to insert the new device.
339 	 */
340 	pspp = NULL;
341 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
342 		if (priority <= spp->spi_priority)
343 			break;
344 		pspp = spp;
345 	}
346 
347 	/*
348 	 * new priority?
349 	 */
350 	if (spp == NULL || spp->spi_priority != priority) {
351 		spp = newspp;  /* use newspp! */
352 		UVMHIST_LOG(pdhist, "created new swappri = %d",
353 			    priority, 0, 0, 0);
354 
355 		spp->spi_priority = priority;
356 		CIRCLEQ_INIT(&spp->spi_swapdev);
357 
358 		if (pspp)
359 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
360 		else
361 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
362 	} else {
363 	  	/* we don't need a new priority structure, free it */
364 		free(newspp, M_VMSWAP);
365 	}
366 
367 	/*
368 	 * priority found (or created).   now insert on the priority's
369 	 * circleq list and bump the total number of swapdevs.
370 	 */
371 	sdp->swd_priority = priority;
372 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
373 	uvmexp.nswapdev++;
374 }
375 
376 /*
377  * swaplist_find: find and optionally remove a swap device from the
378  *	global list.
379  *
380  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
381  * => we return the swapdev we found (and removed)
382  */
383 static struct swapdev *
384 swaplist_find(struct vnode *vp, bool remove)
385 {
386 	struct swapdev *sdp;
387 	struct swappri *spp;
388 
389 	/*
390 	 * search the lists for the requested vp
391 	 */
392 
393 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
394 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
395 			if (sdp->swd_vp == vp) {
396 				if (remove) {
397 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
398 					    sdp, swd_next);
399 					uvmexp.nswapdev--;
400 				}
401 				return(sdp);
402 			}
403 		}
404 	}
405 	return (NULL);
406 }
407 
408 /*
409  * swaplist_trim: scan priority list for empty priority entries and kill
410  *	them.
411  *
412  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
413  */
414 static void
415 swaplist_trim(void)
416 {
417 	struct swappri *spp, *nextspp;
418 
419 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
420 		nextspp = LIST_NEXT(spp, spi_swappri);
421 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
422 		    (void *)&spp->spi_swapdev)
423 			continue;
424 		LIST_REMOVE(spp, spi_swappri);
425 		free(spp, M_VMSWAP);
426 	}
427 }
428 
429 /*
430  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
431  *	to the "swapdev" that maps that section of the drum.
432  *
433  * => each swapdev takes one big contig chunk of the drum
434  * => caller must hold uvm_swap_data_lock
435  */
436 static struct swapdev *
437 swapdrum_getsdp(int pgno)
438 {
439 	struct swapdev *sdp;
440 	struct swappri *spp;
441 
442 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
443 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
444 			if (sdp->swd_flags & SWF_FAKE)
445 				continue;
446 			if (pgno >= sdp->swd_drumoffset &&
447 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
448 				return sdp;
449 			}
450 		}
451 	}
452 	return NULL;
453 }
454 
455 
456 /*
457  * sys_swapctl: main entry point for swapctl(2) system call
458  * 	[with two helper functions: swap_on and swap_off]
459  */
460 int
461 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
462 {
463 	/* {
464 		syscallarg(int) cmd;
465 		syscallarg(void *) arg;
466 		syscallarg(int) misc;
467 	} */
468 	struct vnode *vp;
469 	struct nameidata nd;
470 	struct swappri *spp;
471 	struct swapdev *sdp;
472 	struct swapent *sep;
473 #define SWAP_PATH_MAX (PATH_MAX + 1)
474 	char	*userpath;
475 	size_t	len;
476 	int	error, misc;
477 	int	priority;
478 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
479 
480 	misc = SCARG(uap, misc);
481 
482 	/*
483 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
484 	 */
485 	rw_enter(&swap_syscall_lock, RW_WRITER);
486 
487 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
488 	/*
489 	 * we handle the non-priv NSWAP and STATS request first.
490 	 *
491 	 * SWAP_NSWAP: return number of config'd swap devices
492 	 * [can also be obtained with uvmexp sysctl]
493 	 */
494 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
495 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
496 		    0, 0, 0);
497 		*retval = uvmexp.nswapdev;
498 		error = 0;
499 		goto out;
500 	}
501 
502 	/*
503 	 * SWAP_STATS: get stats on current # of configured swap devs
504 	 *
505 	 * note that the swap_priority list can't change as long
506 	 * as we are holding the swap_syscall_lock.  we don't want
507 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
508 	 * copyout() and we don't want to be holding that lock then!
509 	 */
510 	if (SCARG(uap, cmd) == SWAP_STATS
511 #if defined(COMPAT_50)
512 	    || SCARG(uap, cmd) == SWAP_STATS50
513 #endif
514 #if defined(COMPAT_13)
515 	    || SCARG(uap, cmd) == SWAP_STATS13
516 #endif
517 	    ) {
518 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
519 			misc = uvmexp.nswapdev;
520 #if defined(COMPAT_13)
521 		if (SCARG(uap, cmd) == SWAP_STATS13)
522 			len = sizeof(struct swapent13) * misc;
523 		else
524 #endif
525 #if defined(COMPAT_50)
526 		if (SCARG(uap, cmd) == SWAP_STATS50)
527 			len = sizeof(struct swapent50) * misc;
528 		else
529 #endif
530 			len = sizeof(struct swapent) * misc;
531 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
532 
533 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
534 		error = copyout(sep, SCARG(uap, arg), len);
535 
536 		free(sep, M_TEMP);
537 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
538 		goto out;
539 	}
540 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
541 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
542 
543 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
544 		goto out;
545 	}
546 
547 	/*
548 	 * all other requests require superuser privs.   verify.
549 	 */
550 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
551 	    0, NULL, NULL, NULL)))
552 		goto out;
553 
554 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
555 		/* drop the current dump device */
556 		dumpdev = NODEV;
557 		dumpcdev = NODEV;
558 		cpu_dumpconf();
559 		goto out;
560 	}
561 
562 	/*
563 	 * at this point we expect a path name in arg.   we will
564 	 * use namei() to gain a vnode reference (vref), and lock
565 	 * the vnode (VOP_LOCK).
566 	 *
567 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
568 	 * miniroot)
569 	 */
570 	if (SCARG(uap, arg) == NULL) {
571 		vp = rootvp;		/* miniroot */
572 		if (vget(vp, LK_EXCLUSIVE)) {
573 			error = EBUSY;
574 			goto out;
575 		}
576 		if (SCARG(uap, cmd) == SWAP_ON &&
577 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
578 			panic("swapctl: miniroot copy failed");
579 	} else {
580 		int	space;
581 		char	*where;
582 
583 		if (SCARG(uap, cmd) == SWAP_ON) {
584 			if ((error = copyinstr(SCARG(uap, arg), userpath,
585 			    SWAP_PATH_MAX, &len)))
586 				goto out;
587 			space = UIO_SYSSPACE;
588 			where = userpath;
589 		} else {
590 			space = UIO_USERSPACE;
591 			where = (char *)SCARG(uap, arg);
592 		}
593 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
594 		    space, where);
595 		if ((error = namei(&nd)))
596 			goto out;
597 		vp = nd.ni_vp;
598 	}
599 	/* note: "vp" is referenced and locked */
600 
601 	error = 0;		/* assume no error */
602 	switch(SCARG(uap, cmd)) {
603 
604 	case SWAP_DUMPDEV:
605 		if (vp->v_type != VBLK) {
606 			error = ENOTBLK;
607 			break;
608 		}
609 		if (bdevsw_lookup(vp->v_rdev)) {
610 			dumpdev = vp->v_rdev;
611 			dumpcdev = devsw_blk2chr(dumpdev);
612 		} else
613 			dumpdev = NODEV;
614 		cpu_dumpconf();
615 		break;
616 
617 	case SWAP_CTL:
618 		/*
619 		 * get new priority, remove old entry (if any) and then
620 		 * reinsert it in the correct place.  finally, prune out
621 		 * any empty priority structures.
622 		 */
623 		priority = SCARG(uap, misc);
624 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
625 		mutex_enter(&uvm_swap_data_lock);
626 		if ((sdp = swaplist_find(vp, true)) == NULL) {
627 			error = ENOENT;
628 		} else {
629 			swaplist_insert(sdp, spp, priority);
630 			swaplist_trim();
631 		}
632 		mutex_exit(&uvm_swap_data_lock);
633 		if (error)
634 			free(spp, M_VMSWAP);
635 		break;
636 
637 	case SWAP_ON:
638 
639 		/*
640 		 * check for duplicates.   if none found, then insert a
641 		 * dummy entry on the list to prevent someone else from
642 		 * trying to enable this device while we are working on
643 		 * it.
644 		 */
645 
646 		priority = SCARG(uap, misc);
647 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
648 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
649 		memset(sdp, 0, sizeof(*sdp));
650 		sdp->swd_flags = SWF_FAKE;
651 		sdp->swd_vp = vp;
652 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
653 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
654 		mutex_enter(&uvm_swap_data_lock);
655 		if (swaplist_find(vp, false) != NULL) {
656 			error = EBUSY;
657 			mutex_exit(&uvm_swap_data_lock);
658 			bufq_free(sdp->swd_tab);
659 			free(sdp, M_VMSWAP);
660 			free(spp, M_VMSWAP);
661 			break;
662 		}
663 		swaplist_insert(sdp, spp, priority);
664 		mutex_exit(&uvm_swap_data_lock);
665 
666 		sdp->swd_pathlen = len;
667 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
668 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
669 			panic("swapctl: copystr");
670 
671 		/*
672 		 * we've now got a FAKE placeholder in the swap list.
673 		 * now attempt to enable swap on it.  if we fail, undo
674 		 * what we've done and kill the fake entry we just inserted.
675 		 * if swap_on is a success, it will clear the SWF_FAKE flag
676 		 */
677 
678 		if ((error = swap_on(l, sdp)) != 0) {
679 			mutex_enter(&uvm_swap_data_lock);
680 			(void) swaplist_find(vp, true);  /* kill fake entry */
681 			swaplist_trim();
682 			mutex_exit(&uvm_swap_data_lock);
683 			bufq_free(sdp->swd_tab);
684 			free(sdp->swd_path, M_VMSWAP);
685 			free(sdp, M_VMSWAP);
686 			break;
687 		}
688 		break;
689 
690 	case SWAP_OFF:
691 		mutex_enter(&uvm_swap_data_lock);
692 		if ((sdp = swaplist_find(vp, false)) == NULL) {
693 			mutex_exit(&uvm_swap_data_lock);
694 			error = ENXIO;
695 			break;
696 		}
697 
698 		/*
699 		 * If a device isn't in use or enabled, we
700 		 * can't stop swapping from it (again).
701 		 */
702 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
703 			mutex_exit(&uvm_swap_data_lock);
704 			error = EBUSY;
705 			break;
706 		}
707 
708 		/*
709 		 * do the real work.
710 		 */
711 		error = swap_off(l, sdp);
712 		break;
713 
714 	default:
715 		error = EINVAL;
716 	}
717 
718 	/*
719 	 * done!  release the ref gained by namei() and unlock.
720 	 */
721 	vput(vp);
722 
723 out:
724 	free(userpath, M_TEMP);
725 	rw_exit(&swap_syscall_lock);
726 
727 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
728 	return (error);
729 }
730 
731 /*
732  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
733  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
734  * emulation to use it directly without going through sys_swapctl().
735  * The problem with using sys_swapctl() there is that it involves
736  * copying the swapent array to the stackgap, and this array's size
737  * is not known at build time. Hence it would not be possible to
738  * ensure it would fit in the stackgap in any case.
739  */
740 void
741 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
742 {
743 
744 	rw_enter(&swap_syscall_lock, RW_READER);
745 	uvm_swap_stats_locked(cmd, sep, sec, retval);
746 	rw_exit(&swap_syscall_lock);
747 }
748 
749 static void
750 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
751 {
752 	struct swappri *spp;
753 	struct swapdev *sdp;
754 	int count = 0;
755 
756 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
757 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
758 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
759 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
760 			int inuse;
761 
762 		  	/*
763 			 * backwards compatibility for system call.
764 			 * For NetBSD 1.3 and 5.0, we have to use
765 			 * the 32 bit dev_t.  For 5.0 and -current
766 			 * we have to add the path.
767 			 */
768 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
769 			    PAGE_SHIFT);
770 
771 #if defined(COMPAT_13) || defined(COMPAT_50)
772 			if (cmd == SWAP_STATS) {
773 #endif
774 				sep->se_dev = sdp->swd_dev;
775 				sep->se_flags = sdp->swd_flags;
776 				sep->se_nblks = sdp->swd_nblks;
777 				sep->se_inuse = inuse;
778 				sep->se_priority = sdp->swd_priority;
779 				memcpy(&sep->se_path, sdp->swd_path,
780 				       sizeof sep->se_path);
781 				sep++;
782 #if defined(COMPAT_13)
783 			} else if (cmd == SWAP_STATS13) {
784 				struct swapent13 *sep13 =
785 				    (struct swapent13 *)sep;
786 
787 				sep13->se13_dev = sdp->swd_dev;
788 				sep13->se13_flags = sdp->swd_flags;
789 				sep13->se13_nblks = sdp->swd_nblks;
790 				sep13->se13_inuse = inuse;
791 				sep13->se13_priority = sdp->swd_priority;
792 				sep = (struct swapent *)(sep13 + 1);
793 #endif
794 #if defined(COMPAT_50)
795 			} else if (cmd == SWAP_STATS50) {
796 				struct swapent50 *sep50 =
797 				    (struct swapent50 *)sep;
798 
799 				sep50->se50_dev = sdp->swd_dev;
800 				sep50->se50_flags = sdp->swd_flags;
801 				sep50->se50_nblks = sdp->swd_nblks;
802 				sep50->se50_inuse = inuse;
803 				sep50->se50_priority = sdp->swd_priority;
804 				memcpy(&sep50->se50_path, sdp->swd_path,
805 				       sizeof sep50->se50_path);
806 				sep = (struct swapent *)(sep50 + 1);
807 			}
808 #endif
809 			count++;
810 		}
811 	}
812 
813 	*retval = count;
814 	return;
815 }
816 
817 /*
818  * swap_on: attempt to enable a swapdev for swapping.   note that the
819  *	swapdev is already on the global list, but disabled (marked
820  *	SWF_FAKE).
821  *
822  * => we avoid the start of the disk (to protect disk labels)
823  * => we also avoid the miniroot, if we are swapping to root.
824  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
825  *	if needed.
826  */
827 static int
828 swap_on(struct lwp *l, struct swapdev *sdp)
829 {
830 	struct vnode *vp;
831 	int error, npages, nblocks, size;
832 	long addr;
833 	u_long result;
834 	struct vattr va;
835 #ifdef NFS
836 	extern int (**nfsv2_vnodeop_p)(void *);
837 #endif /* NFS */
838 	const struct bdevsw *bdev;
839 	dev_t dev;
840 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
841 
842 	/*
843 	 * we want to enable swapping on sdp.   the swd_vp contains
844 	 * the vnode we want (locked and ref'd), and the swd_dev
845 	 * contains the dev_t of the file, if it a block device.
846 	 */
847 
848 	vp = sdp->swd_vp;
849 	dev = sdp->swd_dev;
850 
851 	/*
852 	 * open the swap file (mostly useful for block device files to
853 	 * let device driver know what is up).
854 	 *
855 	 * we skip the open/close for root on swap because the root
856 	 * has already been opened when root was mounted (mountroot).
857 	 */
858 	if (vp != rootvp) {
859 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
860 			return (error);
861 	}
862 
863 	/* XXX this only works for block devices */
864 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
865 
866 	/*
867 	 * we now need to determine the size of the swap area.   for
868 	 * block specials we can call the d_psize function.
869 	 * for normal files, we must stat [get attrs].
870 	 *
871 	 * we put the result in nblks.
872 	 * for normal files, we also want the filesystem block size
873 	 * (which we get with statfs).
874 	 */
875 	switch (vp->v_type) {
876 	case VBLK:
877 		bdev = bdevsw_lookup(dev);
878 		if (bdev == NULL || bdev->d_psize == NULL ||
879 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
880 			error = ENXIO;
881 			goto bad;
882 		}
883 		break;
884 
885 	case VREG:
886 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
887 			goto bad;
888 		nblocks = (int)btodb(va.va_size);
889 		if ((error =
890 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
891 			goto bad;
892 
893 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
894 		/*
895 		 * limit the max # of outstanding I/O requests we issue
896 		 * at any one time.   take it easy on NFS servers.
897 		 */
898 #ifdef NFS
899 		if (vp->v_op == nfsv2_vnodeop_p)
900 			sdp->swd_maxactive = 2; /* XXX */
901 		else
902 #endif /* NFS */
903 			sdp->swd_maxactive = 8; /* XXX */
904 		break;
905 
906 	default:
907 		error = ENXIO;
908 		goto bad;
909 	}
910 
911 	/*
912 	 * save nblocks in a safe place and convert to pages.
913 	 */
914 
915 	sdp->swd_nblks = nblocks;
916 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
917 
918 	/*
919 	 * for block special files, we want to make sure that leave
920 	 * the disklabel and bootblocks alone, so we arrange to skip
921 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
922 	 * note that because of this the "size" can be less than the
923 	 * actual number of blocks on the device.
924 	 */
925 	if (vp->v_type == VBLK) {
926 		/* we use pages 1 to (size - 1) [inclusive] */
927 		size = npages - 1;
928 		addr = 1;
929 	} else {
930 		/* we use pages 0 to (size - 1) [inclusive] */
931 		size = npages;
932 		addr = 0;
933 	}
934 
935 	/*
936 	 * make sure we have enough blocks for a reasonable sized swap
937 	 * area.   we want at least one page.
938 	 */
939 
940 	if (size < 1) {
941 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
942 		error = EINVAL;
943 		goto bad;
944 	}
945 
946 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
947 
948 	/*
949 	 * now we need to allocate an extent to manage this swap device
950 	 */
951 
952 	sdp->swd_blist = blist_create(npages);
953 	/* mark all expect the `saved' region free. */
954 	blist_free(sdp->swd_blist, addr, size);
955 
956 	/*
957 	 * if the vnode we are swapping to is the root vnode
958 	 * (i.e. we are swapping to the miniroot) then we want
959 	 * to make sure we don't overwrite it.   do a statfs to
960 	 * find its size and skip over it.
961 	 */
962 	if (vp == rootvp) {
963 		struct mount *mp;
964 		struct statvfs *sp;
965 		int rootblocks, rootpages;
966 
967 		mp = rootvnode->v_mount;
968 		sp = &mp->mnt_stat;
969 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
970 		/*
971 		 * XXX: sp->f_blocks isn't the total number of
972 		 * blocks in the filesystem, it's the number of
973 		 * data blocks.  so, our rootblocks almost
974 		 * definitely underestimates the total size
975 		 * of the filesystem - how badly depends on the
976 		 * details of the filesystem type.  there isn't
977 		 * an obvious way to deal with this cleanly
978 		 * and perfectly, so for now we just pad our
979 		 * rootblocks estimate with an extra 5 percent.
980 		 */
981 		rootblocks += (rootblocks >> 5) +
982 			(rootblocks >> 6) +
983 			(rootblocks >> 7);
984 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
985 		if (rootpages > size)
986 			panic("swap_on: miniroot larger than swap?");
987 
988 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
989 			panic("swap_on: unable to preserve miniroot");
990 		}
991 
992 		size -= rootpages;
993 		printf("Preserved %d pages of miniroot ", rootpages);
994 		printf("leaving %d pages of swap\n", size);
995 	}
996 
997 	/*
998 	 * add a ref to vp to reflect usage as a swap device.
999 	 */
1000 	vref(vp);
1001 
1002 	/*
1003 	 * now add the new swapdev to the drum and enable.
1004 	 */
1005 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
1006 	if (result == 0)
1007 		panic("swapdrum_add");
1008 	/*
1009 	 * If this is the first regular swap create the workqueue.
1010 	 * => Protected by swap_syscall_lock.
1011 	 */
1012 	if (vp->v_type != VBLK) {
1013 		if (sw_reg_count++ == 0) {
1014 			KASSERT(sw_reg_workqueue == NULL);
1015 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
1016 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1017 				panic("%s: workqueue_create failed", __func__);
1018 		}
1019 	}
1020 
1021 	sdp->swd_drumoffset = (int)result;
1022 	sdp->swd_drumsize = npages;
1023 	sdp->swd_npages = size;
1024 	mutex_enter(&uvm_swap_data_lock);
1025 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
1026 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1027 	uvmexp.swpages += size;
1028 	uvmexp.swpgavail += size;
1029 	mutex_exit(&uvm_swap_data_lock);
1030 	return (0);
1031 
1032 	/*
1033 	 * failure: clean up and return error.
1034 	 */
1035 
1036 bad:
1037 	if (sdp->swd_blist) {
1038 		blist_destroy(sdp->swd_blist);
1039 	}
1040 	if (vp != rootvp) {
1041 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1042 	}
1043 	return (error);
1044 }
1045 
1046 /*
1047  * swap_off: stop swapping on swapdev
1048  *
1049  * => swap data should be locked, we will unlock.
1050  */
1051 static int
1052 swap_off(struct lwp *l, struct swapdev *sdp)
1053 {
1054 	int npages = sdp->swd_npages;
1055 	int error = 0;
1056 
1057 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1058 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1059 
1060 	/* disable the swap area being removed */
1061 	sdp->swd_flags &= ~SWF_ENABLE;
1062 	uvmexp.swpgavail -= npages;
1063 	mutex_exit(&uvm_swap_data_lock);
1064 
1065 	/*
1066 	 * the idea is to find all the pages that are paged out to this
1067 	 * device, and page them all in.  in uvm, swap-backed pageable
1068 	 * memory can take two forms: aobjs and anons.  call the
1069 	 * swapoff hook for each subsystem to bring in pages.
1070 	 */
1071 
1072 	if (uao_swap_off(sdp->swd_drumoffset,
1073 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1074 	    amap_swap_off(sdp->swd_drumoffset,
1075 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1076 		error = ENOMEM;
1077 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1078 		error = EBUSY;
1079 	}
1080 
1081 	if (error) {
1082 		mutex_enter(&uvm_swap_data_lock);
1083 		sdp->swd_flags |= SWF_ENABLE;
1084 		uvmexp.swpgavail += npages;
1085 		mutex_exit(&uvm_swap_data_lock);
1086 
1087 		return error;
1088 	}
1089 
1090 	/*
1091 	 * If this is the last regular swap destroy the workqueue.
1092 	 * => Protected by swap_syscall_lock.
1093 	 */
1094 	if (sdp->swd_vp->v_type != VBLK) {
1095 		KASSERT(sw_reg_count > 0);
1096 		KASSERT(sw_reg_workqueue != NULL);
1097 		if (--sw_reg_count == 0) {
1098 			workqueue_destroy(sw_reg_workqueue);
1099 			sw_reg_workqueue = NULL;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * done with the vnode.
1105 	 * drop our ref on the vnode before calling VOP_CLOSE()
1106 	 * so that spec_close() can tell if this is the last close.
1107 	 */
1108 	vrele(sdp->swd_vp);
1109 	if (sdp->swd_vp != rootvp) {
1110 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1111 	}
1112 
1113 	mutex_enter(&uvm_swap_data_lock);
1114 	uvmexp.swpages -= npages;
1115 	uvmexp.swpginuse -= sdp->swd_npgbad;
1116 
1117 	if (swaplist_find(sdp->swd_vp, true) == NULL)
1118 		panic("%s: swapdev not in list", __func__);
1119 	swaplist_trim();
1120 	mutex_exit(&uvm_swap_data_lock);
1121 
1122 	/*
1123 	 * free all resources!
1124 	 */
1125 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1126 	blist_destroy(sdp->swd_blist);
1127 	bufq_free(sdp->swd_tab);
1128 	free(sdp, M_VMSWAP);
1129 	return (0);
1130 }
1131 
1132 /*
1133  * /dev/drum interface and i/o functions
1134  */
1135 
1136 /*
1137  * swstrategy: perform I/O on the drum
1138  *
1139  * => we must map the i/o request from the drum to the correct swapdev.
1140  */
1141 static void
1142 swstrategy(struct buf *bp)
1143 {
1144 	struct swapdev *sdp;
1145 	struct vnode *vp;
1146 	int pageno, bn;
1147 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1148 
1149 	/*
1150 	 * convert block number to swapdev.   note that swapdev can't
1151 	 * be yanked out from under us because we are holding resources
1152 	 * in it (i.e. the blocks we are doing I/O on).
1153 	 */
1154 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1155 	mutex_enter(&uvm_swap_data_lock);
1156 	sdp = swapdrum_getsdp(pageno);
1157 	mutex_exit(&uvm_swap_data_lock);
1158 	if (sdp == NULL) {
1159 		bp->b_error = EINVAL;
1160 		biodone(bp);
1161 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1162 		return;
1163 	}
1164 
1165 	/*
1166 	 * convert drum page number to block number on this swapdev.
1167 	 */
1168 
1169 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1170 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1171 
1172 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1173 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1174 		sdp->swd_drumoffset, bn, bp->b_bcount);
1175 
1176 	/*
1177 	 * for block devices we finish up here.
1178 	 * for regular files we have to do more work which we delegate
1179 	 * to sw_reg_strategy().
1180 	 */
1181 
1182 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
1183 	switch (vp->v_type) {
1184 	default:
1185 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
1186 
1187 	case VBLK:
1188 
1189 		/*
1190 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1191 		 * on the swapdev (sdp).
1192 		 */
1193 		bp->b_blkno = bn;		/* swapdev block number */
1194 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1195 
1196 		/*
1197 		 * if we are doing a write, we have to redirect the i/o on
1198 		 * drum's v_numoutput counter to the swapdevs.
1199 		 */
1200 		if ((bp->b_flags & B_READ) == 0) {
1201 			mutex_enter(bp->b_objlock);
1202 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1203 			mutex_exit(bp->b_objlock);
1204 			mutex_enter(&vp->v_interlock);
1205 			vp->v_numoutput++;	/* put it on swapdev */
1206 			mutex_exit(&vp->v_interlock);
1207 		}
1208 
1209 		/*
1210 		 * finally plug in swapdev vnode and start I/O
1211 		 */
1212 		bp->b_vp = vp;
1213 		bp->b_objlock = &vp->v_interlock;
1214 		VOP_STRATEGY(vp, bp);
1215 		return;
1216 
1217 	case VREG:
1218 		/*
1219 		 * delegate to sw_reg_strategy function.
1220 		 */
1221 		sw_reg_strategy(sdp, bp, bn);
1222 		return;
1223 	}
1224 	/* NOTREACHED */
1225 }
1226 
1227 /*
1228  * swread: the read function for the drum (just a call to physio)
1229  */
1230 /*ARGSUSED*/
1231 static int
1232 swread(dev_t dev, struct uio *uio, int ioflag)
1233 {
1234 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1235 
1236 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1237 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1238 }
1239 
1240 /*
1241  * swwrite: the write function for the drum (just a call to physio)
1242  */
1243 /*ARGSUSED*/
1244 static int
1245 swwrite(dev_t dev, struct uio *uio, int ioflag)
1246 {
1247 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1248 
1249 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1250 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1251 }
1252 
1253 const struct bdevsw swap_bdevsw = {
1254 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1255 };
1256 
1257 const struct cdevsw swap_cdevsw = {
1258 	nullopen, nullclose, swread, swwrite, noioctl,
1259 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1260 };
1261 
1262 /*
1263  * sw_reg_strategy: handle swap i/o to regular files
1264  */
1265 static void
1266 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1267 {
1268 	struct vnode	*vp;
1269 	struct vndxfer	*vnx;
1270 	daddr_t		nbn;
1271 	char 		*addr;
1272 	off_t		byteoff;
1273 	int		s, off, nra, error, sz, resid;
1274 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1275 
1276 	/*
1277 	 * allocate a vndxfer head for this transfer and point it to
1278 	 * our buffer.
1279 	 */
1280 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1281 	vnx->vx_flags = VX_BUSY;
1282 	vnx->vx_error = 0;
1283 	vnx->vx_pending = 0;
1284 	vnx->vx_bp = bp;
1285 	vnx->vx_sdp = sdp;
1286 
1287 	/*
1288 	 * setup for main loop where we read filesystem blocks into
1289 	 * our buffer.
1290 	 */
1291 	error = 0;
1292 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1293 	addr = bp->b_data;		/* current position in buffer */
1294 	byteoff = dbtob((uint64_t)bn);
1295 
1296 	for (resid = bp->b_resid; resid; resid -= sz) {
1297 		struct vndbuf	*nbp;
1298 
1299 		/*
1300 		 * translate byteoffset into block number.  return values:
1301 		 *   vp = vnode of underlying device
1302 		 *  nbn = new block number (on underlying vnode dev)
1303 		 *  nra = num blocks we can read-ahead (excludes requested
1304 		 *	block)
1305 		 */
1306 		nra = 0;
1307 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1308 				 	&vp, &nbn, &nra);
1309 
1310 		if (error == 0 && nbn == (daddr_t)-1) {
1311 			/*
1312 			 * this used to just set error, but that doesn't
1313 			 * do the right thing.  Instead, it causes random
1314 			 * memory errors.  The panic() should remain until
1315 			 * this condition doesn't destabilize the system.
1316 			 */
1317 #if 1
1318 			panic("%s: swap to sparse file", __func__);
1319 #else
1320 			error = EIO;	/* failure */
1321 #endif
1322 		}
1323 
1324 		/*
1325 		 * punt if there was an error or a hole in the file.
1326 		 * we must wait for any i/o ops we have already started
1327 		 * to finish before returning.
1328 		 *
1329 		 * XXX we could deal with holes here but it would be
1330 		 * a hassle (in the write case).
1331 		 */
1332 		if (error) {
1333 			s = splbio();
1334 			vnx->vx_error = error;	/* pass error up */
1335 			goto out;
1336 		}
1337 
1338 		/*
1339 		 * compute the size ("sz") of this transfer (in bytes).
1340 		 */
1341 		off = byteoff % sdp->swd_bsize;
1342 		sz = (1 + nra) * sdp->swd_bsize - off;
1343 		if (sz > resid)
1344 			sz = resid;
1345 
1346 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1347 			    "vp %p/%p offset 0x%x/0x%x",
1348 			    sdp->swd_vp, vp, byteoff, nbn);
1349 
1350 		/*
1351 		 * now get a buf structure.   note that the vb_buf is
1352 		 * at the front of the nbp structure so that you can
1353 		 * cast pointers between the two structure easily.
1354 		 */
1355 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1356 		buf_init(&nbp->vb_buf);
1357 		nbp->vb_buf.b_flags    = bp->b_flags;
1358 		nbp->vb_buf.b_cflags   = bp->b_cflags;
1359 		nbp->vb_buf.b_oflags   = bp->b_oflags;
1360 		nbp->vb_buf.b_bcount   = sz;
1361 		nbp->vb_buf.b_bufsize  = sz;
1362 		nbp->vb_buf.b_error    = 0;
1363 		nbp->vb_buf.b_data     = addr;
1364 		nbp->vb_buf.b_lblkno   = 0;
1365 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1366 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1367 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
1368 		nbp->vb_buf.b_vp       = vp;
1369 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
1370 		if (vp->v_type == VBLK) {
1371 			nbp->vb_buf.b_dev = vp->v_rdev;
1372 		}
1373 
1374 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1375 
1376 		/*
1377 		 * Just sort by block number
1378 		 */
1379 		s = splbio();
1380 		if (vnx->vx_error != 0) {
1381 			buf_destroy(&nbp->vb_buf);
1382 			pool_put(&vndbuf_pool, nbp);
1383 			goto out;
1384 		}
1385 		vnx->vx_pending++;
1386 
1387 		/* sort it in and start I/O if we are not over our limit */
1388 		/* XXXAD locking */
1389 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
1390 		sw_reg_start(sdp);
1391 		splx(s);
1392 
1393 		/*
1394 		 * advance to the next I/O
1395 		 */
1396 		byteoff += sz;
1397 		addr += sz;
1398 	}
1399 
1400 	s = splbio();
1401 
1402 out: /* Arrive here at splbio */
1403 	vnx->vx_flags &= ~VX_BUSY;
1404 	if (vnx->vx_pending == 0) {
1405 		error = vnx->vx_error;
1406 		pool_put(&vndxfer_pool, vnx);
1407 		bp->b_error = error;
1408 		biodone(bp);
1409 	}
1410 	splx(s);
1411 }
1412 
1413 /*
1414  * sw_reg_start: start an I/O request on the requested swapdev
1415  *
1416  * => reqs are sorted by b_rawblkno (above)
1417  */
1418 static void
1419 sw_reg_start(struct swapdev *sdp)
1420 {
1421 	struct buf	*bp;
1422 	struct vnode	*vp;
1423 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1424 
1425 	/* recursion control */
1426 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1427 		return;
1428 
1429 	sdp->swd_flags |= SWF_BUSY;
1430 
1431 	while (sdp->swd_active < sdp->swd_maxactive) {
1432 		bp = bufq_get(sdp->swd_tab);
1433 		if (bp == NULL)
1434 			break;
1435 		sdp->swd_active++;
1436 
1437 		UVMHIST_LOG(pdhist,
1438 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1439 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1440 		vp = bp->b_vp;
1441 		KASSERT(bp->b_objlock == &vp->v_interlock);
1442 		if ((bp->b_flags & B_READ) == 0) {
1443 			mutex_enter(&vp->v_interlock);
1444 			vp->v_numoutput++;
1445 			mutex_exit(&vp->v_interlock);
1446 		}
1447 		VOP_STRATEGY(vp, bp);
1448 	}
1449 	sdp->swd_flags &= ~SWF_BUSY;
1450 }
1451 
1452 /*
1453  * sw_reg_biodone: one of our i/o's has completed
1454  */
1455 static void
1456 sw_reg_biodone(struct buf *bp)
1457 {
1458 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1459 }
1460 
1461 /*
1462  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1463  *
1464  * => note that we can recover the vndbuf struct by casting the buf ptr
1465  */
1466 static void
1467 sw_reg_iodone(struct work *wk, void *dummy)
1468 {
1469 	struct vndbuf *vbp = (void *)wk;
1470 	struct vndxfer *vnx = vbp->vb_xfer;
1471 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1472 	struct swapdev	*sdp = vnx->vx_sdp;
1473 	int s, resid, error;
1474 	KASSERT(&vbp->vb_buf.b_work == wk);
1475 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1476 
1477 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1478 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1479 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1480 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1481 
1482 	/*
1483 	 * protect vbp at splbio and update.
1484 	 */
1485 
1486 	s = splbio();
1487 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1488 	pbp->b_resid -= resid;
1489 	vnx->vx_pending--;
1490 
1491 	if (vbp->vb_buf.b_error != 0) {
1492 		/* pass error upward */
1493 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1494 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1495 		vnx->vx_error = error;
1496 	}
1497 
1498 	/*
1499 	 * kill vbp structure
1500 	 */
1501 	buf_destroy(&vbp->vb_buf);
1502 	pool_put(&vndbuf_pool, vbp);
1503 
1504 	/*
1505 	 * wrap up this transaction if it has run to completion or, in
1506 	 * case of an error, when all auxiliary buffers have returned.
1507 	 */
1508 	if (vnx->vx_error != 0) {
1509 		/* pass error upward */
1510 		error = vnx->vx_error;
1511 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1512 			pbp->b_error = error;
1513 			biodone(pbp);
1514 			pool_put(&vndxfer_pool, vnx);
1515 		}
1516 	} else if (pbp->b_resid == 0) {
1517 		KASSERT(vnx->vx_pending == 0);
1518 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1519 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1520 			    pbp, vnx->vx_error, 0, 0);
1521 			biodone(pbp);
1522 			pool_put(&vndxfer_pool, vnx);
1523 		}
1524 	}
1525 
1526 	/*
1527 	 * done!   start next swapdev I/O if one is pending
1528 	 */
1529 	sdp->swd_active--;
1530 	sw_reg_start(sdp);
1531 	splx(s);
1532 }
1533 
1534 
1535 /*
1536  * uvm_swap_alloc: allocate space on swap
1537  *
1538  * => allocation is done "round robin" down the priority list, as we
1539  *	allocate in a priority we "rotate" the circle queue.
1540  * => space can be freed with uvm_swap_free
1541  * => we return the page slot number in /dev/drum (0 == invalid slot)
1542  * => we lock uvm_swap_data_lock
1543  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1544  */
1545 int
1546 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1547 {
1548 	struct swapdev *sdp;
1549 	struct swappri *spp;
1550 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1551 
1552 	/*
1553 	 * no swap devices configured yet?   definite failure.
1554 	 */
1555 	if (uvmexp.nswapdev < 1)
1556 		return 0;
1557 
1558 	/*
1559 	 * lock data lock, convert slots into blocks, and enter loop
1560 	 */
1561 	mutex_enter(&uvm_swap_data_lock);
1562 
1563 ReTry:	/* XXXMRG */
1564 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1565 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1566 			uint64_t result;
1567 
1568 			/* if it's not enabled, then we can't swap from it */
1569 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1570 				continue;
1571 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1572 				continue;
1573 			result = blist_alloc(sdp->swd_blist, *nslots);
1574 			if (result == BLIST_NONE) {
1575 				continue;
1576 			}
1577 			KASSERT(result < sdp->swd_drumsize);
1578 
1579 			/*
1580 			 * successful allocation!  now rotate the circleq.
1581 			 */
1582 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1583 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1584 			sdp->swd_npginuse += *nslots;
1585 			uvmexp.swpginuse += *nslots;
1586 			mutex_exit(&uvm_swap_data_lock);
1587 			/* done!  return drum slot number */
1588 			UVMHIST_LOG(pdhist,
1589 			    "success!  returning %d slots starting at %d",
1590 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1591 			return (result + sdp->swd_drumoffset);
1592 		}
1593 	}
1594 
1595 	/* XXXMRG: BEGIN HACK */
1596 	if (*nslots > 1 && lessok) {
1597 		*nslots = 1;
1598 		/* XXXMRG: ugh!  blist should support this for us */
1599 		goto ReTry;
1600 	}
1601 	/* XXXMRG: END HACK */
1602 
1603 	mutex_exit(&uvm_swap_data_lock);
1604 	return 0;
1605 }
1606 
1607 /*
1608  * uvm_swapisfull: return true if most of available swap is allocated
1609  * and in use.  we don't count some small portion as it may be inaccessible
1610  * to us at any given moment, for example if there is lock contention or if
1611  * pages are busy.
1612  */
1613 bool
1614 uvm_swapisfull(void)
1615 {
1616 	int swpgonly;
1617 	bool rv;
1618 
1619 	mutex_enter(&uvm_swap_data_lock);
1620 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1621 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1622 	    uvm_swapisfull_factor);
1623 	rv = (swpgonly >= uvmexp.swpgavail);
1624 	mutex_exit(&uvm_swap_data_lock);
1625 
1626 	return (rv);
1627 }
1628 
1629 /*
1630  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1631  *
1632  * => we lock uvm_swap_data_lock
1633  */
1634 void
1635 uvm_swap_markbad(int startslot, int nslots)
1636 {
1637 	struct swapdev *sdp;
1638 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1639 
1640 	mutex_enter(&uvm_swap_data_lock);
1641 	sdp = swapdrum_getsdp(startslot);
1642 	KASSERT(sdp != NULL);
1643 
1644 	/*
1645 	 * we just keep track of how many pages have been marked bad
1646 	 * in this device, to make everything add up in swap_off().
1647 	 * we assume here that the range of slots will all be within
1648 	 * one swap device.
1649 	 */
1650 
1651 	KASSERT(uvmexp.swpgonly >= nslots);
1652 	uvmexp.swpgonly -= nslots;
1653 	sdp->swd_npgbad += nslots;
1654 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1655 	mutex_exit(&uvm_swap_data_lock);
1656 }
1657 
1658 /*
1659  * uvm_swap_free: free swap slots
1660  *
1661  * => this can be all or part of an allocation made by uvm_swap_alloc
1662  * => we lock uvm_swap_data_lock
1663  */
1664 void
1665 uvm_swap_free(int startslot, int nslots)
1666 {
1667 	struct swapdev *sdp;
1668 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1669 
1670 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1671 	    startslot, 0, 0);
1672 
1673 	/*
1674 	 * ignore attempts to free the "bad" slot.
1675 	 */
1676 
1677 	if (startslot == SWSLOT_BAD) {
1678 		return;
1679 	}
1680 
1681 	/*
1682 	 * convert drum slot offset back to sdp, free the blocks
1683 	 * in the extent, and return.   must hold pri lock to do
1684 	 * lookup and access the extent.
1685 	 */
1686 
1687 	mutex_enter(&uvm_swap_data_lock);
1688 	sdp = swapdrum_getsdp(startslot);
1689 	KASSERT(uvmexp.nswapdev >= 1);
1690 	KASSERT(sdp != NULL);
1691 	KASSERT(sdp->swd_npginuse >= nslots);
1692 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1693 	sdp->swd_npginuse -= nslots;
1694 	uvmexp.swpginuse -= nslots;
1695 	mutex_exit(&uvm_swap_data_lock);
1696 }
1697 
1698 /*
1699  * uvm_swap_put: put any number of pages into a contig place on swap
1700  *
1701  * => can be sync or async
1702  */
1703 
1704 int
1705 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1706 {
1707 	int error;
1708 
1709 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1710 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1711 	return error;
1712 }
1713 
1714 /*
1715  * uvm_swap_get: get a single page from swap
1716  *
1717  * => usually a sync op (from fault)
1718  */
1719 
1720 int
1721 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1722 {
1723 	int error;
1724 
1725 	uvmexp.nswget++;
1726 	KASSERT(flags & PGO_SYNCIO);
1727 	if (swslot == SWSLOT_BAD) {
1728 		return EIO;
1729 	}
1730 
1731 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1732 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1733 	if (error == 0) {
1734 
1735 		/*
1736 		 * this page is no longer only in swap.
1737 		 */
1738 
1739 		mutex_enter(&uvm_swap_data_lock);
1740 		KASSERT(uvmexp.swpgonly > 0);
1741 		uvmexp.swpgonly--;
1742 		mutex_exit(&uvm_swap_data_lock);
1743 	}
1744 	return error;
1745 }
1746 
1747 /*
1748  * uvm_swap_io: do an i/o operation to swap
1749  */
1750 
1751 static int
1752 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1753 {
1754 	daddr_t startblk;
1755 	struct	buf *bp;
1756 	vaddr_t kva;
1757 	int	error, mapinflags;
1758 	bool write, async;
1759 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1760 
1761 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1762 	    startslot, npages, flags, 0);
1763 
1764 	write = (flags & B_READ) == 0;
1765 	async = (flags & B_ASYNC) != 0;
1766 
1767 	/*
1768 	 * allocate a buf for the i/o.
1769 	 */
1770 
1771 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1772 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1773 	if (bp == NULL) {
1774 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1775 		return ENOMEM;
1776 	}
1777 
1778 	/*
1779 	 * convert starting drum slot to block number
1780 	 */
1781 
1782 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1783 
1784 	/*
1785 	 * first, map the pages into the kernel.
1786 	 */
1787 
1788 	mapinflags = !write ?
1789 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1790 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1791 	kva = uvm_pagermapin(pps, npages, mapinflags);
1792 
1793 	/*
1794 	 * fill in the bp/sbp.   we currently route our i/o through
1795 	 * /dev/drum's vnode [swapdev_vp].
1796 	 */
1797 
1798 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
1799 	bp->b_flags = (flags & (B_READ|B_ASYNC));
1800 	bp->b_proc = &proc0;	/* XXX */
1801 	bp->b_vnbufs.le_next = NOLIST;
1802 	bp->b_data = (void *)kva;
1803 	bp->b_blkno = startblk;
1804 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1805 
1806 	/*
1807 	 * bump v_numoutput (counter of number of active outputs).
1808 	 */
1809 
1810 	if (write) {
1811 		mutex_enter(&swapdev_vp->v_interlock);
1812 		swapdev_vp->v_numoutput++;
1813 		mutex_exit(&swapdev_vp->v_interlock);
1814 	}
1815 
1816 	/*
1817 	 * for async ops we must set up the iodone handler.
1818 	 */
1819 
1820 	if (async) {
1821 		bp->b_iodone = uvm_aio_biodone;
1822 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1823 		if (curlwp == uvm.pagedaemon_lwp)
1824 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1825 		else
1826 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1827 	} else {
1828 		bp->b_iodone = NULL;
1829 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1830 	}
1831 	UVMHIST_LOG(pdhist,
1832 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1833 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1834 
1835 	/*
1836 	 * now we start the I/O, and if async, return.
1837 	 */
1838 
1839 	VOP_STRATEGY(swapdev_vp, bp);
1840 	if (async)
1841 		return 0;
1842 
1843 	/*
1844 	 * must be sync i/o.   wait for it to finish
1845 	 */
1846 
1847 	error = biowait(bp);
1848 
1849 	/*
1850 	 * kill the pager mapping
1851 	 */
1852 
1853 	uvm_pagermapout(kva, npages);
1854 
1855 	/*
1856 	 * now dispose of the buf and we're done.
1857 	 */
1858 
1859 	if (write) {
1860 		mutex_enter(&swapdev_vp->v_interlock);
1861 		vwakeup(bp);
1862 		mutex_exit(&swapdev_vp->v_interlock);
1863 	}
1864 	putiobuf(bp);
1865 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1866 
1867 	return (error);
1868 }
1869