1 /* $NetBSD: uvm_swap.c,v 1.89 2004/10/28 07:07:47 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. The name of the author may not be used to endorse or promote products 16 * derived from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp 31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp 32 */ 33 34 #include <sys/cdefs.h> 35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.89 2004/10/28 07:07:47 yamt Exp $"); 36 37 #include "fs_nfs.h" 38 #include "opt_uvmhist.h" 39 #include "opt_compat_netbsd.h" 40 #include "opt_ddb.h" 41 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/buf.h> 45 #include <sys/bufq.h> 46 #include <sys/conf.h> 47 #include <sys/proc.h> 48 #include <sys/namei.h> 49 #include <sys/disklabel.h> 50 #include <sys/errno.h> 51 #include <sys/kernel.h> 52 #include <sys/malloc.h> 53 #include <sys/vnode.h> 54 #include <sys/file.h> 55 #include <sys/extent.h> 56 #include <sys/mount.h> 57 #include <sys/pool.h> 58 #include <sys/sa.h> 59 #include <sys/syscallargs.h> 60 #include <sys/swap.h> 61 62 #include <uvm/uvm.h> 63 64 #include <miscfs/specfs/specdev.h> 65 66 /* 67 * uvm_swap.c: manage configuration and i/o to swap space. 68 */ 69 70 /* 71 * swap space is managed in the following way: 72 * 73 * each swap partition or file is described by a "swapdev" structure. 74 * each "swapdev" structure contains a "swapent" structure which contains 75 * information that is passed up to the user (via system calls). 76 * 77 * each swap partition is assigned a "priority" (int) which controls 78 * swap parition usage. 79 * 80 * the system maintains a global data structure describing all swap 81 * partitions/files. there is a sorted LIST of "swappri" structures 82 * which describe "swapdev"'s at that priority. this LIST is headed 83 * by the "swap_priority" global var. each "swappri" contains a 84 * CIRCLEQ of "swapdev" structures at that priority. 85 * 86 * locking: 87 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl 88 * system call and prevents the swap priority list from changing 89 * while we are in the middle of a system call (e.g. SWAP_STATS). 90 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data 91 * structures including the priority list, the swapdev structures, 92 * and the swapmap extent. 93 * 94 * each swap device has the following info: 95 * - swap device in use (could be disabled, preventing future use) 96 * - swap enabled (allows new allocations on swap) 97 * - map info in /dev/drum 98 * - vnode pointer 99 * for swap files only: 100 * - block size 101 * - max byte count in buffer 102 * - buffer 103 * 104 * userland controls and configures swap with the swapctl(2) system call. 105 * the sys_swapctl performs the following operations: 106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured 107 * [2] SWAP_STATS: given a pointer to an array of swapent structures 108 * (passed in via "arg") of a size passed in via "misc" ... we load 109 * the current swap config into the array. The actual work is done 110 * in the uvm_swap_stats(9) function. 111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a 112 * priority in "misc", start swapping on it. 113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device 114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in 115 * "misc") 116 */ 117 118 /* 119 * swapdev: describes a single swap partition/file 120 * 121 * note the following should be true: 122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks] 123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel] 124 */ 125 struct swapdev { 126 struct oswapent swd_ose; 127 #define swd_dev swd_ose.ose_dev /* device id */ 128 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */ 129 #define swd_priority swd_ose.ose_priority /* our priority */ 130 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */ 131 char *swd_path; /* saved pathname of device */ 132 int swd_pathlen; /* length of pathname */ 133 int swd_npages; /* #pages we can use */ 134 int swd_npginuse; /* #pages in use */ 135 int swd_npgbad; /* #pages bad */ 136 int swd_drumoffset; /* page0 offset in drum */ 137 int swd_drumsize; /* #pages in drum */ 138 struct extent *swd_ex; /* extent for this swapdev */ 139 char swd_exname[12]; /* name of extent above */ 140 struct vnode *swd_vp; /* backing vnode */ 141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */ 142 143 int swd_bsize; /* blocksize (bytes) */ 144 int swd_maxactive; /* max active i/o reqs */ 145 struct bufq_state swd_tab; /* buffer list */ 146 int swd_active; /* number of active buffers */ 147 }; 148 149 /* 150 * swap device priority entry; the list is kept sorted on `spi_priority'. 151 */ 152 struct swappri { 153 int spi_priority; /* priority */ 154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev; 155 /* circleq of swapdevs at this priority */ 156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */ 157 }; 158 159 /* 160 * The following two structures are used to keep track of data transfers 161 * on swap devices associated with regular files. 162 * NOTE: this code is more or less a copy of vnd.c; we use the same 163 * structure names here to ease porting.. 164 */ 165 struct vndxfer { 166 struct buf *vx_bp; /* Pointer to parent buffer */ 167 struct swapdev *vx_sdp; 168 int vx_error; 169 int vx_pending; /* # of pending aux buffers */ 170 int vx_flags; 171 #define VX_BUSY 1 172 #define VX_DEAD 2 173 }; 174 175 struct vndbuf { 176 struct buf vb_buf; 177 struct vndxfer *vb_xfer; 178 }; 179 180 181 /* 182 * We keep a of pool vndbuf's and vndxfer structures. 183 */ 184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL); 185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL); 186 187 #define getvndxfer(vnx) do { \ 188 int s = splbio(); \ 189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \ 190 splx(s); \ 191 } while (/*CONSTCOND*/ 0) 192 193 #define putvndxfer(vnx) { \ 194 pool_put(&vndxfer_pool, (void *)(vnx)); \ 195 } 196 197 #define getvndbuf(vbp) do { \ 198 int s = splbio(); \ 199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \ 200 splx(s); \ 201 } while (/*CONSTCOND*/ 0) 202 203 #define putvndbuf(vbp) { \ 204 pool_put(&vndbuf_pool, (void *)(vbp)); \ 205 } 206 207 /* 208 * local variables 209 */ 210 static struct extent *swapmap; /* controls the mapping of /dev/drum */ 211 212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures"); 213 214 /* list of all active swap devices [by priority] */ 215 LIST_HEAD(swap_priority, swappri); 216 static struct swap_priority swap_priority; 217 218 /* locks */ 219 struct lock swap_syscall_lock; 220 221 /* 222 * prototypes 223 */ 224 static struct swapdev *swapdrum_getsdp(int); 225 226 static struct swapdev *swaplist_find(struct vnode *, int); 227 static void swaplist_insert(struct swapdev *, 228 struct swappri *, int); 229 static void swaplist_trim(void); 230 231 static int swap_on(struct proc *, struct swapdev *); 232 static int swap_off(struct proc *, struct swapdev *); 233 234 static void sw_reg_strategy(struct swapdev *, struct buf *, int); 235 static void sw_reg_iodone(struct buf *); 236 static void sw_reg_start(struct swapdev *); 237 238 static int uvm_swap_io(struct vm_page **, int, int, int); 239 240 dev_type_read(swread); 241 dev_type_write(swwrite); 242 dev_type_strategy(swstrategy); 243 244 const struct bdevsw swap_bdevsw = { 245 noopen, noclose, swstrategy, noioctl, nodump, nosize, 246 }; 247 248 const struct cdevsw swap_cdevsw = { 249 nullopen, nullclose, swread, swwrite, noioctl, 250 nostop, notty, nopoll, nommap, nokqfilter 251 }; 252 253 /* 254 * uvm_swap_init: init the swap system data structures and locks 255 * 256 * => called at boot time from init_main.c after the filesystems 257 * are brought up (which happens after uvm_init()) 258 */ 259 void 260 uvm_swap_init() 261 { 262 UVMHIST_FUNC("uvm_swap_init"); 263 264 UVMHIST_CALLED(pdhist); 265 /* 266 * first, init the swap list, its counter, and its lock. 267 * then get a handle on the vnode for /dev/drum by using 268 * the its dev_t number ("swapdev", from MD conf.c). 269 */ 270 271 LIST_INIT(&swap_priority); 272 uvmexp.nswapdev = 0; 273 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0); 274 simple_lock_init(&uvm.swap_data_lock); 275 276 if (bdevvp(swapdev, &swapdev_vp)) 277 panic("uvm_swap_init: can't get vnode for swap device"); 278 279 /* 280 * create swap block resource map to map /dev/drum. the range 281 * from 1 to INT_MAX allows 2 gigablocks of swap space. note 282 * that block 0 is reserved (used to indicate an allocation 283 * failure, or no allocation). 284 */ 285 swapmap = extent_create("swapmap", 1, INT_MAX, 286 M_VMSWAP, 0, 0, EX_NOWAIT); 287 if (swapmap == 0) 288 panic("uvm_swap_init: extent_create failed"); 289 290 /* 291 * done! 292 */ 293 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0); 294 } 295 296 /* 297 * swaplist functions: functions that operate on the list of swap 298 * devices on the system. 299 */ 300 301 /* 302 * swaplist_insert: insert swap device "sdp" into the global list 303 * 304 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 305 * => caller must provide a newly malloc'd swappri structure (we will 306 * FREE it if we don't need it... this it to prevent malloc blocking 307 * here while adding swap) 308 */ 309 static void 310 swaplist_insert(sdp, newspp, priority) 311 struct swapdev *sdp; 312 struct swappri *newspp; 313 int priority; 314 { 315 struct swappri *spp, *pspp; 316 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist); 317 318 /* 319 * find entry at or after which to insert the new device. 320 */ 321 pspp = NULL; 322 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 323 if (priority <= spp->spi_priority) 324 break; 325 pspp = spp; 326 } 327 328 /* 329 * new priority? 330 */ 331 if (spp == NULL || spp->spi_priority != priority) { 332 spp = newspp; /* use newspp! */ 333 UVMHIST_LOG(pdhist, "created new swappri = %d", 334 priority, 0, 0, 0); 335 336 spp->spi_priority = priority; 337 CIRCLEQ_INIT(&spp->spi_swapdev); 338 339 if (pspp) 340 LIST_INSERT_AFTER(pspp, spp, spi_swappri); 341 else 342 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri); 343 } else { 344 /* we don't need a new priority structure, free it */ 345 FREE(newspp, M_VMSWAP); 346 } 347 348 /* 349 * priority found (or created). now insert on the priority's 350 * circleq list and bump the total number of swapdevs. 351 */ 352 sdp->swd_priority = priority; 353 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 354 uvmexp.nswapdev++; 355 } 356 357 /* 358 * swaplist_find: find and optionally remove a swap device from the 359 * global list. 360 * 361 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 362 * => we return the swapdev we found (and removed) 363 */ 364 static struct swapdev * 365 swaplist_find(vp, remove) 366 struct vnode *vp; 367 boolean_t remove; 368 { 369 struct swapdev *sdp; 370 struct swappri *spp; 371 372 /* 373 * search the lists for the requested vp 374 */ 375 376 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 377 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 378 if (sdp->swd_vp == vp) { 379 if (remove) { 380 CIRCLEQ_REMOVE(&spp->spi_swapdev, 381 sdp, swd_next); 382 uvmexp.nswapdev--; 383 } 384 return(sdp); 385 } 386 } 387 } 388 return (NULL); 389 } 390 391 392 /* 393 * swaplist_trim: scan priority list for empty priority entries and kill 394 * them. 395 * 396 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock 397 */ 398 static void 399 swaplist_trim() 400 { 401 struct swappri *spp, *nextspp; 402 403 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) { 404 nextspp = LIST_NEXT(spp, spi_swappri); 405 if (CIRCLEQ_FIRST(&spp->spi_swapdev) != 406 (void *)&spp->spi_swapdev) 407 continue; 408 LIST_REMOVE(spp, spi_swappri); 409 free(spp, M_VMSWAP); 410 } 411 } 412 413 /* 414 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back 415 * to the "swapdev" that maps that section of the drum. 416 * 417 * => each swapdev takes one big contig chunk of the drum 418 * => caller must hold uvm.swap_data_lock 419 */ 420 static struct swapdev * 421 swapdrum_getsdp(pgno) 422 int pgno; 423 { 424 struct swapdev *sdp; 425 struct swappri *spp; 426 427 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 428 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 429 if (sdp->swd_flags & SWF_FAKE) 430 continue; 431 if (pgno >= sdp->swd_drumoffset && 432 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) { 433 return sdp; 434 } 435 } 436 } 437 return NULL; 438 } 439 440 441 /* 442 * sys_swapctl: main entry point for swapctl(2) system call 443 * [with two helper functions: swap_on and swap_off] 444 */ 445 int 446 sys_swapctl(l, v, retval) 447 struct lwp *l; 448 void *v; 449 register_t *retval; 450 { 451 struct sys_swapctl_args /* { 452 syscallarg(int) cmd; 453 syscallarg(void *) arg; 454 syscallarg(int) misc; 455 } */ *uap = (struct sys_swapctl_args *)v; 456 struct proc *p = l->l_proc; 457 struct vnode *vp; 458 struct nameidata nd; 459 struct swappri *spp; 460 struct swapdev *sdp; 461 struct swapent *sep; 462 char userpath[PATH_MAX + 1]; 463 size_t len; 464 int error, misc; 465 int priority; 466 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist); 467 468 misc = SCARG(uap, misc); 469 470 /* 471 * ensure serialized syscall access by grabbing the swap_syscall_lock 472 */ 473 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL); 474 475 /* 476 * we handle the non-priv NSWAP and STATS request first. 477 * 478 * SWAP_NSWAP: return number of config'd swap devices 479 * [can also be obtained with uvmexp sysctl] 480 */ 481 if (SCARG(uap, cmd) == SWAP_NSWAP) { 482 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev, 483 0, 0, 0); 484 *retval = uvmexp.nswapdev; 485 error = 0; 486 goto out; 487 } 488 489 /* 490 * SWAP_STATS: get stats on current # of configured swap devs 491 * 492 * note that the swap_priority list can't change as long 493 * as we are holding the swap_syscall_lock. we don't want 494 * to grab the uvm.swap_data_lock because we may fault&sleep during 495 * copyout() and we don't want to be holding that lock then! 496 */ 497 if (SCARG(uap, cmd) == SWAP_STATS 498 #if defined(COMPAT_13) 499 || SCARG(uap, cmd) == SWAP_OSTATS 500 #endif 501 ) { 502 if ((size_t)misc > (size_t)uvmexp.nswapdev) 503 misc = uvmexp.nswapdev; 504 #if defined(COMPAT_13) 505 if (SCARG(uap, cmd) == SWAP_OSTATS) 506 len = sizeof(struct oswapent) * misc; 507 else 508 #endif 509 len = sizeof(struct swapent) * misc; 510 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK); 511 512 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval); 513 error = copyout(sep, (void *)SCARG(uap, arg), len); 514 515 free(sep, M_TEMP); 516 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0); 517 goto out; 518 } 519 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) { 520 dev_t *devp = (dev_t *)SCARG(uap, arg); 521 522 error = copyout(&dumpdev, devp, sizeof(dumpdev)); 523 goto out; 524 } 525 526 /* 527 * all other requests require superuser privs. verify. 528 */ 529 if ((error = suser(p->p_ucred, &p->p_acflag))) 530 goto out; 531 532 /* 533 * at this point we expect a path name in arg. we will 534 * use namei() to gain a vnode reference (vref), and lock 535 * the vnode (VOP_LOCK). 536 * 537 * XXX: a NULL arg means use the root vnode pointer (e.g. for 538 * miniroot) 539 */ 540 if (SCARG(uap, arg) == NULL) { 541 vp = rootvp; /* miniroot */ 542 if (vget(vp, LK_EXCLUSIVE)) { 543 error = EBUSY; 544 goto out; 545 } 546 if (SCARG(uap, cmd) == SWAP_ON && 547 copystr("miniroot", userpath, sizeof userpath, &len)) 548 panic("swapctl: miniroot copy failed"); 549 } else { 550 int space; 551 char *where; 552 553 if (SCARG(uap, cmd) == SWAP_ON) { 554 if ((error = copyinstr(SCARG(uap, arg), userpath, 555 sizeof userpath, &len))) 556 goto out; 557 space = UIO_SYSSPACE; 558 where = userpath; 559 } else { 560 space = UIO_USERSPACE; 561 where = (char *)SCARG(uap, arg); 562 } 563 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p); 564 if ((error = namei(&nd))) 565 goto out; 566 vp = nd.ni_vp; 567 } 568 /* note: "vp" is referenced and locked */ 569 570 error = 0; /* assume no error */ 571 switch(SCARG(uap, cmd)) { 572 573 case SWAP_DUMPDEV: 574 if (vp->v_type != VBLK) { 575 error = ENOTBLK; 576 break; 577 } 578 dumpdev = vp->v_rdev; 579 cpu_dumpconf(); 580 break; 581 582 case SWAP_CTL: 583 /* 584 * get new priority, remove old entry (if any) and then 585 * reinsert it in the correct place. finally, prune out 586 * any empty priority structures. 587 */ 588 priority = SCARG(uap, misc); 589 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 590 simple_lock(&uvm.swap_data_lock); 591 if ((sdp = swaplist_find(vp, 1)) == NULL) { 592 error = ENOENT; 593 } else { 594 swaplist_insert(sdp, spp, priority); 595 swaplist_trim(); 596 } 597 simple_unlock(&uvm.swap_data_lock); 598 if (error) 599 free(spp, M_VMSWAP); 600 break; 601 602 case SWAP_ON: 603 604 /* 605 * check for duplicates. if none found, then insert a 606 * dummy entry on the list to prevent someone else from 607 * trying to enable this device while we are working on 608 * it. 609 */ 610 611 priority = SCARG(uap, misc); 612 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK); 613 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK); 614 memset(sdp, 0, sizeof(*sdp)); 615 sdp->swd_flags = SWF_FAKE; 616 sdp->swd_vp = vp; 617 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV; 618 bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK); 619 simple_lock(&uvm.swap_data_lock); 620 if (swaplist_find(vp, 0) != NULL) { 621 error = EBUSY; 622 simple_unlock(&uvm.swap_data_lock); 623 bufq_free(&sdp->swd_tab); 624 free(sdp, M_VMSWAP); 625 free(spp, M_VMSWAP); 626 break; 627 } 628 swaplist_insert(sdp, spp, priority); 629 simple_unlock(&uvm.swap_data_lock); 630 631 sdp->swd_pathlen = len; 632 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK); 633 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0) 634 panic("swapctl: copystr"); 635 636 /* 637 * we've now got a FAKE placeholder in the swap list. 638 * now attempt to enable swap on it. if we fail, undo 639 * what we've done and kill the fake entry we just inserted. 640 * if swap_on is a success, it will clear the SWF_FAKE flag 641 */ 642 643 if ((error = swap_on(p, sdp)) != 0) { 644 simple_lock(&uvm.swap_data_lock); 645 (void) swaplist_find(vp, 1); /* kill fake entry */ 646 swaplist_trim(); 647 simple_unlock(&uvm.swap_data_lock); 648 bufq_free(&sdp->swd_tab); 649 free(sdp->swd_path, M_VMSWAP); 650 free(sdp, M_VMSWAP); 651 break; 652 } 653 break; 654 655 case SWAP_OFF: 656 simple_lock(&uvm.swap_data_lock); 657 if ((sdp = swaplist_find(vp, 0)) == NULL) { 658 simple_unlock(&uvm.swap_data_lock); 659 error = ENXIO; 660 break; 661 } 662 663 /* 664 * If a device isn't in use or enabled, we 665 * can't stop swapping from it (again). 666 */ 667 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) { 668 simple_unlock(&uvm.swap_data_lock); 669 error = EBUSY; 670 break; 671 } 672 673 /* 674 * do the real work. 675 */ 676 error = swap_off(p, sdp); 677 break; 678 679 default: 680 error = EINVAL; 681 } 682 683 /* 684 * done! release the ref gained by namei() and unlock. 685 */ 686 vput(vp); 687 688 out: 689 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL); 690 691 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0); 692 return (error); 693 } 694 695 /* 696 * swap_stats: implements swapctl(SWAP_STATS). The function is kept 697 * away from sys_swapctl() in order to allow COMPAT_* swapctl() 698 * emulation to use it directly without going through sys_swapctl(). 699 * The problem with using sys_swapctl() there is that it involves 700 * copying the swapent array to the stackgap, and this array's size 701 * is not known at build time. Hence it would not be possible to 702 * ensure it would fit in the stackgap in any case. 703 */ 704 void 705 uvm_swap_stats(cmd, sep, sec, retval) 706 int cmd; 707 struct swapent *sep; 708 int sec; 709 register_t *retval; 710 { 711 struct swappri *spp; 712 struct swapdev *sdp; 713 int count = 0; 714 715 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 716 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev); 717 sdp != (void *)&spp->spi_swapdev && sec-- > 0; 718 sdp = CIRCLEQ_NEXT(sdp, swd_next)) { 719 /* 720 * backwards compatibility for system call. 721 * note that we use 'struct oswapent' as an 722 * overlay into both 'struct swapdev' and 723 * the userland 'struct swapent', as we 724 * want to retain backwards compatibility 725 * with NetBSD 1.3. 726 */ 727 sdp->swd_ose.ose_inuse = 728 btodb((u_int64_t)sdp->swd_npginuse << 729 PAGE_SHIFT); 730 (void)memcpy(sep, &sdp->swd_ose, 731 sizeof(struct oswapent)); 732 733 /* now copy out the path if necessary */ 734 #if defined(COMPAT_13) 735 if (cmd == SWAP_STATS) 736 #endif 737 (void)memcpy(&sep->se_path, sdp->swd_path, 738 sdp->swd_pathlen); 739 740 count++; 741 #if defined(COMPAT_13) 742 if (cmd == SWAP_OSTATS) 743 sep = (struct swapent *) 744 ((struct oswapent *)sep + 1); 745 else 746 #endif 747 sep++; 748 } 749 } 750 751 *retval = count; 752 return; 753 } 754 755 /* 756 * swap_on: attempt to enable a swapdev for swapping. note that the 757 * swapdev is already on the global list, but disabled (marked 758 * SWF_FAKE). 759 * 760 * => we avoid the start of the disk (to protect disk labels) 761 * => we also avoid the miniroot, if we are swapping to root. 762 * => caller should leave uvm.swap_data_lock unlocked, we may lock it 763 * if needed. 764 */ 765 static int 766 swap_on(p, sdp) 767 struct proc *p; 768 struct swapdev *sdp; 769 { 770 static int count = 0; /* static */ 771 struct vnode *vp; 772 int error, npages, nblocks, size; 773 long addr; 774 u_long result; 775 struct vattr va; 776 #ifdef NFS 777 extern int (**nfsv2_vnodeop_p)(void *); 778 #endif /* NFS */ 779 const struct bdevsw *bdev; 780 dev_t dev; 781 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist); 782 783 /* 784 * we want to enable swapping on sdp. the swd_vp contains 785 * the vnode we want (locked and ref'd), and the swd_dev 786 * contains the dev_t of the file, if it a block device. 787 */ 788 789 vp = sdp->swd_vp; 790 dev = sdp->swd_dev; 791 792 /* 793 * open the swap file (mostly useful for block device files to 794 * let device driver know what is up). 795 * 796 * we skip the open/close for root on swap because the root 797 * has already been opened when root was mounted (mountroot). 798 */ 799 if (vp != rootvp) { 800 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p))) 801 return (error); 802 } 803 804 /* XXX this only works for block devices */ 805 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0); 806 807 /* 808 * we now need to determine the size of the swap area. for 809 * block specials we can call the d_psize function. 810 * for normal files, we must stat [get attrs]. 811 * 812 * we put the result in nblks. 813 * for normal files, we also want the filesystem block size 814 * (which we get with statfs). 815 */ 816 switch (vp->v_type) { 817 case VBLK: 818 bdev = bdevsw_lookup(dev); 819 if (bdev == NULL || bdev->d_psize == NULL || 820 (nblocks = (*bdev->d_psize)(dev)) == -1) { 821 error = ENXIO; 822 goto bad; 823 } 824 break; 825 826 case VREG: 827 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p))) 828 goto bad; 829 nblocks = (int)btodb(va.va_size); 830 if ((error = 831 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0) 832 goto bad; 833 834 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize; 835 /* 836 * limit the max # of outstanding I/O requests we issue 837 * at any one time. take it easy on NFS servers. 838 */ 839 #ifdef NFS 840 if (vp->v_op == nfsv2_vnodeop_p) 841 sdp->swd_maxactive = 2; /* XXX */ 842 else 843 #endif /* NFS */ 844 sdp->swd_maxactive = 8; /* XXX */ 845 break; 846 847 default: 848 error = ENXIO; 849 goto bad; 850 } 851 852 /* 853 * save nblocks in a safe place and convert to pages. 854 */ 855 856 sdp->swd_ose.ose_nblks = nblocks; 857 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT; 858 859 /* 860 * for block special files, we want to make sure that leave 861 * the disklabel and bootblocks alone, so we arrange to skip 862 * over them (arbitrarily choosing to skip PAGE_SIZE bytes). 863 * note that because of this the "size" can be less than the 864 * actual number of blocks on the device. 865 */ 866 if (vp->v_type == VBLK) { 867 /* we use pages 1 to (size - 1) [inclusive] */ 868 size = npages - 1; 869 addr = 1; 870 } else { 871 /* we use pages 0 to (size - 1) [inclusive] */ 872 size = npages; 873 addr = 0; 874 } 875 876 /* 877 * make sure we have enough blocks for a reasonable sized swap 878 * area. we want at least one page. 879 */ 880 881 if (size < 1) { 882 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0); 883 error = EINVAL; 884 goto bad; 885 } 886 887 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0); 888 889 /* 890 * now we need to allocate an extent to manage this swap device 891 */ 892 snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x", 893 count++); 894 895 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */ 896 sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP, 897 0, 0, EX_WAITOK); 898 /* allocate the `saved' region from the extent so it won't be used */ 899 if (addr) { 900 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK)) 901 panic("disklabel region"); 902 } 903 904 /* 905 * if the vnode we are swapping to is the root vnode 906 * (i.e. we are swapping to the miniroot) then we want 907 * to make sure we don't overwrite it. do a statfs to 908 * find its size and skip over it. 909 */ 910 if (vp == rootvp) { 911 struct mount *mp; 912 struct statvfs *sp; 913 int rootblocks, rootpages; 914 915 mp = rootvnode->v_mount; 916 sp = &mp->mnt_stat; 917 rootblocks = sp->f_blocks * btodb(sp->f_frsize); 918 /* 919 * XXX: sp->f_blocks isn't the total number of 920 * blocks in the filesystem, it's the number of 921 * data blocks. so, our rootblocks almost 922 * definitely underestimates the total size 923 * of the filesystem - how badly depends on the 924 * details of the filesystem type. there isn't 925 * an obvious way to deal with this cleanly 926 * and perfectly, so for now we just pad our 927 * rootblocks estimate with an extra 5 percent. 928 */ 929 rootblocks += (rootblocks >> 5) + 930 (rootblocks >> 6) + 931 (rootblocks >> 7); 932 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT; 933 if (rootpages > size) 934 panic("swap_on: miniroot larger than swap?"); 935 936 if (extent_alloc_region(sdp->swd_ex, addr, 937 rootpages, EX_WAITOK)) 938 panic("swap_on: unable to preserve miniroot"); 939 940 size -= rootpages; 941 printf("Preserved %d pages of miniroot ", rootpages); 942 printf("leaving %d pages of swap\n", size); 943 } 944 945 /* 946 * try to add anons to reflect the new swap space. 947 */ 948 949 error = uvm_anon_add(size); 950 if (error) { 951 goto bad; 952 } 953 954 /* 955 * add a ref to vp to reflect usage as a swap device. 956 */ 957 vref(vp); 958 959 /* 960 * now add the new swapdev to the drum and enable. 961 */ 962 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY, 963 EX_WAITOK, &result)) 964 panic("swapdrum_add"); 965 966 sdp->swd_drumoffset = (int)result; 967 sdp->swd_drumsize = npages; 968 sdp->swd_npages = size; 969 simple_lock(&uvm.swap_data_lock); 970 sdp->swd_flags &= ~SWF_FAKE; /* going live */ 971 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE); 972 uvmexp.swpages += size; 973 uvmexp.swpgavail += size; 974 simple_unlock(&uvm.swap_data_lock); 975 return (0); 976 977 /* 978 * failure: clean up and return error. 979 */ 980 981 bad: 982 if (sdp->swd_ex) { 983 extent_destroy(sdp->swd_ex); 984 } 985 if (vp != rootvp) { 986 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p); 987 } 988 return (error); 989 } 990 991 /* 992 * swap_off: stop swapping on swapdev 993 * 994 * => swap data should be locked, we will unlock. 995 */ 996 static int 997 swap_off(p, sdp) 998 struct proc *p; 999 struct swapdev *sdp; 1000 { 1001 int npages = sdp->swd_npages; 1002 1003 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist); 1004 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0); 1005 1006 /* disable the swap area being removed */ 1007 sdp->swd_flags &= ~SWF_ENABLE; 1008 uvmexp.swpgavail -= npages; 1009 simple_unlock(&uvm.swap_data_lock); 1010 1011 /* 1012 * the idea is to find all the pages that are paged out to this 1013 * device, and page them all in. in uvm, swap-backed pageable 1014 * memory can take two forms: aobjs and anons. call the 1015 * swapoff hook for each subsystem to bring in pages. 1016 */ 1017 1018 if (uao_swap_off(sdp->swd_drumoffset, 1019 sdp->swd_drumoffset + sdp->swd_drumsize) || 1020 anon_swap_off(sdp->swd_drumoffset, 1021 sdp->swd_drumoffset + sdp->swd_drumsize)) { 1022 1023 simple_lock(&uvm.swap_data_lock); 1024 sdp->swd_flags |= SWF_ENABLE; 1025 uvmexp.swpgavail += npages; 1026 simple_unlock(&uvm.swap_data_lock); 1027 return ENOMEM; 1028 } 1029 KASSERT(sdp->swd_npginuse == sdp->swd_npgbad); 1030 1031 /* 1032 * done with the vnode. 1033 * drop our ref on the vnode before calling VOP_CLOSE() 1034 * so that spec_close() can tell if this is the last close. 1035 */ 1036 vrele(sdp->swd_vp); 1037 if (sdp->swd_vp != rootvp) { 1038 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p); 1039 } 1040 1041 /* remove anons from the system */ 1042 uvm_anon_remove(npages); 1043 1044 simple_lock(&uvm.swap_data_lock); 1045 uvmexp.swpages -= npages; 1046 uvmexp.swpginuse -= sdp->swd_npgbad; 1047 1048 if (swaplist_find(sdp->swd_vp, 1) == NULL) 1049 panic("swap_off: swapdev not in list"); 1050 swaplist_trim(); 1051 simple_unlock(&uvm.swap_data_lock); 1052 1053 /* 1054 * free all resources! 1055 */ 1056 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize, 1057 EX_WAITOK); 1058 extent_destroy(sdp->swd_ex); 1059 bufq_free(&sdp->swd_tab); 1060 free(sdp, M_VMSWAP); 1061 return (0); 1062 } 1063 1064 /* 1065 * /dev/drum interface and i/o functions 1066 */ 1067 1068 /* 1069 * swread: the read function for the drum (just a call to physio) 1070 */ 1071 /*ARGSUSED*/ 1072 int 1073 swread(dev, uio, ioflag) 1074 dev_t dev; 1075 struct uio *uio; 1076 int ioflag; 1077 { 1078 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist); 1079 1080 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1081 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio)); 1082 } 1083 1084 /* 1085 * swwrite: the write function for the drum (just a call to physio) 1086 */ 1087 /*ARGSUSED*/ 1088 int 1089 swwrite(dev, uio, ioflag) 1090 dev_t dev; 1091 struct uio *uio; 1092 int ioflag; 1093 { 1094 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist); 1095 1096 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0); 1097 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio)); 1098 } 1099 1100 /* 1101 * swstrategy: perform I/O on the drum 1102 * 1103 * => we must map the i/o request from the drum to the correct swapdev. 1104 */ 1105 void 1106 swstrategy(bp) 1107 struct buf *bp; 1108 { 1109 struct swapdev *sdp; 1110 struct vnode *vp; 1111 int s, pageno, bn; 1112 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist); 1113 1114 /* 1115 * convert block number to swapdev. note that swapdev can't 1116 * be yanked out from under us because we are holding resources 1117 * in it (i.e. the blocks we are doing I/O on). 1118 */ 1119 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT; 1120 simple_lock(&uvm.swap_data_lock); 1121 sdp = swapdrum_getsdp(pageno); 1122 simple_unlock(&uvm.swap_data_lock); 1123 if (sdp == NULL) { 1124 bp->b_error = EINVAL; 1125 bp->b_flags |= B_ERROR; 1126 biodone(bp); 1127 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0); 1128 return; 1129 } 1130 1131 /* 1132 * convert drum page number to block number on this swapdev. 1133 */ 1134 1135 pageno -= sdp->swd_drumoffset; /* page # on swapdev */ 1136 bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */ 1137 1138 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld", 1139 ((bp->b_flags & B_READ) == 0) ? "write" : "read", 1140 sdp->swd_drumoffset, bn, bp->b_bcount); 1141 1142 /* 1143 * for block devices we finish up here. 1144 * for regular files we have to do more work which we delegate 1145 * to sw_reg_strategy(). 1146 */ 1147 1148 switch (sdp->swd_vp->v_type) { 1149 default: 1150 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type); 1151 1152 case VBLK: 1153 1154 /* 1155 * must convert "bp" from an I/O on /dev/drum to an I/O 1156 * on the swapdev (sdp). 1157 */ 1158 s = splbio(); 1159 bp->b_blkno = bn; /* swapdev block number */ 1160 vp = sdp->swd_vp; /* swapdev vnode pointer */ 1161 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */ 1162 1163 /* 1164 * if we are doing a write, we have to redirect the i/o on 1165 * drum's v_numoutput counter to the swapdevs. 1166 */ 1167 if ((bp->b_flags & B_READ) == 0) { 1168 vwakeup(bp); /* kills one 'v_numoutput' on drum */ 1169 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */ 1170 } 1171 1172 /* 1173 * finally plug in swapdev vnode and start I/O 1174 */ 1175 bp->b_vp = vp; 1176 splx(s); 1177 VOP_STRATEGY(vp, bp); 1178 return; 1179 1180 case VREG: 1181 /* 1182 * delegate to sw_reg_strategy function. 1183 */ 1184 sw_reg_strategy(sdp, bp, bn); 1185 return; 1186 } 1187 /* NOTREACHED */ 1188 } 1189 1190 /* 1191 * sw_reg_strategy: handle swap i/o to regular files 1192 */ 1193 static void 1194 sw_reg_strategy(sdp, bp, bn) 1195 struct swapdev *sdp; 1196 struct buf *bp; 1197 int bn; 1198 { 1199 struct vnode *vp; 1200 struct vndxfer *vnx; 1201 daddr_t nbn; 1202 caddr_t addr; 1203 off_t byteoff; 1204 int s, off, nra, error, sz, resid; 1205 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist); 1206 1207 /* 1208 * allocate a vndxfer head for this transfer and point it to 1209 * our buffer. 1210 */ 1211 getvndxfer(vnx); 1212 vnx->vx_flags = VX_BUSY; 1213 vnx->vx_error = 0; 1214 vnx->vx_pending = 0; 1215 vnx->vx_bp = bp; 1216 vnx->vx_sdp = sdp; 1217 1218 /* 1219 * setup for main loop where we read filesystem blocks into 1220 * our buffer. 1221 */ 1222 error = 0; 1223 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */ 1224 addr = bp->b_data; /* current position in buffer */ 1225 byteoff = dbtob((u_int64_t)bn); 1226 1227 for (resid = bp->b_resid; resid; resid -= sz) { 1228 struct vndbuf *nbp; 1229 1230 /* 1231 * translate byteoffset into block number. return values: 1232 * vp = vnode of underlying device 1233 * nbn = new block number (on underlying vnode dev) 1234 * nra = num blocks we can read-ahead (excludes requested 1235 * block) 1236 */ 1237 nra = 0; 1238 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize, 1239 &vp, &nbn, &nra); 1240 1241 if (error == 0 && nbn == (daddr_t)-1) { 1242 /* 1243 * this used to just set error, but that doesn't 1244 * do the right thing. Instead, it causes random 1245 * memory errors. The panic() should remain until 1246 * this condition doesn't destabilize the system. 1247 */ 1248 #if 1 1249 panic("sw_reg_strategy: swap to sparse file"); 1250 #else 1251 error = EIO; /* failure */ 1252 #endif 1253 } 1254 1255 /* 1256 * punt if there was an error or a hole in the file. 1257 * we must wait for any i/o ops we have already started 1258 * to finish before returning. 1259 * 1260 * XXX we could deal with holes here but it would be 1261 * a hassle (in the write case). 1262 */ 1263 if (error) { 1264 s = splbio(); 1265 vnx->vx_error = error; /* pass error up */ 1266 goto out; 1267 } 1268 1269 /* 1270 * compute the size ("sz") of this transfer (in bytes). 1271 */ 1272 off = byteoff % sdp->swd_bsize; 1273 sz = (1 + nra) * sdp->swd_bsize - off; 1274 if (sz > resid) 1275 sz = resid; 1276 1277 UVMHIST_LOG(pdhist, "sw_reg_strategy: " 1278 "vp %p/%p offset 0x%x/0x%x", 1279 sdp->swd_vp, vp, byteoff, nbn); 1280 1281 /* 1282 * now get a buf structure. note that the vb_buf is 1283 * at the front of the nbp structure so that you can 1284 * cast pointers between the two structure easily. 1285 */ 1286 getvndbuf(nbp); 1287 BUF_INIT(&nbp->vb_buf); 1288 nbp->vb_buf.b_flags = bp->b_flags | B_CALL; 1289 nbp->vb_buf.b_bcount = sz; 1290 nbp->vb_buf.b_bufsize = sz; 1291 nbp->vb_buf.b_error = 0; 1292 nbp->vb_buf.b_data = addr; 1293 nbp->vb_buf.b_lblkno = 0; 1294 nbp->vb_buf.b_blkno = nbn + btodb(off); 1295 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno; 1296 nbp->vb_buf.b_iodone = sw_reg_iodone; 1297 nbp->vb_buf.b_vp = vp; 1298 if (vp->v_type == VBLK) { 1299 nbp->vb_buf.b_dev = vp->v_rdev; 1300 } 1301 1302 nbp->vb_xfer = vnx; /* patch it back in to vnx */ 1303 1304 /* 1305 * Just sort by block number 1306 */ 1307 s = splbio(); 1308 if (vnx->vx_error != 0) { 1309 putvndbuf(nbp); 1310 goto out; 1311 } 1312 vnx->vx_pending++; 1313 1314 /* sort it in and start I/O if we are not over our limit */ 1315 BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf); 1316 sw_reg_start(sdp); 1317 splx(s); 1318 1319 /* 1320 * advance to the next I/O 1321 */ 1322 byteoff += sz; 1323 addr += sz; 1324 } 1325 1326 s = splbio(); 1327 1328 out: /* Arrive here at splbio */ 1329 vnx->vx_flags &= ~VX_BUSY; 1330 if (vnx->vx_pending == 0) { 1331 if (vnx->vx_error != 0) { 1332 bp->b_error = vnx->vx_error; 1333 bp->b_flags |= B_ERROR; 1334 } 1335 putvndxfer(vnx); 1336 biodone(bp); 1337 } 1338 splx(s); 1339 } 1340 1341 /* 1342 * sw_reg_start: start an I/O request on the requested swapdev 1343 * 1344 * => reqs are sorted by b_rawblkno (above) 1345 */ 1346 static void 1347 sw_reg_start(sdp) 1348 struct swapdev *sdp; 1349 { 1350 struct buf *bp; 1351 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist); 1352 1353 /* recursion control */ 1354 if ((sdp->swd_flags & SWF_BUSY) != 0) 1355 return; 1356 1357 sdp->swd_flags |= SWF_BUSY; 1358 1359 while (sdp->swd_active < sdp->swd_maxactive) { 1360 bp = BUFQ_GET(&sdp->swd_tab); 1361 if (bp == NULL) 1362 break; 1363 sdp->swd_active++; 1364 1365 UVMHIST_LOG(pdhist, 1366 "sw_reg_start: bp %p vp %p blkno %p cnt %lx", 1367 bp, bp->b_vp, bp->b_blkno, bp->b_bcount); 1368 if ((bp->b_flags & B_READ) == 0) 1369 V_INCR_NUMOUTPUT(bp->b_vp); 1370 1371 VOP_STRATEGY(bp->b_vp, bp); 1372 } 1373 sdp->swd_flags &= ~SWF_BUSY; 1374 } 1375 1376 /* 1377 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup 1378 * 1379 * => note that we can recover the vndbuf struct by casting the buf ptr 1380 */ 1381 static void 1382 sw_reg_iodone(bp) 1383 struct buf *bp; 1384 { 1385 struct vndbuf *vbp = (struct vndbuf *) bp; 1386 struct vndxfer *vnx = vbp->vb_xfer; 1387 struct buf *pbp = vnx->vx_bp; /* parent buffer */ 1388 struct swapdev *sdp = vnx->vx_sdp; 1389 int s, resid, error; 1390 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist); 1391 1392 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p", 1393 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data); 1394 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx", 1395 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0); 1396 1397 /* 1398 * protect vbp at splbio and update. 1399 */ 1400 1401 s = splbio(); 1402 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid; 1403 pbp->b_resid -= resid; 1404 vnx->vx_pending--; 1405 1406 if (vbp->vb_buf.b_flags & B_ERROR) { 1407 /* pass error upward */ 1408 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO; 1409 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0); 1410 vnx->vx_error = error; 1411 } 1412 1413 /* 1414 * kill vbp structure 1415 */ 1416 putvndbuf(vbp); 1417 1418 /* 1419 * wrap up this transaction if it has run to completion or, in 1420 * case of an error, when all auxiliary buffers have returned. 1421 */ 1422 if (vnx->vx_error != 0) { 1423 /* pass error upward */ 1424 pbp->b_flags |= B_ERROR; 1425 pbp->b_error = vnx->vx_error; 1426 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) { 1427 putvndxfer(vnx); 1428 biodone(pbp); 1429 } 1430 } else if (pbp->b_resid == 0) { 1431 KASSERT(vnx->vx_pending == 0); 1432 if ((vnx->vx_flags & VX_BUSY) == 0) { 1433 UVMHIST_LOG(pdhist, " iodone error=%d !", 1434 pbp, vnx->vx_error, 0, 0); 1435 putvndxfer(vnx); 1436 biodone(pbp); 1437 } 1438 } 1439 1440 /* 1441 * done! start next swapdev I/O if one is pending 1442 */ 1443 sdp->swd_active--; 1444 sw_reg_start(sdp); 1445 splx(s); 1446 } 1447 1448 1449 /* 1450 * uvm_swap_alloc: allocate space on swap 1451 * 1452 * => allocation is done "round robin" down the priority list, as we 1453 * allocate in a priority we "rotate" the circle queue. 1454 * => space can be freed with uvm_swap_free 1455 * => we return the page slot number in /dev/drum (0 == invalid slot) 1456 * => we lock uvm.swap_data_lock 1457 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM 1458 */ 1459 int 1460 uvm_swap_alloc(nslots, lessok) 1461 int *nslots; /* IN/OUT */ 1462 boolean_t lessok; 1463 { 1464 struct swapdev *sdp; 1465 struct swappri *spp; 1466 u_long result; 1467 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist); 1468 1469 /* 1470 * no swap devices configured yet? definite failure. 1471 */ 1472 if (uvmexp.nswapdev < 1) 1473 return 0; 1474 1475 /* 1476 * lock data lock, convert slots into blocks, and enter loop 1477 */ 1478 simple_lock(&uvm.swap_data_lock); 1479 1480 ReTry: /* XXXMRG */ 1481 LIST_FOREACH(spp, &swap_priority, spi_swappri) { 1482 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) { 1483 /* if it's not enabled, then we can't swap from it */ 1484 if ((sdp->swd_flags & SWF_ENABLE) == 0) 1485 continue; 1486 if (sdp->swd_npginuse + *nslots > sdp->swd_npages) 1487 continue; 1488 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN, 1489 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT, 1490 &result) != 0) { 1491 continue; 1492 } 1493 1494 /* 1495 * successful allocation! now rotate the circleq. 1496 */ 1497 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next); 1498 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next); 1499 sdp->swd_npginuse += *nslots; 1500 uvmexp.swpginuse += *nslots; 1501 simple_unlock(&uvm.swap_data_lock); 1502 /* done! return drum slot number */ 1503 UVMHIST_LOG(pdhist, 1504 "success! returning %d slots starting at %d", 1505 *nslots, result + sdp->swd_drumoffset, 0, 0); 1506 return (result + sdp->swd_drumoffset); 1507 } 1508 } 1509 1510 /* XXXMRG: BEGIN HACK */ 1511 if (*nslots > 1 && lessok) { 1512 *nslots = 1; 1513 goto ReTry; /* XXXMRG: ugh! extent should support this for us */ 1514 } 1515 /* XXXMRG: END HACK */ 1516 1517 simple_unlock(&uvm.swap_data_lock); 1518 return 0; 1519 } 1520 1521 boolean_t 1522 uvm_swapisfull(void) 1523 { 1524 boolean_t rv; 1525 1526 simple_lock(&uvm.swap_data_lock); 1527 KASSERT(uvmexp.swpgonly <= uvmexp.swpages); 1528 rv = (uvmexp.swpgonly >= uvmexp.swpgavail); 1529 simple_unlock(&uvm.swap_data_lock); 1530 1531 return (rv); 1532 } 1533 1534 /* 1535 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors 1536 * 1537 * => we lock uvm.swap_data_lock 1538 */ 1539 void 1540 uvm_swap_markbad(startslot, nslots) 1541 int startslot; 1542 int nslots; 1543 { 1544 struct swapdev *sdp; 1545 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist); 1546 1547 simple_lock(&uvm.swap_data_lock); 1548 sdp = swapdrum_getsdp(startslot); 1549 KASSERT(sdp != NULL); 1550 1551 /* 1552 * we just keep track of how many pages have been marked bad 1553 * in this device, to make everything add up in swap_off(). 1554 * we assume here that the range of slots will all be within 1555 * one swap device. 1556 */ 1557 1558 KASSERT(uvmexp.swpgonly >= nslots); 1559 uvmexp.swpgonly -= nslots; 1560 sdp->swd_npgbad += nslots; 1561 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0); 1562 simple_unlock(&uvm.swap_data_lock); 1563 } 1564 1565 /* 1566 * uvm_swap_free: free swap slots 1567 * 1568 * => this can be all or part of an allocation made by uvm_swap_alloc 1569 * => we lock uvm.swap_data_lock 1570 */ 1571 void 1572 uvm_swap_free(startslot, nslots) 1573 int startslot; 1574 int nslots; 1575 { 1576 struct swapdev *sdp; 1577 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist); 1578 1579 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots, 1580 startslot, 0, 0); 1581 1582 /* 1583 * ignore attempts to free the "bad" slot. 1584 */ 1585 1586 if (startslot == SWSLOT_BAD) { 1587 return; 1588 } 1589 1590 /* 1591 * convert drum slot offset back to sdp, free the blocks 1592 * in the extent, and return. must hold pri lock to do 1593 * lookup and access the extent. 1594 */ 1595 1596 simple_lock(&uvm.swap_data_lock); 1597 sdp = swapdrum_getsdp(startslot); 1598 KASSERT(uvmexp.nswapdev >= 1); 1599 KASSERT(sdp != NULL); 1600 KASSERT(sdp->swd_npginuse >= nslots); 1601 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots, 1602 EX_MALLOCOK|EX_NOWAIT) != 0) { 1603 printf("warning: resource shortage: %d pages of swap lost\n", 1604 nslots); 1605 } 1606 sdp->swd_npginuse -= nslots; 1607 uvmexp.swpginuse -= nslots; 1608 simple_unlock(&uvm.swap_data_lock); 1609 } 1610 1611 /* 1612 * uvm_swap_put: put any number of pages into a contig place on swap 1613 * 1614 * => can be sync or async 1615 */ 1616 1617 int 1618 uvm_swap_put(swslot, ppsp, npages, flags) 1619 int swslot; 1620 struct vm_page **ppsp; 1621 int npages; 1622 int flags; 1623 { 1624 int error; 1625 1626 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE | 1627 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1628 return error; 1629 } 1630 1631 /* 1632 * uvm_swap_get: get a single page from swap 1633 * 1634 * => usually a sync op (from fault) 1635 */ 1636 1637 int 1638 uvm_swap_get(page, swslot, flags) 1639 struct vm_page *page; 1640 int swslot, flags; 1641 { 1642 int error; 1643 1644 uvmexp.nswget++; 1645 KASSERT(flags & PGO_SYNCIO); 1646 if (swslot == SWSLOT_BAD) { 1647 return EIO; 1648 } 1649 1650 error = uvm_swap_io(&page, swslot, 1, B_READ | 1651 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC)); 1652 if (error == 0) { 1653 1654 /* 1655 * this page is no longer only in swap. 1656 */ 1657 1658 simple_lock(&uvm.swap_data_lock); 1659 KASSERT(uvmexp.swpgonly > 0); 1660 uvmexp.swpgonly--; 1661 simple_unlock(&uvm.swap_data_lock); 1662 } 1663 return error; 1664 } 1665 1666 /* 1667 * uvm_swap_io: do an i/o operation to swap 1668 */ 1669 1670 static int 1671 uvm_swap_io(pps, startslot, npages, flags) 1672 struct vm_page **pps; 1673 int startslot, npages, flags; 1674 { 1675 daddr_t startblk; 1676 struct buf *bp; 1677 vaddr_t kva; 1678 int error, s, mapinflags; 1679 boolean_t write, async; 1680 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist); 1681 1682 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d", 1683 startslot, npages, flags, 0); 1684 1685 write = (flags & B_READ) == 0; 1686 async = (flags & B_ASYNC) != 0; 1687 1688 /* 1689 * convert starting drum slot to block number 1690 */ 1691 1692 startblk = btodb((u_int64_t)startslot << PAGE_SHIFT); 1693 1694 /* 1695 * first, map the pages into the kernel. 1696 */ 1697 1698 mapinflags = !write ? 1699 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ : 1700 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE; 1701 kva = uvm_pagermapin(pps, npages, mapinflags); 1702 1703 /* 1704 * now allocate a buf for the i/o. 1705 */ 1706 1707 s = splbio(); 1708 bp = pool_get(&bufpool, PR_WAITOK); 1709 splx(s); 1710 1711 /* 1712 * fill in the bp/sbp. we currently route our i/o through 1713 * /dev/drum's vnode [swapdev_vp]. 1714 */ 1715 1716 BUF_INIT(bp); 1717 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC)); 1718 bp->b_proc = &proc0; /* XXX */ 1719 bp->b_vnbufs.le_next = NOLIST; 1720 bp->b_data = (caddr_t)kva; 1721 bp->b_blkno = startblk; 1722 bp->b_vp = swapdev_vp; 1723 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT; 1724 1725 /* 1726 * bump v_numoutput (counter of number of active outputs). 1727 */ 1728 1729 if (write) { 1730 s = splbio(); 1731 V_INCR_NUMOUTPUT(swapdev_vp); 1732 splx(s); 1733 } 1734 1735 /* 1736 * for async ops we must set up the iodone handler. 1737 */ 1738 1739 if (async) { 1740 bp->b_flags |= B_CALL; 1741 bp->b_iodone = uvm_aio_biodone; 1742 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0); 1743 if (curproc == uvm.pagedaemon_proc) 1744 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1745 else 1746 BIO_SETPRIO(bp, BPRIO_TIMELIMITED); 1747 } else { 1748 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL); 1749 } 1750 UVMHIST_LOG(pdhist, 1751 "about to start io: data = %p blkno = 0x%x, bcount = %ld", 1752 bp->b_data, bp->b_blkno, bp->b_bcount, 0); 1753 1754 /* 1755 * now we start the I/O, and if async, return. 1756 */ 1757 1758 VOP_STRATEGY(swapdev_vp, bp); 1759 if (async) 1760 return 0; 1761 1762 /* 1763 * must be sync i/o. wait for it to finish 1764 */ 1765 1766 error = biowait(bp); 1767 1768 /* 1769 * kill the pager mapping 1770 */ 1771 1772 uvm_pagermapout(kva, npages); 1773 1774 /* 1775 * now dispose of the buf and we're done. 1776 */ 1777 1778 s = splbio(); 1779 if (write) 1780 vwakeup(bp); 1781 pool_put(&bufpool, bp); 1782 splx(s); 1783 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0); 1784 return (error); 1785 } 1786