xref: /netbsd-src/sys/uvm/uvm_swap.c (revision 23c8222edbfb0f0932d88a8351d3a0cf817dfb9e)
1 /*	$NetBSD: uvm_swap.c,v 1.89 2004/10/28 07:07:47 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the author may not be used to endorse or promote products
16  *    derived from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28  * SUCH DAMAGE.
29  *
30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32  */
33 
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.89 2004/10/28 07:07:47 yamt Exp $");
36 
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41 
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/mount.h>
57 #include <sys/pool.h>
58 #include <sys/sa.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 
62 #include <uvm/uvm.h>
63 
64 #include <miscfs/specfs/specdev.h>
65 
66 /*
67  * uvm_swap.c: manage configuration and i/o to swap space.
68  */
69 
70 /*
71  * swap space is managed in the following way:
72  *
73  * each swap partition or file is described by a "swapdev" structure.
74  * each "swapdev" structure contains a "swapent" structure which contains
75  * information that is passed up to the user (via system calls).
76  *
77  * each swap partition is assigned a "priority" (int) which controls
78  * swap parition usage.
79  *
80  * the system maintains a global data structure describing all swap
81  * partitions/files.   there is a sorted LIST of "swappri" structures
82  * which describe "swapdev"'s at that priority.   this LIST is headed
83  * by the "swap_priority" global var.    each "swappri" contains a
84  * CIRCLEQ of "swapdev" structures at that priority.
85  *
86  * locking:
87  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
88  *    system call and prevents the swap priority list from changing
89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
90  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
91  *    structures including the priority list, the swapdev structures,
92  *    and the swapmap extent.
93  *
94  * each swap device has the following info:
95  *  - swap device in use (could be disabled, preventing future use)
96  *  - swap enabled (allows new allocations on swap)
97  *  - map info in /dev/drum
98  *  - vnode pointer
99  * for swap files only:
100  *  - block size
101  *  - max byte count in buffer
102  *  - buffer
103  *
104  * userland controls and configures swap with the swapctl(2) system call.
105  * the sys_swapctl performs the following operations:
106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
108  *	(passed in via "arg") of a size passed in via "misc" ... we load
109  *	the current swap config into the array. The actual work is done
110  *	in the uvm_swap_stats(9) function.
111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112  *	priority in "misc", start swapping on it.
113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
115  *	"misc")
116  */
117 
118 /*
119  * swapdev: describes a single swap partition/file
120  *
121  * note the following should be true:
122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124  */
125 struct swapdev {
126 	struct oswapent swd_ose;
127 #define	swd_dev		swd_ose.ose_dev		/* device id */
128 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
129 #define	swd_priority	swd_ose.ose_priority	/* our priority */
130 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
131 	char			*swd_path;	/* saved pathname of device */
132 	int			swd_pathlen;	/* length of pathname */
133 	int			swd_npages;	/* #pages we can use */
134 	int			swd_npginuse;	/* #pages in use */
135 	int			swd_npgbad;	/* #pages bad */
136 	int			swd_drumoffset;	/* page0 offset in drum */
137 	int			swd_drumsize;	/* #pages in drum */
138 	struct extent		*swd_ex;	/* extent for this swapdev */
139 	char			swd_exname[12];	/* name of extent above */
140 	struct vnode		*swd_vp;	/* backing vnode */
141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
142 
143 	int			swd_bsize;	/* blocksize (bytes) */
144 	int			swd_maxactive;	/* max active i/o reqs */
145 	struct bufq_state	swd_tab;	/* buffer list */
146 	int			swd_active;	/* number of active buffers */
147 };
148 
149 /*
150  * swap device priority entry; the list is kept sorted on `spi_priority'.
151  */
152 struct swappri {
153 	int			spi_priority;     /* priority */
154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
155 	/* circleq of swapdevs at this priority */
156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
157 };
158 
159 /*
160  * The following two structures are used to keep track of data transfers
161  * on swap devices associated with regular files.
162  * NOTE: this code is more or less a copy of vnd.c; we use the same
163  * structure names here to ease porting..
164  */
165 struct vndxfer {
166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
167 	struct swapdev	*vx_sdp;
168 	int		vx_error;
169 	int		vx_pending;	/* # of pending aux buffers */
170 	int		vx_flags;
171 #define VX_BUSY		1
172 #define VX_DEAD		2
173 };
174 
175 struct vndbuf {
176 	struct buf	vb_buf;
177 	struct vndxfer	*vb_xfer;
178 };
179 
180 
181 /*
182  * We keep a of pool vndbuf's and vndxfer structures.
183  */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186 
187 #define	getvndxfer(vnx)	do {						\
188 	int s = splbio();						\
189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
190 	splx(s);							\
191 } while (/*CONSTCOND*/ 0)
192 
193 #define putvndxfer(vnx) {						\
194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
195 }
196 
197 #define	getvndbuf(vbp)	do {						\
198 	int s = splbio();						\
199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
200 	splx(s);							\
201 } while (/*CONSTCOND*/ 0)
202 
203 #define putvndbuf(vbp) {						\
204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
205 }
206 
207 /*
208  * local variables
209  */
210 static struct extent *swapmap;		/* controls the mapping of /dev/drum */
211 
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213 
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217 
218 /* locks */
219 struct lock swap_syscall_lock;
220 
221 /*
222  * prototypes
223  */
224 static struct swapdev	*swapdrum_getsdp(int);
225 
226 static struct swapdev	*swaplist_find(struct vnode *, int);
227 static void		 swaplist_insert(struct swapdev *,
228 					 struct swappri *, int);
229 static void		 swaplist_trim(void);
230 
231 static int swap_on(struct proc *, struct swapdev *);
232 static int swap_off(struct proc *, struct swapdev *);
233 
234 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
235 static void sw_reg_iodone(struct buf *);
236 static void sw_reg_start(struct swapdev *);
237 
238 static int uvm_swap_io(struct vm_page **, int, int, int);
239 
240 dev_type_read(swread);
241 dev_type_write(swwrite);
242 dev_type_strategy(swstrategy);
243 
244 const struct bdevsw swap_bdevsw = {
245 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
246 };
247 
248 const struct cdevsw swap_cdevsw = {
249 	nullopen, nullclose, swread, swwrite, noioctl,
250 	nostop, notty, nopoll, nommap, nokqfilter
251 };
252 
253 /*
254  * uvm_swap_init: init the swap system data structures and locks
255  *
256  * => called at boot time from init_main.c after the filesystems
257  *	are brought up (which happens after uvm_init())
258  */
259 void
260 uvm_swap_init()
261 {
262 	UVMHIST_FUNC("uvm_swap_init");
263 
264 	UVMHIST_CALLED(pdhist);
265 	/*
266 	 * first, init the swap list, its counter, and its lock.
267 	 * then get a handle on the vnode for /dev/drum by using
268 	 * the its dev_t number ("swapdev", from MD conf.c).
269 	 */
270 
271 	LIST_INIT(&swap_priority);
272 	uvmexp.nswapdev = 0;
273 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
274 	simple_lock_init(&uvm.swap_data_lock);
275 
276 	if (bdevvp(swapdev, &swapdev_vp))
277 		panic("uvm_swap_init: can't get vnode for swap device");
278 
279 	/*
280 	 * create swap block resource map to map /dev/drum.   the range
281 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
282 	 * that block 0 is reserved (used to indicate an allocation
283 	 * failure, or no allocation).
284 	 */
285 	swapmap = extent_create("swapmap", 1, INT_MAX,
286 				M_VMSWAP, 0, 0, EX_NOWAIT);
287 	if (swapmap == 0)
288 		panic("uvm_swap_init: extent_create failed");
289 
290 	/*
291 	 * done!
292 	 */
293 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
294 }
295 
296 /*
297  * swaplist functions: functions that operate on the list of swap
298  * devices on the system.
299  */
300 
301 /*
302  * swaplist_insert: insert swap device "sdp" into the global list
303  *
304  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
305  * => caller must provide a newly malloc'd swappri structure (we will
306  *	FREE it if we don't need it... this it to prevent malloc blocking
307  *	here while adding swap)
308  */
309 static void
310 swaplist_insert(sdp, newspp, priority)
311 	struct swapdev *sdp;
312 	struct swappri *newspp;
313 	int priority;
314 {
315 	struct swappri *spp, *pspp;
316 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
317 
318 	/*
319 	 * find entry at or after which to insert the new device.
320 	 */
321 	pspp = NULL;
322 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
323 		if (priority <= spp->spi_priority)
324 			break;
325 		pspp = spp;
326 	}
327 
328 	/*
329 	 * new priority?
330 	 */
331 	if (spp == NULL || spp->spi_priority != priority) {
332 		spp = newspp;  /* use newspp! */
333 		UVMHIST_LOG(pdhist, "created new swappri = %d",
334 			    priority, 0, 0, 0);
335 
336 		spp->spi_priority = priority;
337 		CIRCLEQ_INIT(&spp->spi_swapdev);
338 
339 		if (pspp)
340 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
341 		else
342 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
343 	} else {
344 	  	/* we don't need a new priority structure, free it */
345 		FREE(newspp, M_VMSWAP);
346 	}
347 
348 	/*
349 	 * priority found (or created).   now insert on the priority's
350 	 * circleq list and bump the total number of swapdevs.
351 	 */
352 	sdp->swd_priority = priority;
353 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
354 	uvmexp.nswapdev++;
355 }
356 
357 /*
358  * swaplist_find: find and optionally remove a swap device from the
359  *	global list.
360  *
361  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
362  * => we return the swapdev we found (and removed)
363  */
364 static struct swapdev *
365 swaplist_find(vp, remove)
366 	struct vnode *vp;
367 	boolean_t remove;
368 {
369 	struct swapdev *sdp;
370 	struct swappri *spp;
371 
372 	/*
373 	 * search the lists for the requested vp
374 	 */
375 
376 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
377 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
378 			if (sdp->swd_vp == vp) {
379 				if (remove) {
380 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
381 					    sdp, swd_next);
382 					uvmexp.nswapdev--;
383 				}
384 				return(sdp);
385 			}
386 		}
387 	}
388 	return (NULL);
389 }
390 
391 
392 /*
393  * swaplist_trim: scan priority list for empty priority entries and kill
394  *	them.
395  *
396  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
397  */
398 static void
399 swaplist_trim()
400 {
401 	struct swappri *spp, *nextspp;
402 
403 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
404 		nextspp = LIST_NEXT(spp, spi_swappri);
405 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
406 		    (void *)&spp->spi_swapdev)
407 			continue;
408 		LIST_REMOVE(spp, spi_swappri);
409 		free(spp, M_VMSWAP);
410 	}
411 }
412 
413 /*
414  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
415  *	to the "swapdev" that maps that section of the drum.
416  *
417  * => each swapdev takes one big contig chunk of the drum
418  * => caller must hold uvm.swap_data_lock
419  */
420 static struct swapdev *
421 swapdrum_getsdp(pgno)
422 	int pgno;
423 {
424 	struct swapdev *sdp;
425 	struct swappri *spp;
426 
427 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
428 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
429 			if (sdp->swd_flags & SWF_FAKE)
430 				continue;
431 			if (pgno >= sdp->swd_drumoffset &&
432 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
433 				return sdp;
434 			}
435 		}
436 	}
437 	return NULL;
438 }
439 
440 
441 /*
442  * sys_swapctl: main entry point for swapctl(2) system call
443  * 	[with two helper functions: swap_on and swap_off]
444  */
445 int
446 sys_swapctl(l, v, retval)
447 	struct lwp *l;
448 	void *v;
449 	register_t *retval;
450 {
451 	struct sys_swapctl_args /* {
452 		syscallarg(int) cmd;
453 		syscallarg(void *) arg;
454 		syscallarg(int) misc;
455 	} */ *uap = (struct sys_swapctl_args *)v;
456 	struct proc *p = l->l_proc;
457 	struct vnode *vp;
458 	struct nameidata nd;
459 	struct swappri *spp;
460 	struct swapdev *sdp;
461 	struct swapent *sep;
462 	char	userpath[PATH_MAX + 1];
463 	size_t	len;
464 	int	error, misc;
465 	int	priority;
466 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
467 
468 	misc = SCARG(uap, misc);
469 
470 	/*
471 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
472 	 */
473 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
474 
475 	/*
476 	 * we handle the non-priv NSWAP and STATS request first.
477 	 *
478 	 * SWAP_NSWAP: return number of config'd swap devices
479 	 * [can also be obtained with uvmexp sysctl]
480 	 */
481 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
482 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
483 		    0, 0, 0);
484 		*retval = uvmexp.nswapdev;
485 		error = 0;
486 		goto out;
487 	}
488 
489 	/*
490 	 * SWAP_STATS: get stats on current # of configured swap devs
491 	 *
492 	 * note that the swap_priority list can't change as long
493 	 * as we are holding the swap_syscall_lock.  we don't want
494 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
495 	 * copyout() and we don't want to be holding that lock then!
496 	 */
497 	if (SCARG(uap, cmd) == SWAP_STATS
498 #if defined(COMPAT_13)
499 	    || SCARG(uap, cmd) == SWAP_OSTATS
500 #endif
501 	    ) {
502 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
503 			misc = uvmexp.nswapdev;
504 #if defined(COMPAT_13)
505 		if (SCARG(uap, cmd) == SWAP_OSTATS)
506 			len = sizeof(struct oswapent) * misc;
507 		else
508 #endif
509 			len = sizeof(struct swapent) * misc;
510 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
511 
512 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
513 		error = copyout(sep, (void *)SCARG(uap, arg), len);
514 
515 		free(sep, M_TEMP);
516 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
517 		goto out;
518 	}
519 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
520 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
521 
522 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
523 		goto out;
524 	}
525 
526 	/*
527 	 * all other requests require superuser privs.   verify.
528 	 */
529 	if ((error = suser(p->p_ucred, &p->p_acflag)))
530 		goto out;
531 
532 	/*
533 	 * at this point we expect a path name in arg.   we will
534 	 * use namei() to gain a vnode reference (vref), and lock
535 	 * the vnode (VOP_LOCK).
536 	 *
537 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
538 	 * miniroot)
539 	 */
540 	if (SCARG(uap, arg) == NULL) {
541 		vp = rootvp;		/* miniroot */
542 		if (vget(vp, LK_EXCLUSIVE)) {
543 			error = EBUSY;
544 			goto out;
545 		}
546 		if (SCARG(uap, cmd) == SWAP_ON &&
547 		    copystr("miniroot", userpath, sizeof userpath, &len))
548 			panic("swapctl: miniroot copy failed");
549 	} else {
550 		int	space;
551 		char	*where;
552 
553 		if (SCARG(uap, cmd) == SWAP_ON) {
554 			if ((error = copyinstr(SCARG(uap, arg), userpath,
555 			    sizeof userpath, &len)))
556 				goto out;
557 			space = UIO_SYSSPACE;
558 			where = userpath;
559 		} else {
560 			space = UIO_USERSPACE;
561 			where = (char *)SCARG(uap, arg);
562 		}
563 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
564 		if ((error = namei(&nd)))
565 			goto out;
566 		vp = nd.ni_vp;
567 	}
568 	/* note: "vp" is referenced and locked */
569 
570 	error = 0;		/* assume no error */
571 	switch(SCARG(uap, cmd)) {
572 
573 	case SWAP_DUMPDEV:
574 		if (vp->v_type != VBLK) {
575 			error = ENOTBLK;
576 			break;
577 		}
578 		dumpdev = vp->v_rdev;
579 		cpu_dumpconf();
580 		break;
581 
582 	case SWAP_CTL:
583 		/*
584 		 * get new priority, remove old entry (if any) and then
585 		 * reinsert it in the correct place.  finally, prune out
586 		 * any empty priority structures.
587 		 */
588 		priority = SCARG(uap, misc);
589 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
590 		simple_lock(&uvm.swap_data_lock);
591 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
592 			error = ENOENT;
593 		} else {
594 			swaplist_insert(sdp, spp, priority);
595 			swaplist_trim();
596 		}
597 		simple_unlock(&uvm.swap_data_lock);
598 		if (error)
599 			free(spp, M_VMSWAP);
600 		break;
601 
602 	case SWAP_ON:
603 
604 		/*
605 		 * check for duplicates.   if none found, then insert a
606 		 * dummy entry on the list to prevent someone else from
607 		 * trying to enable this device while we are working on
608 		 * it.
609 		 */
610 
611 		priority = SCARG(uap, misc);
612 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
613 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
614 		memset(sdp, 0, sizeof(*sdp));
615 		sdp->swd_flags = SWF_FAKE;
616 		sdp->swd_vp = vp;
617 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
618 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
619 		simple_lock(&uvm.swap_data_lock);
620 		if (swaplist_find(vp, 0) != NULL) {
621 			error = EBUSY;
622 			simple_unlock(&uvm.swap_data_lock);
623 			bufq_free(&sdp->swd_tab);
624 			free(sdp, M_VMSWAP);
625 			free(spp, M_VMSWAP);
626 			break;
627 		}
628 		swaplist_insert(sdp, spp, priority);
629 		simple_unlock(&uvm.swap_data_lock);
630 
631 		sdp->swd_pathlen = len;
632 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
633 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
634 			panic("swapctl: copystr");
635 
636 		/*
637 		 * we've now got a FAKE placeholder in the swap list.
638 		 * now attempt to enable swap on it.  if we fail, undo
639 		 * what we've done and kill the fake entry we just inserted.
640 		 * if swap_on is a success, it will clear the SWF_FAKE flag
641 		 */
642 
643 		if ((error = swap_on(p, sdp)) != 0) {
644 			simple_lock(&uvm.swap_data_lock);
645 			(void) swaplist_find(vp, 1);  /* kill fake entry */
646 			swaplist_trim();
647 			simple_unlock(&uvm.swap_data_lock);
648 			bufq_free(&sdp->swd_tab);
649 			free(sdp->swd_path, M_VMSWAP);
650 			free(sdp, M_VMSWAP);
651 			break;
652 		}
653 		break;
654 
655 	case SWAP_OFF:
656 		simple_lock(&uvm.swap_data_lock);
657 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
658 			simple_unlock(&uvm.swap_data_lock);
659 			error = ENXIO;
660 			break;
661 		}
662 
663 		/*
664 		 * If a device isn't in use or enabled, we
665 		 * can't stop swapping from it (again).
666 		 */
667 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
668 			simple_unlock(&uvm.swap_data_lock);
669 			error = EBUSY;
670 			break;
671 		}
672 
673 		/*
674 		 * do the real work.
675 		 */
676 		error = swap_off(p, sdp);
677 		break;
678 
679 	default:
680 		error = EINVAL;
681 	}
682 
683 	/*
684 	 * done!  release the ref gained by namei() and unlock.
685 	 */
686 	vput(vp);
687 
688 out:
689 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
690 
691 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
692 	return (error);
693 }
694 
695 /*
696  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
697  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
698  * emulation to use it directly without going through sys_swapctl().
699  * The problem with using sys_swapctl() there is that it involves
700  * copying the swapent array to the stackgap, and this array's size
701  * is not known at build time. Hence it would not be possible to
702  * ensure it would fit in the stackgap in any case.
703  */
704 void
705 uvm_swap_stats(cmd, sep, sec, retval)
706 	int cmd;
707 	struct swapent *sep;
708 	int sec;
709 	register_t *retval;
710 {
711 	struct swappri *spp;
712 	struct swapdev *sdp;
713 	int count = 0;
714 
715 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
716 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
717 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
718 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
719 		  	/*
720 			 * backwards compatibility for system call.
721 			 * note that we use 'struct oswapent' as an
722 			 * overlay into both 'struct swapdev' and
723 			 * the userland 'struct swapent', as we
724 			 * want to retain backwards compatibility
725 			 * with NetBSD 1.3.
726 			 */
727 			sdp->swd_ose.ose_inuse =
728 			    btodb((u_int64_t)sdp->swd_npginuse <<
729 			    PAGE_SHIFT);
730 			(void)memcpy(sep, &sdp->swd_ose,
731 			    sizeof(struct oswapent));
732 
733 			/* now copy out the path if necessary */
734 #if defined(COMPAT_13)
735 			if (cmd == SWAP_STATS)
736 #endif
737 				(void)memcpy(&sep->se_path, sdp->swd_path,
738 				    sdp->swd_pathlen);
739 
740 			count++;
741 #if defined(COMPAT_13)
742 			if (cmd == SWAP_OSTATS)
743 				sep = (struct swapent *)
744 				    ((struct oswapent *)sep + 1);
745 			else
746 #endif
747 				sep++;
748 		}
749 	}
750 
751 	*retval = count;
752 	return;
753 }
754 
755 /*
756  * swap_on: attempt to enable a swapdev for swapping.   note that the
757  *	swapdev is already on the global list, but disabled (marked
758  *	SWF_FAKE).
759  *
760  * => we avoid the start of the disk (to protect disk labels)
761  * => we also avoid the miniroot, if we are swapping to root.
762  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
763  *	if needed.
764  */
765 static int
766 swap_on(p, sdp)
767 	struct proc *p;
768 	struct swapdev *sdp;
769 {
770 	static int count = 0;	/* static */
771 	struct vnode *vp;
772 	int error, npages, nblocks, size;
773 	long addr;
774 	u_long result;
775 	struct vattr va;
776 #ifdef NFS
777 	extern int (**nfsv2_vnodeop_p)(void *);
778 #endif /* NFS */
779 	const struct bdevsw *bdev;
780 	dev_t dev;
781 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
782 
783 	/*
784 	 * we want to enable swapping on sdp.   the swd_vp contains
785 	 * the vnode we want (locked and ref'd), and the swd_dev
786 	 * contains the dev_t of the file, if it a block device.
787 	 */
788 
789 	vp = sdp->swd_vp;
790 	dev = sdp->swd_dev;
791 
792 	/*
793 	 * open the swap file (mostly useful for block device files to
794 	 * let device driver know what is up).
795 	 *
796 	 * we skip the open/close for root on swap because the root
797 	 * has already been opened when root was mounted (mountroot).
798 	 */
799 	if (vp != rootvp) {
800 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
801 			return (error);
802 	}
803 
804 	/* XXX this only works for block devices */
805 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
806 
807 	/*
808 	 * we now need to determine the size of the swap area.   for
809 	 * block specials we can call the d_psize function.
810 	 * for normal files, we must stat [get attrs].
811 	 *
812 	 * we put the result in nblks.
813 	 * for normal files, we also want the filesystem block size
814 	 * (which we get with statfs).
815 	 */
816 	switch (vp->v_type) {
817 	case VBLK:
818 		bdev = bdevsw_lookup(dev);
819 		if (bdev == NULL || bdev->d_psize == NULL ||
820 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
821 			error = ENXIO;
822 			goto bad;
823 		}
824 		break;
825 
826 	case VREG:
827 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
828 			goto bad;
829 		nblocks = (int)btodb(va.va_size);
830 		if ((error =
831 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
832 			goto bad;
833 
834 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
835 		/*
836 		 * limit the max # of outstanding I/O requests we issue
837 		 * at any one time.   take it easy on NFS servers.
838 		 */
839 #ifdef NFS
840 		if (vp->v_op == nfsv2_vnodeop_p)
841 			sdp->swd_maxactive = 2; /* XXX */
842 		else
843 #endif /* NFS */
844 			sdp->swd_maxactive = 8; /* XXX */
845 		break;
846 
847 	default:
848 		error = ENXIO;
849 		goto bad;
850 	}
851 
852 	/*
853 	 * save nblocks in a safe place and convert to pages.
854 	 */
855 
856 	sdp->swd_ose.ose_nblks = nblocks;
857 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
858 
859 	/*
860 	 * for block special files, we want to make sure that leave
861 	 * the disklabel and bootblocks alone, so we arrange to skip
862 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
863 	 * note that because of this the "size" can be less than the
864 	 * actual number of blocks on the device.
865 	 */
866 	if (vp->v_type == VBLK) {
867 		/* we use pages 1 to (size - 1) [inclusive] */
868 		size = npages - 1;
869 		addr = 1;
870 	} else {
871 		/* we use pages 0 to (size - 1) [inclusive] */
872 		size = npages;
873 		addr = 0;
874 	}
875 
876 	/*
877 	 * make sure we have enough blocks for a reasonable sized swap
878 	 * area.   we want at least one page.
879 	 */
880 
881 	if (size < 1) {
882 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
883 		error = EINVAL;
884 		goto bad;
885 	}
886 
887 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
888 
889 	/*
890 	 * now we need to allocate an extent to manage this swap device
891 	 */
892 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
893 	    count++);
894 
895 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
896 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
897 				    0, 0, EX_WAITOK);
898 	/* allocate the `saved' region from the extent so it won't be used */
899 	if (addr) {
900 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
901 			panic("disklabel region");
902 	}
903 
904 	/*
905 	 * if the vnode we are swapping to is the root vnode
906 	 * (i.e. we are swapping to the miniroot) then we want
907 	 * to make sure we don't overwrite it.   do a statfs to
908 	 * find its size and skip over it.
909 	 */
910 	if (vp == rootvp) {
911 		struct mount *mp;
912 		struct statvfs *sp;
913 		int rootblocks, rootpages;
914 
915 		mp = rootvnode->v_mount;
916 		sp = &mp->mnt_stat;
917 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
918 		/*
919 		 * XXX: sp->f_blocks isn't the total number of
920 		 * blocks in the filesystem, it's the number of
921 		 * data blocks.  so, our rootblocks almost
922 		 * definitely underestimates the total size
923 		 * of the filesystem - how badly depends on the
924 		 * details of the filesystem type.  there isn't
925 		 * an obvious way to deal with this cleanly
926 		 * and perfectly, so for now we just pad our
927 		 * rootblocks estimate with an extra 5 percent.
928 		 */
929 		rootblocks += (rootblocks >> 5) +
930 			(rootblocks >> 6) +
931 			(rootblocks >> 7);
932 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
933 		if (rootpages > size)
934 			panic("swap_on: miniroot larger than swap?");
935 
936 		if (extent_alloc_region(sdp->swd_ex, addr,
937 					rootpages, EX_WAITOK))
938 			panic("swap_on: unable to preserve miniroot");
939 
940 		size -= rootpages;
941 		printf("Preserved %d pages of miniroot ", rootpages);
942 		printf("leaving %d pages of swap\n", size);
943 	}
944 
945   	/*
946 	 * try to add anons to reflect the new swap space.
947 	 */
948 
949 	error = uvm_anon_add(size);
950 	if (error) {
951 		goto bad;
952 	}
953 
954 	/*
955 	 * add a ref to vp to reflect usage as a swap device.
956 	 */
957 	vref(vp);
958 
959 	/*
960 	 * now add the new swapdev to the drum and enable.
961 	 */
962 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
963 	    EX_WAITOK, &result))
964 		panic("swapdrum_add");
965 
966 	sdp->swd_drumoffset = (int)result;
967 	sdp->swd_drumsize = npages;
968 	sdp->swd_npages = size;
969 	simple_lock(&uvm.swap_data_lock);
970 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
971 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
972 	uvmexp.swpages += size;
973 	uvmexp.swpgavail += size;
974 	simple_unlock(&uvm.swap_data_lock);
975 	return (0);
976 
977 	/*
978 	 * failure: clean up and return error.
979 	 */
980 
981 bad:
982 	if (sdp->swd_ex) {
983 		extent_destroy(sdp->swd_ex);
984 	}
985 	if (vp != rootvp) {
986 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
987 	}
988 	return (error);
989 }
990 
991 /*
992  * swap_off: stop swapping on swapdev
993  *
994  * => swap data should be locked, we will unlock.
995  */
996 static int
997 swap_off(p, sdp)
998 	struct proc *p;
999 	struct swapdev *sdp;
1000 {
1001 	int npages =  sdp->swd_npages;
1002 
1003 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1004 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1005 
1006 	/* disable the swap area being removed */
1007 	sdp->swd_flags &= ~SWF_ENABLE;
1008 	uvmexp.swpgavail -= npages;
1009 	simple_unlock(&uvm.swap_data_lock);
1010 
1011 	/*
1012 	 * the idea is to find all the pages that are paged out to this
1013 	 * device, and page them all in.  in uvm, swap-backed pageable
1014 	 * memory can take two forms: aobjs and anons.  call the
1015 	 * swapoff hook for each subsystem to bring in pages.
1016 	 */
1017 
1018 	if (uao_swap_off(sdp->swd_drumoffset,
1019 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1020 	    anon_swap_off(sdp->swd_drumoffset,
1021 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
1022 
1023 		simple_lock(&uvm.swap_data_lock);
1024 		sdp->swd_flags |= SWF_ENABLE;
1025 		uvmexp.swpgavail += npages;
1026 		simple_unlock(&uvm.swap_data_lock);
1027 		return ENOMEM;
1028 	}
1029 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
1030 
1031 	/*
1032 	 * done with the vnode.
1033 	 * drop our ref on the vnode before calling VOP_CLOSE()
1034 	 * so that spec_close() can tell if this is the last close.
1035 	 */
1036 	vrele(sdp->swd_vp);
1037 	if (sdp->swd_vp != rootvp) {
1038 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1039 	}
1040 
1041 	/* remove anons from the system */
1042 	uvm_anon_remove(npages);
1043 
1044 	simple_lock(&uvm.swap_data_lock);
1045 	uvmexp.swpages -= npages;
1046 	uvmexp.swpginuse -= sdp->swd_npgbad;
1047 
1048 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
1049 		panic("swap_off: swapdev not in list");
1050 	swaplist_trim();
1051 	simple_unlock(&uvm.swap_data_lock);
1052 
1053 	/*
1054 	 * free all resources!
1055 	 */
1056 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1057 		    EX_WAITOK);
1058 	extent_destroy(sdp->swd_ex);
1059 	bufq_free(&sdp->swd_tab);
1060 	free(sdp, M_VMSWAP);
1061 	return (0);
1062 }
1063 
1064 /*
1065  * /dev/drum interface and i/o functions
1066  */
1067 
1068 /*
1069  * swread: the read function for the drum (just a call to physio)
1070  */
1071 /*ARGSUSED*/
1072 int
1073 swread(dev, uio, ioflag)
1074 	dev_t dev;
1075 	struct uio *uio;
1076 	int ioflag;
1077 {
1078 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1079 
1080 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1081 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1082 }
1083 
1084 /*
1085  * swwrite: the write function for the drum (just a call to physio)
1086  */
1087 /*ARGSUSED*/
1088 int
1089 swwrite(dev, uio, ioflag)
1090 	dev_t dev;
1091 	struct uio *uio;
1092 	int ioflag;
1093 {
1094 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1095 
1096 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1097 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1098 }
1099 
1100 /*
1101  * swstrategy: perform I/O on the drum
1102  *
1103  * => we must map the i/o request from the drum to the correct swapdev.
1104  */
1105 void
1106 swstrategy(bp)
1107 	struct buf *bp;
1108 {
1109 	struct swapdev *sdp;
1110 	struct vnode *vp;
1111 	int s, pageno, bn;
1112 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1113 
1114 	/*
1115 	 * convert block number to swapdev.   note that swapdev can't
1116 	 * be yanked out from under us because we are holding resources
1117 	 * in it (i.e. the blocks we are doing I/O on).
1118 	 */
1119 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1120 	simple_lock(&uvm.swap_data_lock);
1121 	sdp = swapdrum_getsdp(pageno);
1122 	simple_unlock(&uvm.swap_data_lock);
1123 	if (sdp == NULL) {
1124 		bp->b_error = EINVAL;
1125 		bp->b_flags |= B_ERROR;
1126 		biodone(bp);
1127 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
1128 		return;
1129 	}
1130 
1131 	/*
1132 	 * convert drum page number to block number on this swapdev.
1133 	 */
1134 
1135 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
1136 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1137 
1138 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
1139 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
1140 		sdp->swd_drumoffset, bn, bp->b_bcount);
1141 
1142 	/*
1143 	 * for block devices we finish up here.
1144 	 * for regular files we have to do more work which we delegate
1145 	 * to sw_reg_strategy().
1146 	 */
1147 
1148 	switch (sdp->swd_vp->v_type) {
1149 	default:
1150 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1151 
1152 	case VBLK:
1153 
1154 		/*
1155 		 * must convert "bp" from an I/O on /dev/drum to an I/O
1156 		 * on the swapdev (sdp).
1157 		 */
1158 		s = splbio();
1159 		bp->b_blkno = bn;		/* swapdev block number */
1160 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
1161 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
1162 
1163 		/*
1164 		 * if we are doing a write, we have to redirect the i/o on
1165 		 * drum's v_numoutput counter to the swapdevs.
1166 		 */
1167 		if ((bp->b_flags & B_READ) == 0) {
1168 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
1169 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
1170 		}
1171 
1172 		/*
1173 		 * finally plug in swapdev vnode and start I/O
1174 		 */
1175 		bp->b_vp = vp;
1176 		splx(s);
1177 		VOP_STRATEGY(vp, bp);
1178 		return;
1179 
1180 	case VREG:
1181 		/*
1182 		 * delegate to sw_reg_strategy function.
1183 		 */
1184 		sw_reg_strategy(sdp, bp, bn);
1185 		return;
1186 	}
1187 	/* NOTREACHED */
1188 }
1189 
1190 /*
1191  * sw_reg_strategy: handle swap i/o to regular files
1192  */
1193 static void
1194 sw_reg_strategy(sdp, bp, bn)
1195 	struct swapdev	*sdp;
1196 	struct buf	*bp;
1197 	int		bn;
1198 {
1199 	struct vnode	*vp;
1200 	struct vndxfer	*vnx;
1201 	daddr_t		nbn;
1202 	caddr_t		addr;
1203 	off_t		byteoff;
1204 	int		s, off, nra, error, sz, resid;
1205 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1206 
1207 	/*
1208 	 * allocate a vndxfer head for this transfer and point it to
1209 	 * our buffer.
1210 	 */
1211 	getvndxfer(vnx);
1212 	vnx->vx_flags = VX_BUSY;
1213 	vnx->vx_error = 0;
1214 	vnx->vx_pending = 0;
1215 	vnx->vx_bp = bp;
1216 	vnx->vx_sdp = sdp;
1217 
1218 	/*
1219 	 * setup for main loop where we read filesystem blocks into
1220 	 * our buffer.
1221 	 */
1222 	error = 0;
1223 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
1224 	addr = bp->b_data;		/* current position in buffer */
1225 	byteoff = dbtob((u_int64_t)bn);
1226 
1227 	for (resid = bp->b_resid; resid; resid -= sz) {
1228 		struct vndbuf	*nbp;
1229 
1230 		/*
1231 		 * translate byteoffset into block number.  return values:
1232 		 *   vp = vnode of underlying device
1233 		 *  nbn = new block number (on underlying vnode dev)
1234 		 *  nra = num blocks we can read-ahead (excludes requested
1235 		 *	block)
1236 		 */
1237 		nra = 0;
1238 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1239 				 	&vp, &nbn, &nra);
1240 
1241 		if (error == 0 && nbn == (daddr_t)-1) {
1242 			/*
1243 			 * this used to just set error, but that doesn't
1244 			 * do the right thing.  Instead, it causes random
1245 			 * memory errors.  The panic() should remain until
1246 			 * this condition doesn't destabilize the system.
1247 			 */
1248 #if 1
1249 			panic("sw_reg_strategy: swap to sparse file");
1250 #else
1251 			error = EIO;	/* failure */
1252 #endif
1253 		}
1254 
1255 		/*
1256 		 * punt if there was an error or a hole in the file.
1257 		 * we must wait for any i/o ops we have already started
1258 		 * to finish before returning.
1259 		 *
1260 		 * XXX we could deal with holes here but it would be
1261 		 * a hassle (in the write case).
1262 		 */
1263 		if (error) {
1264 			s = splbio();
1265 			vnx->vx_error = error;	/* pass error up */
1266 			goto out;
1267 		}
1268 
1269 		/*
1270 		 * compute the size ("sz") of this transfer (in bytes).
1271 		 */
1272 		off = byteoff % sdp->swd_bsize;
1273 		sz = (1 + nra) * sdp->swd_bsize - off;
1274 		if (sz > resid)
1275 			sz = resid;
1276 
1277 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1278 			    "vp %p/%p offset 0x%x/0x%x",
1279 			    sdp->swd_vp, vp, byteoff, nbn);
1280 
1281 		/*
1282 		 * now get a buf structure.   note that the vb_buf is
1283 		 * at the front of the nbp structure so that you can
1284 		 * cast pointers between the two structure easily.
1285 		 */
1286 		getvndbuf(nbp);
1287 		BUF_INIT(&nbp->vb_buf);
1288 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
1289 		nbp->vb_buf.b_bcount   = sz;
1290 		nbp->vb_buf.b_bufsize  = sz;
1291 		nbp->vb_buf.b_error    = 0;
1292 		nbp->vb_buf.b_data     = addr;
1293 		nbp->vb_buf.b_lblkno   = 0;
1294 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
1295 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1296 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
1297 		nbp->vb_buf.b_vp       = vp;
1298 		if (vp->v_type == VBLK) {
1299 			nbp->vb_buf.b_dev = vp->v_rdev;
1300 		}
1301 
1302 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
1303 
1304 		/*
1305 		 * Just sort by block number
1306 		 */
1307 		s = splbio();
1308 		if (vnx->vx_error != 0) {
1309 			putvndbuf(nbp);
1310 			goto out;
1311 		}
1312 		vnx->vx_pending++;
1313 
1314 		/* sort it in and start I/O if we are not over our limit */
1315 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
1316 		sw_reg_start(sdp);
1317 		splx(s);
1318 
1319 		/*
1320 		 * advance to the next I/O
1321 		 */
1322 		byteoff += sz;
1323 		addr += sz;
1324 	}
1325 
1326 	s = splbio();
1327 
1328 out: /* Arrive here at splbio */
1329 	vnx->vx_flags &= ~VX_BUSY;
1330 	if (vnx->vx_pending == 0) {
1331 		if (vnx->vx_error != 0) {
1332 			bp->b_error = vnx->vx_error;
1333 			bp->b_flags |= B_ERROR;
1334 		}
1335 		putvndxfer(vnx);
1336 		biodone(bp);
1337 	}
1338 	splx(s);
1339 }
1340 
1341 /*
1342  * sw_reg_start: start an I/O request on the requested swapdev
1343  *
1344  * => reqs are sorted by b_rawblkno (above)
1345  */
1346 static void
1347 sw_reg_start(sdp)
1348 	struct swapdev	*sdp;
1349 {
1350 	struct buf	*bp;
1351 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1352 
1353 	/* recursion control */
1354 	if ((sdp->swd_flags & SWF_BUSY) != 0)
1355 		return;
1356 
1357 	sdp->swd_flags |= SWF_BUSY;
1358 
1359 	while (sdp->swd_active < sdp->swd_maxactive) {
1360 		bp = BUFQ_GET(&sdp->swd_tab);
1361 		if (bp == NULL)
1362 			break;
1363 		sdp->swd_active++;
1364 
1365 		UVMHIST_LOG(pdhist,
1366 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
1367 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1368 		if ((bp->b_flags & B_READ) == 0)
1369 			V_INCR_NUMOUTPUT(bp->b_vp);
1370 
1371 		VOP_STRATEGY(bp->b_vp, bp);
1372 	}
1373 	sdp->swd_flags &= ~SWF_BUSY;
1374 }
1375 
1376 /*
1377  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1378  *
1379  * => note that we can recover the vndbuf struct by casting the buf ptr
1380  */
1381 static void
1382 sw_reg_iodone(bp)
1383 	struct buf *bp;
1384 {
1385 	struct vndbuf *vbp = (struct vndbuf *) bp;
1386 	struct vndxfer *vnx = vbp->vb_xfer;
1387 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
1388 	struct swapdev	*sdp = vnx->vx_sdp;
1389 	int s, resid, error;
1390 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1391 
1392 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
1393 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1394 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
1395 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1396 
1397 	/*
1398 	 * protect vbp at splbio and update.
1399 	 */
1400 
1401 	s = splbio();
1402 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1403 	pbp->b_resid -= resid;
1404 	vnx->vx_pending--;
1405 
1406 	if (vbp->vb_buf.b_flags & B_ERROR) {
1407 		/* pass error upward */
1408 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1409 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
1410 		vnx->vx_error = error;
1411 	}
1412 
1413 	/*
1414 	 * kill vbp structure
1415 	 */
1416 	putvndbuf(vbp);
1417 
1418 	/*
1419 	 * wrap up this transaction if it has run to completion or, in
1420 	 * case of an error, when all auxiliary buffers have returned.
1421 	 */
1422 	if (vnx->vx_error != 0) {
1423 		/* pass error upward */
1424 		pbp->b_flags |= B_ERROR;
1425 		pbp->b_error = vnx->vx_error;
1426 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1427 			putvndxfer(vnx);
1428 			biodone(pbp);
1429 		}
1430 	} else if (pbp->b_resid == 0) {
1431 		KASSERT(vnx->vx_pending == 0);
1432 		if ((vnx->vx_flags & VX_BUSY) == 0) {
1433 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
1434 			    pbp, vnx->vx_error, 0, 0);
1435 			putvndxfer(vnx);
1436 			biodone(pbp);
1437 		}
1438 	}
1439 
1440 	/*
1441 	 * done!   start next swapdev I/O if one is pending
1442 	 */
1443 	sdp->swd_active--;
1444 	sw_reg_start(sdp);
1445 	splx(s);
1446 }
1447 
1448 
1449 /*
1450  * uvm_swap_alloc: allocate space on swap
1451  *
1452  * => allocation is done "round robin" down the priority list, as we
1453  *	allocate in a priority we "rotate" the circle queue.
1454  * => space can be freed with uvm_swap_free
1455  * => we return the page slot number in /dev/drum (0 == invalid slot)
1456  * => we lock uvm.swap_data_lock
1457  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1458  */
1459 int
1460 uvm_swap_alloc(nslots, lessok)
1461 	int *nslots;	/* IN/OUT */
1462 	boolean_t lessok;
1463 {
1464 	struct swapdev *sdp;
1465 	struct swappri *spp;
1466 	u_long	result;
1467 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1468 
1469 	/*
1470 	 * no swap devices configured yet?   definite failure.
1471 	 */
1472 	if (uvmexp.nswapdev < 1)
1473 		return 0;
1474 
1475 	/*
1476 	 * lock data lock, convert slots into blocks, and enter loop
1477 	 */
1478 	simple_lock(&uvm.swap_data_lock);
1479 
1480 ReTry:	/* XXXMRG */
1481 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1482 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1483 			/* if it's not enabled, then we can't swap from it */
1484 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
1485 				continue;
1486 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1487 				continue;
1488 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1489 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1490 					 &result) != 0) {
1491 				continue;
1492 			}
1493 
1494 			/*
1495 			 * successful allocation!  now rotate the circleq.
1496 			 */
1497 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1498 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1499 			sdp->swd_npginuse += *nslots;
1500 			uvmexp.swpginuse += *nslots;
1501 			simple_unlock(&uvm.swap_data_lock);
1502 			/* done!  return drum slot number */
1503 			UVMHIST_LOG(pdhist,
1504 			    "success!  returning %d slots starting at %d",
1505 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
1506 			return (result + sdp->swd_drumoffset);
1507 		}
1508 	}
1509 
1510 	/* XXXMRG: BEGIN HACK */
1511 	if (*nslots > 1 && lessok) {
1512 		*nslots = 1;
1513 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
1514 	}
1515 	/* XXXMRG: END HACK */
1516 
1517 	simple_unlock(&uvm.swap_data_lock);
1518 	return 0;
1519 }
1520 
1521 boolean_t
1522 uvm_swapisfull(void)
1523 {
1524 	boolean_t rv;
1525 
1526 	simple_lock(&uvm.swap_data_lock);
1527 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1528 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1529 	simple_unlock(&uvm.swap_data_lock);
1530 
1531 	return (rv);
1532 }
1533 
1534 /*
1535  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1536  *
1537  * => we lock uvm.swap_data_lock
1538  */
1539 void
1540 uvm_swap_markbad(startslot, nslots)
1541 	int startslot;
1542 	int nslots;
1543 {
1544 	struct swapdev *sdp;
1545 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1546 
1547 	simple_lock(&uvm.swap_data_lock);
1548 	sdp = swapdrum_getsdp(startslot);
1549 	KASSERT(sdp != NULL);
1550 
1551 	/*
1552 	 * we just keep track of how many pages have been marked bad
1553 	 * in this device, to make everything add up in swap_off().
1554 	 * we assume here that the range of slots will all be within
1555 	 * one swap device.
1556 	 */
1557 
1558 	KASSERT(uvmexp.swpgonly >= nslots);
1559 	uvmexp.swpgonly -= nslots;
1560 	sdp->swd_npgbad += nslots;
1561 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1562 	simple_unlock(&uvm.swap_data_lock);
1563 }
1564 
1565 /*
1566  * uvm_swap_free: free swap slots
1567  *
1568  * => this can be all or part of an allocation made by uvm_swap_alloc
1569  * => we lock uvm.swap_data_lock
1570  */
1571 void
1572 uvm_swap_free(startslot, nslots)
1573 	int startslot;
1574 	int nslots;
1575 {
1576 	struct swapdev *sdp;
1577 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1578 
1579 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1580 	    startslot, 0, 0);
1581 
1582 	/*
1583 	 * ignore attempts to free the "bad" slot.
1584 	 */
1585 
1586 	if (startslot == SWSLOT_BAD) {
1587 		return;
1588 	}
1589 
1590 	/*
1591 	 * convert drum slot offset back to sdp, free the blocks
1592 	 * in the extent, and return.   must hold pri lock to do
1593 	 * lookup and access the extent.
1594 	 */
1595 
1596 	simple_lock(&uvm.swap_data_lock);
1597 	sdp = swapdrum_getsdp(startslot);
1598 	KASSERT(uvmexp.nswapdev >= 1);
1599 	KASSERT(sdp != NULL);
1600 	KASSERT(sdp->swd_npginuse >= nslots);
1601 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1602 			EX_MALLOCOK|EX_NOWAIT) != 0) {
1603 		printf("warning: resource shortage: %d pages of swap lost\n",
1604 			nslots);
1605 	}
1606 	sdp->swd_npginuse -= nslots;
1607 	uvmexp.swpginuse -= nslots;
1608 	simple_unlock(&uvm.swap_data_lock);
1609 }
1610 
1611 /*
1612  * uvm_swap_put: put any number of pages into a contig place on swap
1613  *
1614  * => can be sync or async
1615  */
1616 
1617 int
1618 uvm_swap_put(swslot, ppsp, npages, flags)
1619 	int swslot;
1620 	struct vm_page **ppsp;
1621 	int npages;
1622 	int flags;
1623 {
1624 	int error;
1625 
1626 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1627 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1628 	return error;
1629 }
1630 
1631 /*
1632  * uvm_swap_get: get a single page from swap
1633  *
1634  * => usually a sync op (from fault)
1635  */
1636 
1637 int
1638 uvm_swap_get(page, swslot, flags)
1639 	struct vm_page *page;
1640 	int swslot, flags;
1641 {
1642 	int error;
1643 
1644 	uvmexp.nswget++;
1645 	KASSERT(flags & PGO_SYNCIO);
1646 	if (swslot == SWSLOT_BAD) {
1647 		return EIO;
1648 	}
1649 
1650 	error = uvm_swap_io(&page, swslot, 1, B_READ |
1651 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1652 	if (error == 0) {
1653 
1654 		/*
1655 		 * this page is no longer only in swap.
1656 		 */
1657 
1658 		simple_lock(&uvm.swap_data_lock);
1659 		KASSERT(uvmexp.swpgonly > 0);
1660 		uvmexp.swpgonly--;
1661 		simple_unlock(&uvm.swap_data_lock);
1662 	}
1663 	return error;
1664 }
1665 
1666 /*
1667  * uvm_swap_io: do an i/o operation to swap
1668  */
1669 
1670 static int
1671 uvm_swap_io(pps, startslot, npages, flags)
1672 	struct vm_page **pps;
1673 	int startslot, npages, flags;
1674 {
1675 	daddr_t startblk;
1676 	struct	buf *bp;
1677 	vaddr_t kva;
1678 	int	error, s, mapinflags;
1679 	boolean_t write, async;
1680 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1681 
1682 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1683 	    startslot, npages, flags, 0);
1684 
1685 	write = (flags & B_READ) == 0;
1686 	async = (flags & B_ASYNC) != 0;
1687 
1688 	/*
1689 	 * convert starting drum slot to block number
1690 	 */
1691 
1692 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
1693 
1694 	/*
1695 	 * first, map the pages into the kernel.
1696 	 */
1697 
1698 	mapinflags = !write ?
1699 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1700 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1701 	kva = uvm_pagermapin(pps, npages, mapinflags);
1702 
1703 	/*
1704 	 * now allocate a buf for the i/o.
1705 	 */
1706 
1707 	s = splbio();
1708 	bp = pool_get(&bufpool, PR_WAITOK);
1709 	splx(s);
1710 
1711 	/*
1712 	 * fill in the bp/sbp.   we currently route our i/o through
1713 	 * /dev/drum's vnode [swapdev_vp].
1714 	 */
1715 
1716 	BUF_INIT(bp);
1717 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1718 	bp->b_proc = &proc0;	/* XXX */
1719 	bp->b_vnbufs.le_next = NOLIST;
1720 	bp->b_data = (caddr_t)kva;
1721 	bp->b_blkno = startblk;
1722 	bp->b_vp = swapdev_vp;
1723 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1724 
1725 	/*
1726 	 * bump v_numoutput (counter of number of active outputs).
1727 	 */
1728 
1729 	if (write) {
1730 		s = splbio();
1731 		V_INCR_NUMOUTPUT(swapdev_vp);
1732 		splx(s);
1733 	}
1734 
1735 	/*
1736 	 * for async ops we must set up the iodone handler.
1737 	 */
1738 
1739 	if (async) {
1740 		bp->b_flags |= B_CALL;
1741 		bp->b_iodone = uvm_aio_biodone;
1742 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1743 		if (curproc == uvm.pagedaemon_proc)
1744 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1745 		else
1746 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1747 	} else {
1748 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1749 	}
1750 	UVMHIST_LOG(pdhist,
1751 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1752 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1753 
1754 	/*
1755 	 * now we start the I/O, and if async, return.
1756 	 */
1757 
1758 	VOP_STRATEGY(swapdev_vp, bp);
1759 	if (async)
1760 		return 0;
1761 
1762 	/*
1763 	 * must be sync i/o.   wait for it to finish
1764 	 */
1765 
1766 	error = biowait(bp);
1767 
1768 	/*
1769 	 * kill the pager mapping
1770 	 */
1771 
1772 	uvm_pagermapout(kva, npages);
1773 
1774 	/*
1775 	 * now dispose of the buf and we're done.
1776 	 */
1777 
1778 	s = splbio();
1779 	if (write)
1780 		vwakeup(bp);
1781 	pool_put(&bufpool, bp);
1782 	splx(s);
1783 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
1784 	return (error);
1785 }
1786