xref: /netbsd-src/sys/uvm/uvm_page.c (revision e55cffd8e520e9b03f18a1bd98bb04223e79f69f)
1 /*	$NetBSD: uvm_page.c,v 1.52 2001/04/22 17:22:58 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_page.c: page ops.
71  */
72 
73 #include "opt_uvmhist.h"
74 
75 #include <sys/param.h>
76 #include <sys/systm.h>
77 #include <sys/malloc.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 
82 #define UVM_PAGE                /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84 
85 /*
86  * global vars... XXXCDC: move to uvm. structure.
87  */
88 
89 /*
90  * physical memory config is stored in vm_physmem.
91  */
92 
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
95 
96 /*
97  * Some supported CPUs in a given architecture don't support all
98  * of the things necessary to do idle page zero'ing efficiently.
99  * We therefore provide a way to disable it from machdep code here.
100  */
101 /*
102  * XXX disabled until we can find a way to do this without causing
103  * problems for either cpu caches or DMA latency.
104  */
105 boolean_t vm_page_zero_enable = FALSE;
106 
107 /*
108  * local variables
109  */
110 
111 /*
112  * these variables record the values returned by vm_page_bootstrap,
113  * for debugging purposes.  The implementation of uvm_pageboot_alloc
114  * and pmap_startup here also uses them internally.
115  */
116 
117 static vaddr_t      virtual_space_start;
118 static vaddr_t      virtual_space_end;
119 
120 /*
121  * we use a hash table with only one bucket during bootup.  we will
122  * later rehash (resize) the hash table once the allocator is ready.
123  * we static allocate the one bootstrap bucket below...
124  */
125 
126 static struct pglist uvm_bootbucket;
127 
128 /*
129  * local prototypes
130  */
131 
132 static void uvm_pageinsert __P((struct vm_page *));
133 static void uvm_pageremove __P((struct vm_page *));
134 
135 /*
136  * inline functions
137  */
138 
139 /*
140  * uvm_pageinsert: insert a page in the object and the hash table
141  *
142  * => caller must lock object
143  * => caller must lock page queues
144  * => call should have already set pg's object and offset pointers
145  *    and bumped the version counter
146  */
147 
148 __inline static void
149 uvm_pageinsert(pg)
150 	struct vm_page *pg;
151 {
152 	struct pglist *buck;
153 	int s;
154 
155 	KASSERT((pg->flags & PG_TABLED) == 0);
156 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
157 	s = splvm();
158 	simple_lock(&uvm.hashlock);
159 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
160 	simple_unlock(&uvm.hashlock);
161 	splx(s);
162 
163 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
164 	pg->flags |= PG_TABLED;
165 	pg->uobject->uo_npages++;
166 }
167 
168 /*
169  * uvm_page_remove: remove page from object and hash
170  *
171  * => caller must lock object
172  * => caller must lock page queues
173  */
174 
175 static __inline void
176 uvm_pageremove(pg)
177 	struct vm_page *pg;
178 {
179 	struct pglist *buck;
180 	int s;
181 
182 	KASSERT(pg->flags & PG_TABLED);
183 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
184 	s = splvm();
185 	simple_lock(&uvm.hashlock);
186 	TAILQ_REMOVE(buck, pg, hashq);
187 	simple_unlock(&uvm.hashlock);
188 	splx(s);
189 
190 	if (UVM_OBJ_IS_VTEXT(pg->uobject)) {
191 		uvmexp.vtextpages--;
192 	} else if (UVM_OBJ_IS_VNODE(pg->uobject)) {
193 		uvmexp.vnodepages--;
194 	}
195 
196 	/* object should be locked */
197 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
198 
199 	pg->flags &= ~PG_TABLED;
200 	pg->uobject->uo_npages--;
201 	pg->uobject = NULL;
202 	pg->version++;
203 }
204 
205 /*
206  * uvm_page_init: init the page system.   called from uvm_init().
207  *
208  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
209  */
210 
211 void
212 uvm_page_init(kvm_startp, kvm_endp)
213 	vaddr_t *kvm_startp, *kvm_endp;
214 {
215 	vsize_t freepages, pagecount, n;
216 	vm_page_t pagearray;
217 	int lcv, i;
218 	paddr_t paddr;
219 
220 	/*
221 	 * init the page queues and page queue locks
222 	 */
223 
224 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
225 		for (i = 0; i < PGFL_NQUEUES; i++)
226 			TAILQ_INIT(&uvm.page_free[lcv].pgfl_queues[i]);
227 	}
228 	TAILQ_INIT(&uvm.page_active);
229 	TAILQ_INIT(&uvm.page_inactive_swp);
230 	TAILQ_INIT(&uvm.page_inactive_obj);
231 	simple_lock_init(&uvm.pageqlock);
232 	simple_lock_init(&uvm.fpageqlock);
233 
234 	/*
235 	 * init the <obj,offset> => <page> hash table.  for now
236 	 * we just have one bucket (the bootstrap bucket).  later on we
237 	 * will allocate new buckets as we dynamically resize the hash table.
238 	 */
239 
240 	uvm.page_nhash = 1;			/* 1 bucket */
241 	uvm.page_hashmask = 0;			/* mask for hash function */
242 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
243 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
244 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
245 
246 	/*
247 	 * allocate vm_page structures.
248 	 */
249 
250 	/*
251 	 * sanity check:
252 	 * before calling this function the MD code is expected to register
253 	 * some free RAM with the uvm_page_physload() function.   our job
254 	 * now is to allocate vm_page structures for this memory.
255 	 */
256 
257 	if (vm_nphysseg == 0)
258 		panic("uvm_page_bootstrap: no memory pre-allocated");
259 
260 	/*
261 	 * first calculate the number of free pages...
262 	 *
263 	 * note that we use start/end rather than avail_start/avail_end.
264 	 * this allows us to allocate extra vm_page structures in case we
265 	 * want to return some memory to the pool after booting.
266 	 */
267 
268 	freepages = 0;
269 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
270 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
271 
272 	/*
273 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
274 	 * use.   for each page of memory we use we need a vm_page structure.
275 	 * thus, the total number of pages we can use is the total size of
276 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
277 	 * structure.   we add one to freepages as a fudge factor to avoid
278 	 * truncation errors (since we can only allocate in terms of whole
279 	 * pages).
280 	 */
281 
282 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
283 	    (PAGE_SIZE + sizeof(struct vm_page));
284 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
285 	    sizeof(struct vm_page));
286 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
287 
288 	/*
289 	 * init the vm_page structures and put them in the correct place.
290 	 */
291 
292 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
293 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
294 		if (n > pagecount) {
295 			printf("uvm_page_init: lost %ld page(s) in init\n",
296 			    (long)(n - pagecount));
297 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
298 			/* n = pagecount; */
299 		}
300 
301 		/* set up page array pointers */
302 		vm_physmem[lcv].pgs = pagearray;
303 		pagearray += n;
304 		pagecount -= n;
305 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
306 
307 		/* init and free vm_pages (we've already zeroed them) */
308 		paddr = ptoa(vm_physmem[lcv].start);
309 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
310 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
311 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
312 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
313 				uvmexp.npages++;
314 				/* add page to free pool */
315 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
316 			}
317 		}
318 	}
319 
320 	/*
321 	 * pass up the values of virtual_space_start and
322 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
323 	 * layers of the VM.
324 	 */
325 
326 	*kvm_startp = round_page(virtual_space_start);
327 	*kvm_endp = trunc_page(virtual_space_end);
328 
329 	/*
330 	 * init locks for kernel threads
331 	 */
332 
333 	simple_lock_init(&uvm.pagedaemon_lock);
334 	simple_lock_init(&uvm.aiodoned_lock);
335 
336 	/*
337 	 * init various thresholds.
338 	 * XXXCDC - values may need adjusting
339 	 */
340 
341 	uvmexp.reserve_pagedaemon = 1;
342 	uvmexp.reserve_kernel = 5;
343 	uvmexp.anonminpct = 10;
344 	uvmexp.vnodeminpct = 10;
345 	uvmexp.vtextminpct = 5;
346 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
347 	uvmexp.vnodemin = uvmexp.vnodeminpct * 256 / 100;
348 	uvmexp.vtextmin = uvmexp.vtextminpct * 256 / 100;
349 
350 	/*
351 	 * determine if we should zero pages in the idle loop.
352 	 */
353 
354 	uvm.page_idle_zero = vm_page_zero_enable;
355 
356 	/*
357 	 * done!
358 	 */
359 
360 	uvm.page_init_done = TRUE;
361 }
362 
363 /*
364  * uvm_setpagesize: set the page size
365  *
366  * => sets page_shift and page_mask from uvmexp.pagesize.
367  */
368 
369 void
370 uvm_setpagesize()
371 {
372 	if (uvmexp.pagesize == 0)
373 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
374 	uvmexp.pagemask = uvmexp.pagesize - 1;
375 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
376 		panic("uvm_setpagesize: page size not a power of two");
377 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
378 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
379 			break;
380 }
381 
382 /*
383  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
384  */
385 
386 vaddr_t
387 uvm_pageboot_alloc(size)
388 	vsize_t size;
389 {
390 	static boolean_t initialized = FALSE;
391 	vaddr_t addr;
392 #if !defined(PMAP_STEAL_MEMORY)
393 	vaddr_t vaddr;
394 	paddr_t paddr;
395 #endif
396 
397 	/*
398 	 * on first call to this function, initialize ourselves.
399 	 */
400 	if (initialized == FALSE) {
401 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
402 
403 		/* round it the way we like it */
404 		virtual_space_start = round_page(virtual_space_start);
405 		virtual_space_end = trunc_page(virtual_space_end);
406 
407 		initialized = TRUE;
408 	}
409 
410 	/* round to page size */
411 	size = round_page(size);
412 
413 #if defined(PMAP_STEAL_MEMORY)
414 
415 	/*
416 	 * defer bootstrap allocation to MD code (it may want to allocate
417 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
418 	 * virtual_space_start/virtual_space_end if necessary.
419 	 */
420 
421 	addr = pmap_steal_memory(size, &virtual_space_start,
422 	    &virtual_space_end);
423 
424 	return(addr);
425 
426 #else /* !PMAP_STEAL_MEMORY */
427 
428 	/*
429 	 * allocate virtual memory for this request
430 	 */
431 	if (virtual_space_start == virtual_space_end ||
432 	    (virtual_space_end - virtual_space_start) < size)
433 		panic("uvm_pageboot_alloc: out of virtual space");
434 
435 	addr = virtual_space_start;
436 
437 #ifdef PMAP_GROWKERNEL
438 	/*
439 	 * If the kernel pmap can't map the requested space,
440 	 * then allocate more resources for it.
441 	 */
442 	if (uvm_maxkaddr < (addr + size)) {
443 		uvm_maxkaddr = pmap_growkernel(addr + size);
444 		if (uvm_maxkaddr < (addr + size))
445 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
446 	}
447 #endif
448 
449 	virtual_space_start += size;
450 
451 	/*
452 	 * allocate and mapin physical pages to back new virtual pages
453 	 */
454 
455 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
456 	    vaddr += PAGE_SIZE) {
457 
458 		if (!uvm_page_physget(&paddr))
459 			panic("uvm_pageboot_alloc: out of memory");
460 
461 		/*
462 		 * Note this memory is no longer managed, so using
463 		 * pmap_kenter is safe.
464 		 */
465 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
466 	}
467 	return(addr);
468 #endif	/* PMAP_STEAL_MEMORY */
469 }
470 
471 #if !defined(PMAP_STEAL_MEMORY)
472 /*
473  * uvm_page_physget: "steal" one page from the vm_physmem structure.
474  *
475  * => attempt to allocate it off the end of a segment in which the "avail"
476  *    values match the start/end values.   if we can't do that, then we
477  *    will advance both values (making them equal, and removing some
478  *    vm_page structures from the non-avail area).
479  * => return false if out of memory.
480  */
481 
482 /* subroutine: try to allocate from memory chunks on the specified freelist */
483 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
484 
485 static boolean_t
486 uvm_page_physget_freelist(paddrp, freelist)
487 	paddr_t *paddrp;
488 	int freelist;
489 {
490 	int lcv, x;
491 
492 	/* pass 1: try allocating from a matching end */
493 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
494 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
495 #else
496 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
497 #endif
498 	{
499 
500 		if (uvm.page_init_done == TRUE)
501 			panic("uvm_page_physget: called _after_ bootstrap");
502 
503 		if (vm_physmem[lcv].free_list != freelist)
504 			continue;
505 
506 		/* try from front */
507 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
508 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
509 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
510 			vm_physmem[lcv].avail_start++;
511 			vm_physmem[lcv].start++;
512 			/* nothing left?   nuke it */
513 			if (vm_physmem[lcv].avail_start ==
514 			    vm_physmem[lcv].end) {
515 				if (vm_nphysseg == 1)
516 				    panic("vum_page_physget: out of memory!");
517 				vm_nphysseg--;
518 				for (x = lcv ; x < vm_nphysseg ; x++)
519 					/* structure copy */
520 					vm_physmem[x] = vm_physmem[x+1];
521 			}
522 			return (TRUE);
523 		}
524 
525 		/* try from rear */
526 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
527 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
528 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
529 			vm_physmem[lcv].avail_end--;
530 			vm_physmem[lcv].end--;
531 			/* nothing left?   nuke it */
532 			if (vm_physmem[lcv].avail_end ==
533 			    vm_physmem[lcv].start) {
534 				if (vm_nphysseg == 1)
535 				    panic("uvm_page_physget: out of memory!");
536 				vm_nphysseg--;
537 				for (x = lcv ; x < vm_nphysseg ; x++)
538 					/* structure copy */
539 					vm_physmem[x] = vm_physmem[x+1];
540 			}
541 			return (TRUE);
542 		}
543 	}
544 
545 	/* pass2: forget about matching ends, just allocate something */
546 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
547 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
548 #else
549 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
550 #endif
551 	{
552 
553 		/* any room in this bank? */
554 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
555 			continue;  /* nope */
556 
557 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
558 		vm_physmem[lcv].avail_start++;
559 		/* truncate! */
560 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
561 
562 		/* nothing left?   nuke it */
563 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
564 			if (vm_nphysseg == 1)
565 				panic("uvm_page_physget: out of memory!");
566 			vm_nphysseg--;
567 			for (x = lcv ; x < vm_nphysseg ; x++)
568 				/* structure copy */
569 				vm_physmem[x] = vm_physmem[x+1];
570 		}
571 		return (TRUE);
572 	}
573 
574 	return (FALSE);        /* whoops! */
575 }
576 
577 boolean_t
578 uvm_page_physget(paddrp)
579 	paddr_t *paddrp;
580 {
581 	int i;
582 
583 	/* try in the order of freelist preference */
584 	for (i = 0; i < VM_NFREELIST; i++)
585 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
586 			return (TRUE);
587 	return (FALSE);
588 }
589 #endif /* PMAP_STEAL_MEMORY */
590 
591 /*
592  * uvm_page_physload: load physical memory into VM system
593  *
594  * => all args are PFs
595  * => all pages in start/end get vm_page structures
596  * => areas marked by avail_start/avail_end get added to the free page pool
597  * => we are limited to VM_PHYSSEG_MAX physical memory segments
598  */
599 
600 void
601 uvm_page_physload(start, end, avail_start, avail_end, free_list)
602 	paddr_t start, end, avail_start, avail_end;
603 	int free_list;
604 {
605 	int preload, lcv;
606 	psize_t npages;
607 	struct vm_page *pgs;
608 	struct vm_physseg *ps;
609 
610 	if (uvmexp.pagesize == 0)
611 		panic("uvm_page_physload: page size not set!");
612 
613 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
614 		panic("uvm_page_physload: bad free list %d\n", free_list);
615 
616 	if (start >= end)
617 		panic("uvm_page_physload: start >= end");
618 
619 	/*
620 	 * do we have room?
621 	 */
622 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
623 		printf("uvm_page_physload: unable to load physical memory "
624 		    "segment\n");
625 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
626 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
627 		printf("\tincrease VM_PHYSSEG_MAX\n");
628 		return;
629 	}
630 
631 	/*
632 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
633 	 * called yet, so malloc is not available).
634 	 */
635 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
636 		if (vm_physmem[lcv].pgs)
637 			break;
638 	}
639 	preload = (lcv == vm_nphysseg);
640 
641 	/*
642 	 * if VM is already running, attempt to malloc() vm_page structures
643 	 */
644 	if (!preload) {
645 #if defined(VM_PHYSSEG_NOADD)
646 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
647 #else
648 		/* XXXCDC: need some sort of lockout for this case */
649 		paddr_t paddr;
650 		npages = end - start;  /* # of pages */
651 		pgs = malloc(sizeof(struct vm_page) * npages,
652 		    M_VMPAGE, M_NOWAIT);
653 		if (pgs == NULL) {
654 			printf("uvm_page_physload: can not malloc vm_page "
655 			    "structs for segment\n");
656 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
657 			return;
658 		}
659 		/* zero data, init phys_addr and free_list, and free pages */
660 		memset(pgs, 0, sizeof(struct vm_page) * npages);
661 		for (lcv = 0, paddr = ptoa(start) ;
662 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
663 			pgs[lcv].phys_addr = paddr;
664 			pgs[lcv].free_list = free_list;
665 			if (atop(paddr) >= avail_start &&
666 			    atop(paddr) <= avail_end)
667 				uvm_pagefree(&pgs[lcv]);
668 		}
669 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
670 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
671 #endif
672 	} else {
673 
674 		/* gcc complains if these don't get init'd */
675 		pgs = NULL;
676 		npages = 0;
677 
678 	}
679 
680 	/*
681 	 * now insert us in the proper place in vm_physmem[]
682 	 */
683 
684 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
685 
686 	/* random: put it at the end (easy!) */
687 	ps = &vm_physmem[vm_nphysseg];
688 
689 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
690 
691 	{
692 		int x;
693 		/* sort by address for binary search */
694 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
695 			if (start < vm_physmem[lcv].start)
696 				break;
697 		ps = &vm_physmem[lcv];
698 		/* move back other entries, if necessary ... */
699 		for (x = vm_nphysseg ; x > lcv ; x--)
700 			/* structure copy */
701 			vm_physmem[x] = vm_physmem[x - 1];
702 	}
703 
704 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
705 
706 	{
707 		int x;
708 		/* sort by largest segment first */
709 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
710 			if ((end - start) >
711 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
712 				break;
713 		ps = &vm_physmem[lcv];
714 		/* move back other entries, if necessary ... */
715 		for (x = vm_nphysseg ; x > lcv ; x--)
716 			/* structure copy */
717 			vm_physmem[x] = vm_physmem[x - 1];
718 	}
719 
720 #else
721 
722 	panic("uvm_page_physload: unknown physseg strategy selected!");
723 
724 #endif
725 
726 	ps->start = start;
727 	ps->end = end;
728 	ps->avail_start = avail_start;
729 	ps->avail_end = avail_end;
730 	if (preload) {
731 		ps->pgs = NULL;
732 	} else {
733 		ps->pgs = pgs;
734 		ps->lastpg = pgs + npages - 1;
735 	}
736 	ps->free_list = free_list;
737 	vm_nphysseg++;
738 
739 	/*
740 	 * done!
741 	 */
742 
743 	if (!preload)
744 		uvm_page_rehash();
745 
746 	return;
747 }
748 
749 /*
750  * uvm_page_rehash: reallocate hash table based on number of free pages.
751  */
752 
753 void
754 uvm_page_rehash()
755 {
756 	int freepages, lcv, bucketcount, s, oldcount;
757 	struct pglist *newbuckets, *oldbuckets;
758 	struct vm_page *pg;
759 	size_t newsize, oldsize;
760 
761 	/*
762 	 * compute number of pages that can go in the free pool
763 	 */
764 
765 	freepages = 0;
766 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
767 		freepages +=
768 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
769 
770 	/*
771 	 * compute number of buckets needed for this number of pages
772 	 */
773 
774 	bucketcount = 1;
775 	while (bucketcount < freepages)
776 		bucketcount = bucketcount * 2;
777 
778 	/*
779 	 * compute the size of the current table and new table.
780 	 */
781 
782 	oldbuckets = uvm.page_hash;
783 	oldcount = uvm.page_nhash;
784 	oldsize = round_page(sizeof(struct pglist) * oldcount);
785 	newsize = round_page(sizeof(struct pglist) * bucketcount);
786 
787 	/*
788 	 * allocate the new buckets
789 	 */
790 
791 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
792 	if (newbuckets == NULL) {
793 		printf("uvm_page_physrehash: WARNING: could not grow page "
794 		    "hash table\n");
795 		return;
796 	}
797 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
798 		TAILQ_INIT(&newbuckets[lcv]);
799 
800 	/*
801 	 * now replace the old buckets with the new ones and rehash everything
802 	 */
803 
804 	s = splvm();
805 	simple_lock(&uvm.hashlock);
806 	uvm.page_hash = newbuckets;
807 	uvm.page_nhash = bucketcount;
808 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
809 
810 	/* ... and rehash */
811 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
812 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
813 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
814 			TAILQ_INSERT_TAIL(
815 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
816 			  pg, hashq);
817 		}
818 	}
819 	simple_unlock(&uvm.hashlock);
820 	splx(s);
821 
822 	/*
823 	 * free old bucket array if is not the boot-time table
824 	 */
825 
826 	if (oldbuckets != &uvm_bootbucket)
827 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
828 
829 	/*
830 	 * done
831 	 */
832 	return;
833 }
834 
835 
836 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
837 
838 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
839 
840 /* call from DDB */
841 void
842 uvm_page_physdump()
843 {
844 	int lcv;
845 
846 	printf("rehash: physical memory config [segs=%d of %d]:\n",
847 				 vm_nphysseg, VM_PHYSSEG_MAX);
848 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
849 		printf("0x%llx->0x%llx [0x%llx->0x%llx]\n",
850 		    (long long)vm_physmem[lcv].start,
851 		    (long long)vm_physmem[lcv].end,
852 		    (long long)vm_physmem[lcv].avail_start,
853 		    (long long)vm_physmem[lcv].avail_end);
854 	printf("STRATEGY = ");
855 	switch (VM_PHYSSEG_STRAT) {
856 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
857 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
858 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
859 	default: printf("<<UNKNOWN>>!!!!\n");
860 	}
861 	printf("number of buckets = %d\n", uvm.page_nhash);
862 }
863 #endif
864 
865 /*
866  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
867  *
868  * => return null if no pages free
869  * => wake up pagedaemon if number of free pages drops below low water mark
870  * => if obj != NULL, obj must be locked (to put in hash)
871  * => if anon != NULL, anon must be locked (to put in anon)
872  * => only one of obj or anon can be non-null
873  * => caller must activate/deactivate page if it is not wired.
874  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
875  * => policy decision: it is more important to pull a page off of the
876  *	appropriate priority free list than it is to get a zero'd or
877  *	unknown contents page.  This is because we live with the
878  *	consequences of a bad free list decision for the entire
879  *	lifetime of the page, e.g. if the page comes from memory that
880  *	is slower to access.
881  */
882 
883 struct vm_page *
884 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
885 	struct uvm_object *obj;
886 	voff_t off;
887 	int flags;
888 	struct vm_anon *anon;
889 	int strat, free_list;
890 {
891 	int lcv, try1, try2, s, zeroit = 0;
892 	struct vm_page *pg;
893 	struct pglist *freeq;
894 	struct pgfreelist *pgfl;
895 	boolean_t use_reserve;
896 
897 	KASSERT(obj == NULL || anon == NULL);
898 	KASSERT(off == trunc_page(off));
899 
900 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
901 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
902 
903 	s = uvm_lock_fpageq();
904 
905 	/*
906 	 * check to see if we need to generate some free pages waking
907 	 * the pagedaemon.
908 	 */
909 
910 	if (uvmexp.free + uvmexp.paging < uvmexp.freemin ||
911 	    (uvmexp.free + uvmexp.paging < uvmexp.freetarg &&
912 	     uvmexp.inactive < uvmexp.inactarg)) {
913 		wakeup(&uvm.pagedaemon);
914 	}
915 
916 	/*
917 	 * fail if any of these conditions is true:
918 	 * [1]  there really are no free pages, or
919 	 * [2]  only kernel "reserved" pages remain and
920 	 *        the page isn't being allocated to a kernel object.
921 	 * [3]  only pagedaemon "reserved" pages remain and
922 	 *        the requestor isn't the pagedaemon.
923 	 */
924 
925 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
926 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
927 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
928 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
929 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
930 		goto fail;
931 
932 #if PGFL_NQUEUES != 2
933 #error uvm_pagealloc_strat needs to be updated
934 #endif
935 
936 	/*
937 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
938 	 * we try the UNKNOWN queue first.
939 	 */
940 	if (flags & UVM_PGA_ZERO) {
941 		try1 = PGFL_ZEROS;
942 		try2 = PGFL_UNKNOWN;
943 	} else {
944 		try1 = PGFL_UNKNOWN;
945 		try2 = PGFL_ZEROS;
946 	}
947 
948  again:
949 	switch (strat) {
950 	case UVM_PGA_STRAT_NORMAL:
951 		/* Check all freelists in descending priority order. */
952 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
953 			pgfl = &uvm.page_free[lcv];
954 			if ((pg = TAILQ_FIRST((freeq =
955 			      &pgfl->pgfl_queues[try1]))) != NULL ||
956 			    (pg = TAILQ_FIRST((freeq =
957 			      &pgfl->pgfl_queues[try2]))) != NULL)
958 				goto gotit;
959 		}
960 
961 		/* No pages free! */
962 		goto fail;
963 
964 	case UVM_PGA_STRAT_ONLY:
965 	case UVM_PGA_STRAT_FALLBACK:
966 		/* Attempt to allocate from the specified free list. */
967 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
968 		pgfl = &uvm.page_free[free_list];
969 		if ((pg = TAILQ_FIRST((freeq =
970 		      &pgfl->pgfl_queues[try1]))) != NULL ||
971 		    (pg = TAILQ_FIRST((freeq =
972 		      &pgfl->pgfl_queues[try2]))) != NULL)
973 			goto gotit;
974 
975 		/* Fall back, if possible. */
976 		if (strat == UVM_PGA_STRAT_FALLBACK) {
977 			strat = UVM_PGA_STRAT_NORMAL;
978 			goto again;
979 		}
980 
981 		/* No pages free! */
982 		goto fail;
983 
984 	default:
985 		panic("uvm_pagealloc_strat: bad strat %d", strat);
986 		/* NOTREACHED */
987 	}
988 
989  gotit:
990 	TAILQ_REMOVE(freeq, pg, pageq);
991 	uvmexp.free--;
992 
993 	/* update zero'd page count */
994 	if (pg->flags & PG_ZERO)
995 		uvmexp.zeropages--;
996 
997 	/*
998 	 * update allocation statistics and remember if we have to
999 	 * zero the page
1000 	 */
1001 	if (flags & UVM_PGA_ZERO) {
1002 		if (pg->flags & PG_ZERO) {
1003 			uvmexp.pga_zerohit++;
1004 			zeroit = 0;
1005 		} else {
1006 			uvmexp.pga_zeromiss++;
1007 			zeroit = 1;
1008 		}
1009 	}
1010 
1011 	uvm_unlock_fpageq(s);		/* unlock free page queue */
1012 
1013 	pg->offset = off;
1014 	pg->uobject = obj;
1015 	pg->uanon = anon;
1016 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1017 	pg->version++;
1018 	if (anon) {
1019 		anon->u.an_page = pg;
1020 		pg->pqflags = PQ_ANON;
1021 		uvmexp.anonpages++;
1022 	} else {
1023 		if (obj)
1024 			uvm_pageinsert(pg);
1025 		pg->pqflags = 0;
1026 	}
1027 #if defined(UVM_PAGE_TRKOWN)
1028 	pg->owner_tag = NULL;
1029 #endif
1030 	UVM_PAGE_OWN(pg, "new alloc");
1031 
1032 	if (flags & UVM_PGA_ZERO) {
1033 		/*
1034 		 * A zero'd page is not clean.  If we got a page not already
1035 		 * zero'd, then we have to zero it ourselves.
1036 		 */
1037 		pg->flags &= ~PG_CLEAN;
1038 		if (zeroit)
1039 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1040 	}
1041 
1042 	return(pg);
1043 
1044  fail:
1045 	uvm_unlock_fpageq(s);
1046 	return (NULL);
1047 }
1048 
1049 /*
1050  * uvm_pagerealloc: reallocate a page from one object to another
1051  *
1052  * => both objects must be locked
1053  */
1054 
1055 void
1056 uvm_pagerealloc(pg, newobj, newoff)
1057 	struct vm_page *pg;
1058 	struct uvm_object *newobj;
1059 	voff_t newoff;
1060 {
1061 	/*
1062 	 * remove it from the old object
1063 	 */
1064 
1065 	if (pg->uobject) {
1066 		uvm_pageremove(pg);
1067 	}
1068 
1069 	/*
1070 	 * put it in the new object
1071 	 */
1072 
1073 	if (newobj) {
1074 		pg->uobject = newobj;
1075 		pg->offset = newoff;
1076 		pg->version++;
1077 		uvm_pageinsert(pg);
1078 	}
1079 }
1080 
1081 
1082 /*
1083  * uvm_pagefree: free page
1084  *
1085  * => erase page's identity (i.e. remove from hash/object)
1086  * => put page on free list
1087  * => caller must lock owning object (either anon or uvm_object)
1088  * => caller must lock page queues
1089  * => assumes all valid mappings of pg are gone
1090  */
1091 
1092 void
1093 uvm_pagefree(pg)
1094 	struct vm_page *pg;
1095 {
1096 	int s;
1097 	int saved_loan_count = pg->loan_count;
1098 
1099 #ifdef DEBUG
1100 	if (pg->uobject == (void *)0xdeadbeef &&
1101 	    pg->uanon == (void *)0xdeadbeef) {
1102 		panic("uvm_pagefree: freeing free page %p\n", pg);
1103 	}
1104 #endif
1105 
1106 	/*
1107 	 * if the page was an object page (and thus "TABLED"), remove it
1108 	 * from the object.
1109 	 */
1110 
1111 	if (pg->flags & PG_TABLED) {
1112 
1113 		/*
1114 		 * if the object page is on loan we are going to drop ownership.
1115 		 * it is possible that an anon will take over as owner for this
1116 		 * page later on.   the anon will want a !PG_CLEAN page so that
1117 		 * it knows it needs to allocate swap if it wants to page the
1118 		 * page out.
1119 		 */
1120 
1121 		if (saved_loan_count)
1122 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1123 		uvm_pageremove(pg);
1124 
1125 		/*
1126 		 * if our page was on loan, then we just lost control over it
1127 		 * (in fact, if it was loaned to an anon, the anon may have
1128 		 * already taken over ownership of the page by now and thus
1129 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1130 		 * return (when the last loan is dropped, then the page can be
1131 		 * freed by whatever was holding the last loan).
1132 		 */
1133 
1134 		if (saved_loan_count)
1135 			return;
1136 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1137 
1138 		/*
1139 		 * if our page is owned by an anon and is loaned out to the
1140 		 * kernel then we just want to drop ownership and return.
1141 		 * the kernel must free the page when all its loans clear ...
1142 		 * note that the kernel can't change the loan status of our
1143 		 * page as long as we are holding PQ lock.
1144 		 */
1145 
1146 		pg->pqflags &= ~PQ_ANON;
1147 		pg->uanon = NULL;
1148 		return;
1149 	}
1150 	KASSERT(saved_loan_count == 0);
1151 
1152 	/*
1153 	 * now remove the page from the queues
1154 	 */
1155 
1156 	if (pg->pqflags & PQ_ACTIVE) {
1157 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1158 		pg->pqflags &= ~PQ_ACTIVE;
1159 		uvmexp.active--;
1160 	}
1161 	if (pg->pqflags & PQ_INACTIVE) {
1162 		if (pg->pqflags & PQ_SWAPBACKED)
1163 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1164 		else
1165 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1166 		pg->pqflags &= ~PQ_INACTIVE;
1167 		uvmexp.inactive--;
1168 	}
1169 
1170 	/*
1171 	 * if the page was wired, unwire it now.
1172 	 */
1173 
1174 	if (pg->wire_count) {
1175 		pg->wire_count = 0;
1176 		uvmexp.wired--;
1177 	}
1178 	if (pg->uanon) {
1179 		uvmexp.anonpages--;
1180 	}
1181 
1182 	/*
1183 	 * and put on free queue
1184 	 */
1185 
1186 	pg->flags &= ~PG_ZERO;
1187 
1188 	s = uvm_lock_fpageq();
1189 	TAILQ_INSERT_TAIL(&uvm.page_free[
1190 	    uvm_page_lookup_freelist(pg)].pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1191 	pg->pqflags = PQ_FREE;
1192 #ifdef DEBUG
1193 	pg->uobject = (void *)0xdeadbeef;
1194 	pg->offset = 0xdeadbeef;
1195 	pg->uanon = (void *)0xdeadbeef;
1196 #endif
1197 	uvmexp.free++;
1198 
1199 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1200 		uvm.page_idle_zero = vm_page_zero_enable;
1201 
1202 	uvm_unlock_fpageq(s);
1203 }
1204 
1205 /*
1206  * uvm_page_unbusy: unbusy an array of pages.
1207  *
1208  * => pages must either all belong to the same object, or all belong to anons.
1209  * => if pages are object-owned, object must be locked.
1210  * => if pages are anon-owned, anons must be unlockd and have 0 refcount.
1211  */
1212 
1213 void
1214 uvm_page_unbusy(pgs, npgs)
1215 	struct vm_page **pgs;
1216 	int npgs;
1217 {
1218 	struct vm_page *pg;
1219 	struct uvm_object *uobj;
1220 	int i;
1221 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1222 
1223 	for (i = 0; i < npgs; i++) {
1224 		pg = pgs[i];
1225 
1226 		if (pg == NULL) {
1227 			continue;
1228 		}
1229 		if (pg->flags & PG_WANTED) {
1230 			wakeup(pg);
1231 		}
1232 		if (pg->flags & PG_RELEASED) {
1233 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1234 			uobj = pg->uobject;
1235 			if (uobj != NULL) {
1236 				uobj->pgops->pgo_releasepg(pg, NULL);
1237 			} else {
1238 				pg->flags &= ~(PG_BUSY);
1239 				UVM_PAGE_OWN(pg, NULL);
1240 				uvm_anfree(pg->uanon);
1241 			}
1242 		} else {
1243 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1244 			KASSERT(pg->wire_count ||
1245 				(pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)));
1246 			pg->flags &= ~(PG_WANTED|PG_BUSY);
1247 			UVM_PAGE_OWN(pg, NULL);
1248 		}
1249 	}
1250 }
1251 
1252 #if defined(UVM_PAGE_TRKOWN)
1253 /*
1254  * uvm_page_own: set or release page ownership
1255  *
1256  * => this is a debugging function that keeps track of who sets PG_BUSY
1257  *	and where they do it.   it can be used to track down problems
1258  *	such a process setting "PG_BUSY" and never releasing it.
1259  * => page's object [if any] must be locked
1260  * => if "tag" is NULL then we are releasing page ownership
1261  */
1262 void
1263 uvm_page_own(pg, tag)
1264 	struct vm_page *pg;
1265 	char *tag;
1266 {
1267 	/* gain ownership? */
1268 	if (tag) {
1269 		if (pg->owner_tag) {
1270 			printf("uvm_page_own: page %p already owned "
1271 			    "by proc %d [%s]\n", pg,
1272 			     pg->owner, pg->owner_tag);
1273 			panic("uvm_page_own");
1274 		}
1275 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1276 		pg->owner_tag = tag;
1277 		return;
1278 	}
1279 
1280 	/* drop ownership */
1281 	if (pg->owner_tag == NULL) {
1282 		printf("uvm_page_own: dropping ownership of an non-owned "
1283 		    "page (%p)\n", pg);
1284 		panic("uvm_page_own");
1285 	}
1286 	pg->owner_tag = NULL;
1287 	return;
1288 }
1289 #endif
1290 
1291 /*
1292  * uvm_pageidlezero: zero free pages while the system is idle.
1293  *
1294  * => we do at least one iteration per call, if we are below the target.
1295  * => we loop until we either reach the target or whichqs indicates that
1296  *	there is a process ready to run.
1297  */
1298 void
1299 uvm_pageidlezero()
1300 {
1301 	struct vm_page *pg;
1302 	struct pgfreelist *pgfl;
1303 	int free_list, s;
1304 
1305 	do {
1306 		s = uvm_lock_fpageq();
1307 
1308 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1309 			uvm.page_idle_zero = FALSE;
1310 			uvm_unlock_fpageq(s);
1311 			return;
1312 		}
1313 
1314 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1315 			pgfl = &uvm.page_free[free_list];
1316 			if ((pg = TAILQ_FIRST(&pgfl->pgfl_queues[
1317 			    PGFL_UNKNOWN])) != NULL)
1318 				break;
1319 		}
1320 
1321 		if (pg == NULL) {
1322 			/*
1323 			 * No non-zero'd pages; don't bother trying again
1324 			 * until we know we have non-zero'd pages free.
1325 			 */
1326 			uvm.page_idle_zero = FALSE;
1327 			uvm_unlock_fpageq(s);
1328 			return;
1329 		}
1330 
1331 		TAILQ_REMOVE(&pgfl->pgfl_queues[PGFL_UNKNOWN], pg, pageq);
1332 		uvmexp.free--;
1333 		uvm_unlock_fpageq(s);
1334 
1335 #ifdef PMAP_PAGEIDLEZERO
1336 		if (PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg)) == FALSE) {
1337 			/*
1338 			 * The machine-dependent code detected some
1339 			 * reason for us to abort zeroing pages,
1340 			 * probably because there is a process now
1341 			 * ready to run.
1342 			 */
1343 			s = uvm_lock_fpageq();
1344 			TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_UNKNOWN],
1345 			    pg, pageq);
1346 			uvmexp.free++;
1347 			uvmexp.zeroaborts++;
1348 			uvm_unlock_fpageq(s);
1349 			return;
1350 		}
1351 #else
1352 		/*
1353 		 * XXX This will toast the cache unless the pmap_zero_page()
1354 		 * XXX implementation does uncached access.
1355 		 */
1356 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1357 #endif
1358 		pg->flags |= PG_ZERO;
1359 
1360 		s = uvm_lock_fpageq();
1361 		TAILQ_INSERT_HEAD(&pgfl->pgfl_queues[PGFL_ZEROS], pg, pageq);
1362 		uvmexp.free++;
1363 		uvmexp.zeropages++;
1364 		uvm_unlock_fpageq(s);
1365 	} while (sched_whichqs == 0);
1366 }
1367