xref: /netbsd-src/sys/uvm/uvm_page.c (revision e5548b402ae4c44fb816de42c7bba9581ce23ef5)
1 /*	$NetBSD: uvm_page.c,v 1.107 2005/12/11 12:25:29 christos Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_page.c: page ops.
71  */
72 
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.107 2005/12/11 12:25:29 christos Exp $");
75 
76 #include "opt_uvmhist.h"
77 
78 #include <sys/param.h>
79 #include <sys/systm.h>
80 #include <sys/malloc.h>
81 #include <sys/sched.h>
82 #include <sys/kernel.h>
83 #include <sys/vnode.h>
84 #include <sys/proc.h>
85 
86 #define UVM_PAGE_C              /* pull in uvm_page_i.h functions */
87 #include <uvm/uvm.h>
88 
89 /*
90  * global vars... XXXCDC: move to uvm. structure.
91  */
92 
93 /*
94  * physical memory config is stored in vm_physmem.
95  */
96 
97 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
98 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
99 
100 /*
101  * Some supported CPUs in a given architecture don't support all
102  * of the things necessary to do idle page zero'ing efficiently.
103  * We therefore provide a way to disable it from machdep code here.
104  */
105 /*
106  * XXX disabled until we can find a way to do this without causing
107  * problems for either CPU caches or DMA latency.
108  */
109 boolean_t vm_page_zero_enable = FALSE;
110 
111 /*
112  * local variables
113  */
114 
115 /*
116  * these variables record the values returned by vm_page_bootstrap,
117  * for debugging purposes.  The implementation of uvm_pageboot_alloc
118  * and pmap_startup here also uses them internally.
119  */
120 
121 static vaddr_t      virtual_space_start;
122 static vaddr_t      virtual_space_end;
123 
124 /*
125  * we use a hash table with only one bucket during bootup.  we will
126  * later rehash (resize) the hash table once the allocator is ready.
127  * we static allocate the one bootstrap bucket below...
128  */
129 
130 static struct pglist uvm_bootbucket;
131 
132 /*
133  * we allocate an initial number of page colors in uvm_page_init(),
134  * and remember them.  We may re-color pages as cache sizes are
135  * discovered during the autoconfiguration phase.  But we can never
136  * free the initial set of buckets, since they are allocated using
137  * uvm_pageboot_alloc().
138  */
139 
140 static boolean_t have_recolored_pages /* = FALSE */;
141 
142 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page");
143 
144 #ifdef DEBUG
145 vaddr_t uvm_zerocheckkva;
146 #endif /* DEBUG */
147 
148 /*
149  * local prototypes
150  */
151 
152 static void uvm_pageinsert(struct vm_page *);
153 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *);
154 static void uvm_pageremove(struct vm_page *);
155 
156 /*
157  * inline functions
158  */
159 
160 /*
161  * uvm_pageinsert: insert a page in the object and the hash table
162  * uvm_pageinsert_after: insert a page into the specified place in listq
163  *
164  * => caller must lock object
165  * => caller must lock page queues
166  * => call should have already set pg's object and offset pointers
167  *    and bumped the version counter
168  */
169 
170 __inline static void
171 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where)
172 {
173 	struct pglist *buck;
174 	struct uvm_object *uobj = pg->uobject;
175 
176 	KASSERT((pg->flags & PG_TABLED) == 0);
177 	KASSERT(where == NULL || (where->flags & PG_TABLED));
178 	KASSERT(where == NULL || (where->uobject == uobj));
179 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
180 	simple_lock(&uvm.hashlock);
181 	TAILQ_INSERT_TAIL(buck, pg, hashq);
182 	simple_unlock(&uvm.hashlock);
183 
184 	if (UVM_OBJ_IS_VNODE(uobj)) {
185 		if (uobj->uo_npages == 0) {
186 			struct vnode *vp = (struct vnode *)uobj;
187 
188 			vholdl(vp);
189 		}
190 		if (UVM_OBJ_IS_VTEXT(uobj)) {
191 			uvmexp.execpages++;
192 		} else {
193 			uvmexp.filepages++;
194 		}
195 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
196 		uvmexp.anonpages++;
197 	}
198 
199 	if (where)
200 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq);
201 	else
202 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq);
203 	pg->flags |= PG_TABLED;
204 	uobj->uo_npages++;
205 }
206 
207 __inline static void
208 uvm_pageinsert(struct vm_page *pg)
209 {
210 
211 	uvm_pageinsert_after(pg, NULL);
212 }
213 
214 /*
215  * uvm_page_remove: remove page from object and hash
216  *
217  * => caller must lock object
218  * => caller must lock page queues
219  */
220 
221 static __inline void
222 uvm_pageremove(struct vm_page *pg)
223 {
224 	struct pglist *buck;
225 	struct uvm_object *uobj = pg->uobject;
226 
227 	KASSERT(pg->flags & PG_TABLED);
228 	buck = &uvm.page_hash[uvm_pagehash(uobj, pg->offset)];
229 	simple_lock(&uvm.hashlock);
230 	TAILQ_REMOVE(buck, pg, hashq);
231 	simple_unlock(&uvm.hashlock);
232 
233 	if (UVM_OBJ_IS_VNODE(uobj)) {
234 		if (uobj->uo_npages == 1) {
235 			struct vnode *vp = (struct vnode *)uobj;
236 
237 			holdrelel(vp);
238 		}
239 		if (UVM_OBJ_IS_VTEXT(uobj)) {
240 			uvmexp.execpages--;
241 		} else {
242 			uvmexp.filepages--;
243 		}
244 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
245 		uvmexp.anonpages--;
246 	}
247 
248 	/* object should be locked */
249 	uobj->uo_npages--;
250 	TAILQ_REMOVE(&uobj->memq, pg, listq);
251 	pg->flags &= ~PG_TABLED;
252 	pg->uobject = NULL;
253 }
254 
255 static void
256 uvm_page_init_buckets(struct pgfreelist *pgfl)
257 {
258 	int color, i;
259 
260 	for (color = 0; color < uvmexp.ncolors; color++) {
261 		for (i = 0; i < PGFL_NQUEUES; i++) {
262 			TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
263 		}
264 	}
265 }
266 
267 /*
268  * uvm_page_init: init the page system.   called from uvm_init().
269  *
270  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
271  */
272 
273 void
274 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
275 {
276 	vsize_t freepages, pagecount, bucketcount, n;
277 	struct pgflbucket *bucketarray;
278 	struct vm_page *pagearray;
279 	int lcv;
280 	u_int i;
281 	paddr_t paddr;
282 
283 	/*
284 	 * init the page queues and page queue locks, except the free
285 	 * list; we allocate that later (with the initial vm_page
286 	 * structures).
287 	 */
288 
289 	TAILQ_INIT(&uvm.page_active);
290 	TAILQ_INIT(&uvm.page_inactive);
291 	simple_lock_init(&uvm.pageqlock);
292 	simple_lock_init(&uvm.fpageqlock);
293 
294 	/*
295 	 * init the <obj,offset> => <page> hash table.  for now
296 	 * we just have one bucket (the bootstrap bucket).  later on we
297 	 * will allocate new buckets as we dynamically resize the hash table.
298 	 */
299 
300 	uvm.page_nhash = 1;			/* 1 bucket */
301 	uvm.page_hashmask = 0;			/* mask for hash function */
302 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
303 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
304 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
305 
306 	/*
307 	 * allocate vm_page structures.
308 	 */
309 
310 	/*
311 	 * sanity check:
312 	 * before calling this function the MD code is expected to register
313 	 * some free RAM with the uvm_page_physload() function.   our job
314 	 * now is to allocate vm_page structures for this memory.
315 	 */
316 
317 	if (vm_nphysseg == 0)
318 		panic("uvm_page_bootstrap: no memory pre-allocated");
319 
320 	/*
321 	 * first calculate the number of free pages...
322 	 *
323 	 * note that we use start/end rather than avail_start/avail_end.
324 	 * this allows us to allocate extra vm_page structures in case we
325 	 * want to return some memory to the pool after booting.
326 	 */
327 
328 	freepages = 0;
329 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
330 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
331 
332 	/*
333 	 * Let MD code initialize the number of colors, or default
334 	 * to 1 color if MD code doesn't care.
335 	 */
336 	if (uvmexp.ncolors == 0)
337 		uvmexp.ncolors = 1;
338 	uvmexp.colormask = uvmexp.ncolors - 1;
339 
340 	/*
341 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
342 	 * use.   for each page of memory we use we need a vm_page structure.
343 	 * thus, the total number of pages we can use is the total size of
344 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
345 	 * structure.   we add one to freepages as a fudge factor to avoid
346 	 * truncation errors (since we can only allocate in terms of whole
347 	 * pages).
348 	 */
349 
350 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
351 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
352 	    (PAGE_SIZE + sizeof(struct vm_page));
353 
354 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
355 	    sizeof(struct pgflbucket)) + (pagecount *
356 	    sizeof(struct vm_page)));
357 	pagearray = (struct vm_page *)(bucketarray + bucketcount);
358 
359 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
360 		uvm.page_free[lcv].pgfl_buckets =
361 		    (bucketarray + (lcv * uvmexp.ncolors));
362 		uvm_page_init_buckets(&uvm.page_free[lcv]);
363 	}
364 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
365 
366 	/*
367 	 * init the vm_page structures and put them in the correct place.
368 	 */
369 
370 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
371 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
372 
373 		/* set up page array pointers */
374 		vm_physmem[lcv].pgs = pagearray;
375 		pagearray += n;
376 		pagecount -= n;
377 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
378 
379 		/* init and free vm_pages (we've already zeroed them) */
380 		paddr = ptoa(vm_physmem[lcv].start);
381 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
382 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
383 #ifdef __HAVE_VM_PAGE_MD
384 			VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]);
385 #endif
386 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
387 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
388 				uvmexp.npages++;
389 				/* add page to free pool */
390 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
391 			}
392 		}
393 	}
394 
395 	/*
396 	 * pass up the values of virtual_space_start and
397 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
398 	 * layers of the VM.
399 	 */
400 
401 	*kvm_startp = round_page(virtual_space_start);
402 	*kvm_endp = trunc_page(virtual_space_end);
403 #ifdef DEBUG
404 	/*
405 	 * steal kva for uvm_pagezerocheck().
406 	 */
407 	uvm_zerocheckkva = *kvm_startp;
408 	*kvm_startp += PAGE_SIZE;
409 #endif /* DEBUG */
410 
411 	/*
412 	 * init locks for kernel threads
413 	 */
414 
415 	simple_lock_init(&uvm.pagedaemon_lock);
416 	simple_lock_init(&uvm.aiodoned_lock);
417 
418 	/*
419 	 * init various thresholds.
420 	 */
421 
422 	uvmexp.reserve_pagedaemon = 1;
423 	uvmexp.reserve_kernel = 5;
424 	uvmexp.anonminpct = 10;
425 	uvmexp.fileminpct = 10;
426 	uvmexp.execminpct = 5;
427 	uvmexp.anonmaxpct = 80;
428 	uvmexp.filemaxpct = 50;
429 	uvmexp.execmaxpct = 30;
430 	uvmexp.anonmin = uvmexp.anonminpct * 256 / 100;
431 	uvmexp.filemin = uvmexp.fileminpct * 256 / 100;
432 	uvmexp.execmin = uvmexp.execminpct * 256 / 100;
433 	uvmexp.anonmax = uvmexp.anonmaxpct * 256 / 100;
434 	uvmexp.filemax = uvmexp.filemaxpct * 256 / 100;
435 	uvmexp.execmax = uvmexp.execmaxpct * 256 / 100;
436 
437 	/*
438 	 * determine if we should zero pages in the idle loop.
439 	 */
440 
441 	uvm.page_idle_zero = vm_page_zero_enable;
442 
443 	/*
444 	 * done!
445 	 */
446 
447 	uvm.page_init_done = TRUE;
448 }
449 
450 /*
451  * uvm_setpagesize: set the page size
452  *
453  * => sets page_shift and page_mask from uvmexp.pagesize.
454  */
455 
456 void
457 uvm_setpagesize(void)
458 {
459 
460 	/*
461 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
462 	 * to be a constant (indicated by being a non-zero value).
463 	 */
464 	if (uvmexp.pagesize == 0) {
465 		if (PAGE_SIZE == 0)
466 			panic("uvm_setpagesize: uvmexp.pagesize not set");
467 		uvmexp.pagesize = PAGE_SIZE;
468 	}
469 	uvmexp.pagemask = uvmexp.pagesize - 1;
470 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
471 		panic("uvm_setpagesize: page size not a power of two");
472 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
473 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
474 			break;
475 }
476 
477 /*
478  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
479  */
480 
481 vaddr_t
482 uvm_pageboot_alloc(vsize_t size)
483 {
484 	static boolean_t initialized = FALSE;
485 	vaddr_t addr;
486 #if !defined(PMAP_STEAL_MEMORY)
487 	vaddr_t vaddr;
488 	paddr_t paddr;
489 #endif
490 
491 	/*
492 	 * on first call to this function, initialize ourselves.
493 	 */
494 	if (initialized == FALSE) {
495 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
496 
497 		/* round it the way we like it */
498 		virtual_space_start = round_page(virtual_space_start);
499 		virtual_space_end = trunc_page(virtual_space_end);
500 
501 		initialized = TRUE;
502 	}
503 
504 	/* round to page size */
505 	size = round_page(size);
506 
507 #if defined(PMAP_STEAL_MEMORY)
508 
509 	/*
510 	 * defer bootstrap allocation to MD code (it may want to allocate
511 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
512 	 * virtual_space_start/virtual_space_end if necessary.
513 	 */
514 
515 	addr = pmap_steal_memory(size, &virtual_space_start,
516 	    &virtual_space_end);
517 
518 	return(addr);
519 
520 #else /* !PMAP_STEAL_MEMORY */
521 
522 	/*
523 	 * allocate virtual memory for this request
524 	 */
525 	if (virtual_space_start == virtual_space_end ||
526 	    (virtual_space_end - virtual_space_start) < size)
527 		panic("uvm_pageboot_alloc: out of virtual space");
528 
529 	addr = virtual_space_start;
530 
531 #ifdef PMAP_GROWKERNEL
532 	/*
533 	 * If the kernel pmap can't map the requested space,
534 	 * then allocate more resources for it.
535 	 */
536 	if (uvm_maxkaddr < (addr + size)) {
537 		uvm_maxkaddr = pmap_growkernel(addr + size);
538 		if (uvm_maxkaddr < (addr + size))
539 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
540 	}
541 #endif
542 
543 	virtual_space_start += size;
544 
545 	/*
546 	 * allocate and mapin physical pages to back new virtual pages
547 	 */
548 
549 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
550 	    vaddr += PAGE_SIZE) {
551 
552 		if (!uvm_page_physget(&paddr))
553 			panic("uvm_pageboot_alloc: out of memory");
554 
555 		/*
556 		 * Note this memory is no longer managed, so using
557 		 * pmap_kenter is safe.
558 		 */
559 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
560 	}
561 	pmap_update(pmap_kernel());
562 	return(addr);
563 #endif	/* PMAP_STEAL_MEMORY */
564 }
565 
566 #if !defined(PMAP_STEAL_MEMORY)
567 /*
568  * uvm_page_physget: "steal" one page from the vm_physmem structure.
569  *
570  * => attempt to allocate it off the end of a segment in which the "avail"
571  *    values match the start/end values.   if we can't do that, then we
572  *    will advance both values (making them equal, and removing some
573  *    vm_page structures from the non-avail area).
574  * => return false if out of memory.
575  */
576 
577 /* subroutine: try to allocate from memory chunks on the specified freelist */
578 static boolean_t uvm_page_physget_freelist(paddr_t *, int);
579 
580 static boolean_t
581 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
582 {
583 	int lcv, x;
584 
585 	/* pass 1: try allocating from a matching end */
586 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
587 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
588 #else
589 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
590 #endif
591 	{
592 
593 		if (uvm.page_init_done == TRUE)
594 			panic("uvm_page_physget: called _after_ bootstrap");
595 
596 		if (vm_physmem[lcv].free_list != freelist)
597 			continue;
598 
599 		/* try from front */
600 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
601 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
602 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
603 			vm_physmem[lcv].avail_start++;
604 			vm_physmem[lcv].start++;
605 			/* nothing left?   nuke it */
606 			if (vm_physmem[lcv].avail_start ==
607 			    vm_physmem[lcv].end) {
608 				if (vm_nphysseg == 1)
609 				    panic("uvm_page_physget: out of memory!");
610 				vm_nphysseg--;
611 				for (x = lcv ; x < vm_nphysseg ; x++)
612 					/* structure copy */
613 					vm_physmem[x] = vm_physmem[x+1];
614 			}
615 			return (TRUE);
616 		}
617 
618 		/* try from rear */
619 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
620 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
621 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
622 			vm_physmem[lcv].avail_end--;
623 			vm_physmem[lcv].end--;
624 			/* nothing left?   nuke it */
625 			if (vm_physmem[lcv].avail_end ==
626 			    vm_physmem[lcv].start) {
627 				if (vm_nphysseg == 1)
628 				    panic("uvm_page_physget: out of memory!");
629 				vm_nphysseg--;
630 				for (x = lcv ; x < vm_nphysseg ; x++)
631 					/* structure copy */
632 					vm_physmem[x] = vm_physmem[x+1];
633 			}
634 			return (TRUE);
635 		}
636 	}
637 
638 	/* pass2: forget about matching ends, just allocate something */
639 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
640 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
641 #else
642 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
643 #endif
644 	{
645 
646 		/* any room in this bank? */
647 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
648 			continue;  /* nope */
649 
650 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
651 		vm_physmem[lcv].avail_start++;
652 		/* truncate! */
653 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
654 
655 		/* nothing left?   nuke it */
656 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
657 			if (vm_nphysseg == 1)
658 				panic("uvm_page_physget: out of memory!");
659 			vm_nphysseg--;
660 			for (x = lcv ; x < vm_nphysseg ; x++)
661 				/* structure copy */
662 				vm_physmem[x] = vm_physmem[x+1];
663 		}
664 		return (TRUE);
665 	}
666 
667 	return (FALSE);        /* whoops! */
668 }
669 
670 boolean_t
671 uvm_page_physget(paddr_t *paddrp)
672 {
673 	int i;
674 
675 	/* try in the order of freelist preference */
676 	for (i = 0; i < VM_NFREELIST; i++)
677 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
678 			return (TRUE);
679 	return (FALSE);
680 }
681 #endif /* PMAP_STEAL_MEMORY */
682 
683 /*
684  * uvm_page_physload: load physical memory into VM system
685  *
686  * => all args are PFs
687  * => all pages in start/end get vm_page structures
688  * => areas marked by avail_start/avail_end get added to the free page pool
689  * => we are limited to VM_PHYSSEG_MAX physical memory segments
690  */
691 
692 void
693 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
694     paddr_t avail_end, int free_list)
695 {
696 	int preload, lcv;
697 	psize_t npages;
698 	struct vm_page *pgs;
699 	struct vm_physseg *ps;
700 
701 	if (uvmexp.pagesize == 0)
702 		panic("uvm_page_physload: page size not set!");
703 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
704 		panic("uvm_page_physload: bad free list %d", free_list);
705 	if (start >= end)
706 		panic("uvm_page_physload: start >= end");
707 
708 	/*
709 	 * do we have room?
710 	 */
711 
712 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
713 		printf("uvm_page_physload: unable to load physical memory "
714 		    "segment\n");
715 		printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
716 		    VM_PHYSSEG_MAX, (long long)start, (long long)end);
717 		printf("\tincrease VM_PHYSSEG_MAX\n");
718 		return;
719 	}
720 
721 	/*
722 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
723 	 * called yet, so malloc is not available).
724 	 */
725 
726 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
727 		if (vm_physmem[lcv].pgs)
728 			break;
729 	}
730 	preload = (lcv == vm_nphysseg);
731 
732 	/*
733 	 * if VM is already running, attempt to malloc() vm_page structures
734 	 */
735 
736 	if (!preload) {
737 #if defined(VM_PHYSSEG_NOADD)
738 		panic("uvm_page_physload: tried to add RAM after vm_mem_init");
739 #else
740 		/* XXXCDC: need some sort of lockout for this case */
741 		paddr_t paddr;
742 		npages = end - start;  /* # of pages */
743 		pgs = malloc(sizeof(struct vm_page) * npages,
744 		    M_VMPAGE, M_NOWAIT);
745 		if (pgs == NULL) {
746 			printf("uvm_page_physload: can not malloc vm_page "
747 			    "structs for segment\n");
748 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
749 			return;
750 		}
751 		/* zero data, init phys_addr and free_list, and free pages */
752 		memset(pgs, 0, sizeof(struct vm_page) * npages);
753 		for (lcv = 0, paddr = ptoa(start) ;
754 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
755 			pgs[lcv].phys_addr = paddr;
756 			pgs[lcv].free_list = free_list;
757 			if (atop(paddr) >= avail_start &&
758 			    atop(paddr) <= avail_end)
759 				uvm_pagefree(&pgs[lcv]);
760 		}
761 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
762 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
763 #endif
764 	} else {
765 		pgs = NULL;
766 		npages = 0;
767 	}
768 
769 	/*
770 	 * now insert us in the proper place in vm_physmem[]
771 	 */
772 
773 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
774 	/* random: put it at the end (easy!) */
775 	ps = &vm_physmem[vm_nphysseg];
776 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
777 	{
778 		int x;
779 		/* sort by address for binary search */
780 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
781 			if (start < vm_physmem[lcv].start)
782 				break;
783 		ps = &vm_physmem[lcv];
784 		/* move back other entries, if necessary ... */
785 		for (x = vm_nphysseg ; x > lcv ; x--)
786 			/* structure copy */
787 			vm_physmem[x] = vm_physmem[x - 1];
788 	}
789 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
790 	{
791 		int x;
792 		/* sort by largest segment first */
793 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
794 			if ((end - start) >
795 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
796 				break;
797 		ps = &vm_physmem[lcv];
798 		/* move back other entries, if necessary ... */
799 		for (x = vm_nphysseg ; x > lcv ; x--)
800 			/* structure copy */
801 			vm_physmem[x] = vm_physmem[x - 1];
802 	}
803 #else
804 	panic("uvm_page_physload: unknown physseg strategy selected!");
805 #endif
806 
807 	ps->start = start;
808 	ps->end = end;
809 	ps->avail_start = avail_start;
810 	ps->avail_end = avail_end;
811 	if (preload) {
812 		ps->pgs = NULL;
813 	} else {
814 		ps->pgs = pgs;
815 		ps->lastpg = pgs + npages - 1;
816 	}
817 	ps->free_list = free_list;
818 	vm_nphysseg++;
819 
820 	if (!preload)
821 		uvm_page_rehash();
822 }
823 
824 /*
825  * uvm_page_rehash: reallocate hash table based on number of free pages.
826  */
827 
828 void
829 uvm_page_rehash(void)
830 {
831 	int freepages, lcv, bucketcount, oldcount;
832 	struct pglist *newbuckets, *oldbuckets;
833 	struct vm_page *pg;
834 	size_t newsize, oldsize;
835 
836 	/*
837 	 * compute number of pages that can go in the free pool
838 	 */
839 
840 	freepages = 0;
841 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
842 		freepages +=
843 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
844 
845 	/*
846 	 * compute number of buckets needed for this number of pages
847 	 */
848 
849 	bucketcount = 1;
850 	while (bucketcount < freepages)
851 		bucketcount = bucketcount * 2;
852 
853 	/*
854 	 * compute the size of the current table and new table.
855 	 */
856 
857 	oldbuckets = uvm.page_hash;
858 	oldcount = uvm.page_nhash;
859 	oldsize = round_page(sizeof(struct pglist) * oldcount);
860 	newsize = round_page(sizeof(struct pglist) * bucketcount);
861 
862 	/*
863 	 * allocate the new buckets
864 	 */
865 
866 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize,
867 	    0, UVM_KMF_WIRED);
868 	if (newbuckets == NULL) {
869 		printf("uvm_page_physrehash: WARNING: could not grow page "
870 		    "hash table\n");
871 		return;
872 	}
873 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
874 		TAILQ_INIT(&newbuckets[lcv]);
875 
876 	/*
877 	 * now replace the old buckets with the new ones and rehash everything
878 	 */
879 
880 	simple_lock(&uvm.hashlock);
881 	uvm.page_hash = newbuckets;
882 	uvm.page_nhash = bucketcount;
883 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
884 
885 	/* ... and rehash */
886 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
887 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
888 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
889 			TAILQ_INSERT_TAIL(
890 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
891 			  pg, hashq);
892 		}
893 	}
894 	simple_unlock(&uvm.hashlock);
895 
896 	/*
897 	 * free old bucket array if is not the boot-time table
898 	 */
899 
900 	if (oldbuckets != &uvm_bootbucket)
901 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize,
902 		    UVM_KMF_WIRED);
903 }
904 
905 /*
906  * uvm_page_recolor: Recolor the pages if the new bucket count is
907  * larger than the old one.
908  */
909 
910 void
911 uvm_page_recolor(int newncolors)
912 {
913 	struct pgflbucket *bucketarray, *oldbucketarray;
914 	struct pgfreelist pgfl;
915 	struct vm_page *pg;
916 	vsize_t bucketcount;
917 	int s, lcv, color, i, ocolors;
918 
919 	if (newncolors <= uvmexp.ncolors)
920 		return;
921 
922 	if (uvm.page_init_done == FALSE) {
923 		uvmexp.ncolors = newncolors;
924 		return;
925 	}
926 
927 	bucketcount = newncolors * VM_NFREELIST;
928 	bucketarray = malloc(bucketcount * sizeof(struct pgflbucket),
929 	    M_VMPAGE, M_NOWAIT);
930 	if (bucketarray == NULL) {
931 		printf("WARNING: unable to allocate %ld page color buckets\n",
932 		    (long) bucketcount);
933 		return;
934 	}
935 
936 	s = uvm_lock_fpageq();
937 
938 	/* Make sure we should still do this. */
939 	if (newncolors <= uvmexp.ncolors) {
940 		uvm_unlock_fpageq(s);
941 		free(bucketarray, M_VMPAGE);
942 		return;
943 	}
944 
945 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
946 	ocolors = uvmexp.ncolors;
947 
948 	uvmexp.ncolors = newncolors;
949 	uvmexp.colormask = uvmexp.ncolors - 1;
950 
951 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
952 		pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
953 		uvm_page_init_buckets(&pgfl);
954 		for (color = 0; color < ocolors; color++) {
955 			for (i = 0; i < PGFL_NQUEUES; i++) {
956 				while ((pg = TAILQ_FIRST(&uvm.page_free[
957 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
958 				    != NULL) {
959 					TAILQ_REMOVE(&uvm.page_free[
960 					    lcv].pgfl_buckets[
961 					    color].pgfl_queues[i], pg, pageq);
962 					TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[
963 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
964 					    i], pg, pageq);
965 				}
966 			}
967 		}
968 		uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
969 	}
970 
971 	if (have_recolored_pages) {
972 		uvm_unlock_fpageq(s);
973 		free(oldbucketarray, M_VMPAGE);
974 		return;
975 	}
976 
977 	have_recolored_pages = TRUE;
978 	uvm_unlock_fpageq(s);
979 }
980 
981 /*
982  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
983  */
984 
985 static __inline struct vm_page *
986 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2,
987     int *trycolorp)
988 {
989 	struct pglist *freeq;
990 	struct vm_page *pg;
991 	int color, trycolor = *trycolorp;
992 
993 	color = trycolor;
994 	do {
995 		if ((pg = TAILQ_FIRST((freeq =
996 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL)
997 			goto gotit;
998 		if ((pg = TAILQ_FIRST((freeq =
999 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL)
1000 			goto gotit;
1001 		color = (color + 1) & uvmexp.colormask;
1002 	} while (color != trycolor);
1003 
1004 	return (NULL);
1005 
1006  gotit:
1007 	TAILQ_REMOVE(freeq, pg, pageq);
1008 	uvmexp.free--;
1009 
1010 	/* update zero'd page count */
1011 	if (pg->flags & PG_ZERO)
1012 		uvmexp.zeropages--;
1013 
1014 	if (color == trycolor)
1015 		uvmexp.colorhit++;
1016 	else {
1017 		uvmexp.colormiss++;
1018 		*trycolorp = color;
1019 	}
1020 
1021 	return (pg);
1022 }
1023 
1024 /*
1025  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1026  *
1027  * => return null if no pages free
1028  * => wake up pagedaemon if number of free pages drops below low water mark
1029  * => if obj != NULL, obj must be locked (to put in hash)
1030  * => if anon != NULL, anon must be locked (to put in anon)
1031  * => only one of obj or anon can be non-null
1032  * => caller must activate/deactivate page if it is not wired.
1033  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1034  * => policy decision: it is more important to pull a page off of the
1035  *	appropriate priority free list than it is to get a zero'd or
1036  *	unknown contents page.  This is because we live with the
1037  *	consequences of a bad free list decision for the entire
1038  *	lifetime of the page, e.g. if the page comes from memory that
1039  *	is slower to access.
1040  */
1041 
1042 struct vm_page *
1043 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1044     int flags, int strat, int free_list)
1045 {
1046 	int lcv, try1, try2, s, zeroit = 0, color;
1047 	struct vm_page *pg;
1048 	boolean_t use_reserve;
1049 
1050 	KASSERT(obj == NULL || anon == NULL);
1051 	KASSERT(off == trunc_page(off));
1052 	LOCK_ASSERT(obj == NULL || simple_lock_held(&obj->vmobjlock));
1053 	LOCK_ASSERT(anon == NULL || simple_lock_held(&anon->an_lock));
1054 
1055 	s = uvm_lock_fpageq();
1056 
1057 	/*
1058 	 * This implements a global round-robin page coloring
1059 	 * algorithm.
1060 	 *
1061 	 * XXXJRT: Should we make the `nextcolor' per-CPU?
1062 	 * XXXJRT: What about virtually-indexed caches?
1063 	 */
1064 
1065 	color = uvm.page_free_nextcolor;
1066 
1067 	/*
1068 	 * check to see if we need to generate some free pages waking
1069 	 * the pagedaemon.
1070 	 */
1071 
1072 	UVM_KICK_PDAEMON();
1073 
1074 	/*
1075 	 * fail if any of these conditions is true:
1076 	 * [1]  there really are no free pages, or
1077 	 * [2]  only kernel "reserved" pages remain and
1078 	 *        the page isn't being allocated to a kernel object.
1079 	 * [3]  only pagedaemon "reserved" pages remain and
1080 	 *        the requestor isn't the pagedaemon.
1081 	 */
1082 
1083 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
1084 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
1085 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
1086 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
1087 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
1088 		goto fail;
1089 
1090 #if PGFL_NQUEUES != 2
1091 #error uvm_pagealloc_strat needs to be updated
1092 #endif
1093 
1094 	/*
1095 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
1096 	 * we try the UNKNOWN queue first.
1097 	 */
1098 	if (flags & UVM_PGA_ZERO) {
1099 		try1 = PGFL_ZEROS;
1100 		try2 = PGFL_UNKNOWN;
1101 	} else {
1102 		try1 = PGFL_UNKNOWN;
1103 		try2 = PGFL_ZEROS;
1104 	}
1105 
1106  again:
1107 	switch (strat) {
1108 	case UVM_PGA_STRAT_NORMAL:
1109 		/* Check all freelists in descending priority order. */
1110 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1111 			pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv],
1112 			    try1, try2, &color);
1113 			if (pg != NULL)
1114 				goto gotit;
1115 		}
1116 
1117 		/* No pages free! */
1118 		goto fail;
1119 
1120 	case UVM_PGA_STRAT_ONLY:
1121 	case UVM_PGA_STRAT_FALLBACK:
1122 		/* Attempt to allocate from the specified free list. */
1123 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1124 		pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list],
1125 		    try1, try2, &color);
1126 		if (pg != NULL)
1127 			goto gotit;
1128 
1129 		/* Fall back, if possible. */
1130 		if (strat == UVM_PGA_STRAT_FALLBACK) {
1131 			strat = UVM_PGA_STRAT_NORMAL;
1132 			goto again;
1133 		}
1134 
1135 		/* No pages free! */
1136 		goto fail;
1137 
1138 	default:
1139 		panic("uvm_pagealloc_strat: bad strat %d", strat);
1140 		/* NOTREACHED */
1141 	}
1142 
1143  gotit:
1144 	/*
1145 	 * We now know which color we actually allocated from; set
1146 	 * the next color accordingly.
1147 	 */
1148 
1149 	uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask;
1150 
1151 	/*
1152 	 * update allocation statistics and remember if we have to
1153 	 * zero the page
1154 	 */
1155 
1156 	if (flags & UVM_PGA_ZERO) {
1157 		if (pg->flags & PG_ZERO) {
1158 			uvmexp.pga_zerohit++;
1159 			zeroit = 0;
1160 		} else {
1161 			uvmexp.pga_zeromiss++;
1162 			zeroit = 1;
1163 		}
1164 	}
1165 	uvm_unlock_fpageq(s);
1166 
1167 	pg->offset = off;
1168 	pg->uobject = obj;
1169 	pg->uanon = anon;
1170 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1171 	if (anon) {
1172 		anon->an_page = pg;
1173 		pg->pqflags = PQ_ANON;
1174 		uvmexp.anonpages++;
1175 	} else {
1176 		if (obj) {
1177 			uvm_pageinsert(pg);
1178 		}
1179 		pg->pqflags = 0;
1180 	}
1181 #if defined(UVM_PAGE_TRKOWN)
1182 	pg->owner_tag = NULL;
1183 #endif
1184 	UVM_PAGE_OWN(pg, "new alloc");
1185 
1186 	if (flags & UVM_PGA_ZERO) {
1187 		/*
1188 		 * A zero'd page is not clean.  If we got a page not already
1189 		 * zero'd, then we have to zero it ourselves.
1190 		 */
1191 		pg->flags &= ~PG_CLEAN;
1192 		if (zeroit)
1193 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1194 	}
1195 
1196 	return(pg);
1197 
1198  fail:
1199 	uvm_unlock_fpageq(s);
1200 	return (NULL);
1201 }
1202 
1203 /*
1204  * uvm_pagereplace: replace a page with another
1205  *
1206  * => object must be locked
1207  */
1208 
1209 void
1210 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1211 {
1212 
1213 	KASSERT((oldpg->flags & PG_TABLED) != 0);
1214 	KASSERT(oldpg->uobject != NULL);
1215 	KASSERT((newpg->flags & PG_TABLED) == 0);
1216 	KASSERT(newpg->uobject == NULL);
1217 	LOCK_ASSERT(simple_lock_held(&oldpg->uobject->vmobjlock));
1218 
1219 	newpg->uobject = oldpg->uobject;
1220 	newpg->offset = oldpg->offset;
1221 
1222 	uvm_pageinsert_after(newpg, oldpg);
1223 	uvm_pageremove(oldpg);
1224 }
1225 
1226 /*
1227  * uvm_pagerealloc: reallocate a page from one object to another
1228  *
1229  * => both objects must be locked
1230  */
1231 
1232 void
1233 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1234 {
1235 	/*
1236 	 * remove it from the old object
1237 	 */
1238 
1239 	if (pg->uobject) {
1240 		uvm_pageremove(pg);
1241 	}
1242 
1243 	/*
1244 	 * put it in the new object
1245 	 */
1246 
1247 	if (newobj) {
1248 		pg->uobject = newobj;
1249 		pg->offset = newoff;
1250 		uvm_pageinsert(pg);
1251 	}
1252 }
1253 
1254 #ifdef DEBUG
1255 /*
1256  * check if page is zero-filled
1257  *
1258  *  - called with free page queue lock held.
1259  */
1260 void
1261 uvm_pagezerocheck(struct vm_page *pg)
1262 {
1263 	int *p, *ep;
1264 
1265 	KASSERT(uvm_zerocheckkva != 0);
1266 	LOCK_ASSERT(simple_lock_held(&uvm.fpageqlock));
1267 
1268 	/*
1269 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1270 	 * uvm page allocator.
1271 	 *
1272 	 * it might be better to have "CPU-local temporary map" pmap interface.
1273 	 */
1274 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ);
1275 	p = (int *)uvm_zerocheckkva;
1276 	ep = (int *)((char *)p + PAGE_SIZE);
1277 	pmap_update(pmap_kernel());
1278 	while (p < ep) {
1279 		if (*p != 0)
1280 			panic("PG_ZERO page isn't zero-filled");
1281 		p++;
1282 	}
1283 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1284 }
1285 #endif /* DEBUG */
1286 
1287 /*
1288  * uvm_pagefree: free page
1289  *
1290  * => erase page's identity (i.e. remove from hash/object)
1291  * => put page on free list
1292  * => caller must lock owning object (either anon or uvm_object)
1293  * => caller must lock page queues
1294  * => assumes all valid mappings of pg are gone
1295  */
1296 
1297 void
1298 uvm_pagefree(struct vm_page *pg)
1299 {
1300 	int s;
1301 	struct pglist *pgfl;
1302 	boolean_t iszero;
1303 
1304 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1305 	LOCK_ASSERT(simple_lock_held(&uvm.pageqlock) ||
1306 		    (pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) == 0);
1307 	LOCK_ASSERT(pg->uobject == NULL ||
1308 		    simple_lock_held(&pg->uobject->vmobjlock));
1309 	LOCK_ASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1310 		    simple_lock_held(&pg->uanon->an_lock));
1311 
1312 #ifdef DEBUG
1313 	if (pg->uobject == (void *)0xdeadbeef &&
1314 	    pg->uanon == (void *)0xdeadbeef) {
1315 		panic("uvm_pagefree: freeing free page %p", pg);
1316 	}
1317 #endif /* DEBUG */
1318 
1319 	/*
1320 	 * if the page is loaned, resolve the loan instead of freeing.
1321 	 */
1322 
1323 	if (pg->loan_count) {
1324 		KASSERT(pg->wire_count == 0);
1325 
1326 		/*
1327 		 * if the page is owned by an anon then we just want to
1328 		 * drop anon ownership.  the kernel will free the page when
1329 		 * it is done with it.  if the page is owned by an object,
1330 		 * remove it from the object and mark it dirty for the benefit
1331 		 * of possible anon owners.
1332 		 *
1333 		 * regardless of previous ownership, wakeup any waiters,
1334 		 * unbusy the page, and we're done.
1335 		 */
1336 
1337 		if (pg->uobject != NULL) {
1338 			uvm_pageremove(pg);
1339 			pg->flags &= ~PG_CLEAN;
1340 		} else if (pg->uanon != NULL) {
1341 			if ((pg->pqflags & PQ_ANON) == 0) {
1342 				pg->loan_count--;
1343 			} else {
1344 				pg->pqflags &= ~PQ_ANON;
1345 				uvmexp.anonpages--;
1346 			}
1347 			pg->uanon->an_page = NULL;
1348 			pg->uanon = NULL;
1349 		}
1350 		if (pg->flags & PG_WANTED) {
1351 			wakeup(pg);
1352 		}
1353 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1354 #ifdef UVM_PAGE_TRKOWN
1355 		pg->owner_tag = NULL;
1356 #endif
1357 		if (pg->loan_count) {
1358 			uvm_pagedequeue(pg);
1359 			return;
1360 		}
1361 	}
1362 
1363 	/*
1364 	 * remove page from its object or anon.
1365 	 */
1366 
1367 	if (pg->uobject != NULL) {
1368 		uvm_pageremove(pg);
1369 	} else if (pg->uanon != NULL) {
1370 		pg->uanon->an_page = NULL;
1371 		uvmexp.anonpages--;
1372 	}
1373 
1374 	/*
1375 	 * now remove the page from the queues.
1376 	 */
1377 
1378 	uvm_pagedequeue(pg);
1379 
1380 	/*
1381 	 * if the page was wired, unwire it now.
1382 	 */
1383 
1384 	if (pg->wire_count) {
1385 		pg->wire_count = 0;
1386 		uvmexp.wired--;
1387 	}
1388 
1389 	/*
1390 	 * and put on free queue
1391 	 */
1392 
1393 	iszero = (pg->flags & PG_ZERO);
1394 	pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)].
1395 	    pgfl_buckets[VM_PGCOLOR_BUCKET(pg)].
1396 	    pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN];
1397 
1398 	pg->pqflags = PQ_FREE;
1399 #ifdef DEBUG
1400 	pg->uobject = (void *)0xdeadbeef;
1401 	pg->offset = 0xdeadbeef;
1402 	pg->uanon = (void *)0xdeadbeef;
1403 #endif
1404 
1405 	s = uvm_lock_fpageq();
1406 
1407 #ifdef DEBUG
1408 	if (iszero)
1409 		uvm_pagezerocheck(pg);
1410 #endif /* DEBUG */
1411 
1412 	TAILQ_INSERT_HEAD(pgfl, pg, pageq);
1413 	uvmexp.free++;
1414 	if (iszero)
1415 		uvmexp.zeropages++;
1416 
1417 	if (uvmexp.zeropages < UVM_PAGEZERO_TARGET)
1418 		uvm.page_idle_zero = vm_page_zero_enable;
1419 
1420 	uvm_unlock_fpageq(s);
1421 }
1422 
1423 /*
1424  * uvm_page_unbusy: unbusy an array of pages.
1425  *
1426  * => pages must either all belong to the same object, or all belong to anons.
1427  * => if pages are object-owned, object must be locked.
1428  * => if pages are anon-owned, anons must be locked.
1429  * => caller must lock page queues if pages may be released.
1430  * => caller must make sure that anon-owned pages are not PG_RELEASED.
1431  */
1432 
1433 void
1434 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1435 {
1436 	struct vm_page *pg;
1437 	int i;
1438 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1439 
1440 	for (i = 0; i < npgs; i++) {
1441 		pg = pgs[i];
1442 		if (pg == NULL || pg == PGO_DONTCARE) {
1443 			continue;
1444 		}
1445 
1446 		LOCK_ASSERT(pg->uobject == NULL ||
1447 		    simple_lock_held(&pg->uobject->vmobjlock));
1448 		LOCK_ASSERT(pg->uobject != NULL ||
1449 		    (pg->uanon != NULL &&
1450 		    simple_lock_held(&pg->uanon->an_lock)));
1451 
1452 		KASSERT(pg->flags & PG_BUSY);
1453 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
1454 		if (pg->flags & PG_WANTED) {
1455 			wakeup(pg);
1456 		}
1457 		if (pg->flags & PG_RELEASED) {
1458 			UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
1459 			KASSERT(pg->uobject != NULL ||
1460 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
1461 			pg->flags &= ~PG_RELEASED;
1462 			uvm_pagefree(pg);
1463 		} else {
1464 			UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
1465 			pg->flags &= ~(PG_WANTED|PG_BUSY);
1466 			UVM_PAGE_OWN(pg, NULL);
1467 		}
1468 	}
1469 }
1470 
1471 #if defined(UVM_PAGE_TRKOWN)
1472 /*
1473  * uvm_page_own: set or release page ownership
1474  *
1475  * => this is a debugging function that keeps track of who sets PG_BUSY
1476  *	and where they do it.   it can be used to track down problems
1477  *	such a process setting "PG_BUSY" and never releasing it.
1478  * => page's object [if any] must be locked
1479  * => if "tag" is NULL then we are releasing page ownership
1480  */
1481 void
1482 uvm_page_own(struct vm_page *pg, const char *tag)
1483 {
1484 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1485 
1486 	/* gain ownership? */
1487 	if (tag) {
1488 		if (pg->owner_tag) {
1489 			printf("uvm_page_own: page %p already owned "
1490 			    "by proc %d [%s]\n", pg,
1491 			    pg->owner, pg->owner_tag);
1492 			panic("uvm_page_own");
1493 		}
1494 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1495 		pg->owner_tag = tag;
1496 		return;
1497 	}
1498 
1499 	/* drop ownership */
1500 	if (pg->owner_tag == NULL) {
1501 		printf("uvm_page_own: dropping ownership of an non-owned "
1502 		    "page (%p)\n", pg);
1503 		panic("uvm_page_own");
1504 	}
1505 	KASSERT((pg->pqflags & (PQ_ACTIVE|PQ_INACTIVE)) ||
1506 	    (pg->uanon == NULL && pg->uobject == NULL) ||
1507 	    pg->uobject == uvm.kernel_object ||
1508 	    pg->wire_count > 0 ||
1509 	    (pg->loan_count == 1 && pg->uanon == NULL) ||
1510 	    pg->loan_count > 1);
1511 	pg->owner_tag = NULL;
1512 }
1513 #endif
1514 
1515 /*
1516  * uvm_pageidlezero: zero free pages while the system is idle.
1517  *
1518  * => try to complete one color bucket at a time, to reduce our impact
1519  *	on the CPU cache.
1520  * => we loop until we either reach the target or whichqs indicates that
1521  *	there is a process ready to run.
1522  */
1523 void
1524 uvm_pageidlezero(void)
1525 {
1526 	struct vm_page *pg;
1527 	struct pgfreelist *pgfl;
1528 	int free_list, s, firstbucket;
1529 	static int nextbucket;
1530 
1531 	KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
1532 	s = uvm_lock_fpageq();
1533 	firstbucket = nextbucket;
1534 	do {
1535 		if (sched_whichqs != 0)
1536 			goto quit;
1537 		if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) {
1538 			uvm.page_idle_zero = FALSE;
1539 			goto quit;
1540 		}
1541 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1542 			pgfl = &uvm.page_free[free_list];
1543 			while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[
1544 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1545 				if (sched_whichqs != 0)
1546 					goto quit;
1547 
1548 				TAILQ_REMOVE(&pgfl->pgfl_buckets[
1549 				    nextbucket].pgfl_queues[PGFL_UNKNOWN],
1550 				    pg, pageq);
1551 				uvmexp.free--;
1552 				uvm_unlock_fpageq(s);
1553 				KERNEL_UNLOCK();
1554 #ifdef PMAP_PAGEIDLEZERO
1555 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1556 
1557 					/*
1558 					 * The machine-dependent code detected
1559 					 * some reason for us to abort zeroing
1560 					 * pages, probably because there is a
1561 					 * process now ready to run.
1562 					 */
1563 
1564 					KERNEL_LOCK(
1565 					    LK_EXCLUSIVE | LK_CANRECURSE);
1566 					s = uvm_lock_fpageq();
1567 					TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1568 					    nextbucket].pgfl_queues[
1569 					    PGFL_UNKNOWN], pg, pageq);
1570 					uvmexp.free++;
1571 					uvmexp.zeroaborts++;
1572 					goto quit;
1573 				}
1574 #else
1575 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1576 #endif /* PMAP_PAGEIDLEZERO */
1577 				pg->flags |= PG_ZERO;
1578 
1579 				KERNEL_LOCK(LK_EXCLUSIVE | LK_CANRECURSE);
1580 				s = uvm_lock_fpageq();
1581 				TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[
1582 				    nextbucket].pgfl_queues[PGFL_ZEROS],
1583 				    pg, pageq);
1584 				uvmexp.free++;
1585 				uvmexp.zeropages++;
1586 			}
1587 		}
1588 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
1589 	} while (nextbucket != firstbucket);
1590 quit:
1591 	uvm_unlock_fpageq(s);
1592 	KERNEL_UNLOCK();
1593 }
1594