1 /* $NetBSD: uvm_page.c,v 1.169 2011/01/04 08:26:33 matt Exp $ */ 2 3 /* 4 * Copyright (c) 2010 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 17 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 18 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 19 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 20 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 21 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 22 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 23 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 25 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 26 * POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * Copyright (c) 1997 Charles D. Cranor and Washington University. 31 * Copyright (c) 1991, 1993, The Regents of the University of California. 32 * 33 * All rights reserved. 34 * 35 * This code is derived from software contributed to Berkeley by 36 * The Mach Operating System project at Carnegie-Mellon University. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. All advertising materials mentioning features or use of this software 47 * must display the following acknowledgement: 48 * This product includes software developed by Charles D. Cranor, 49 * Washington University, the University of California, Berkeley and 50 * its contributors. 51 * 4. Neither the name of the University nor the names of its contributors 52 * may be used to endorse or promote products derived from this software 53 * without specific prior written permission. 54 * 55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 65 * SUCH DAMAGE. 66 * 67 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94 68 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp 69 * 70 * 71 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 72 * All rights reserved. 73 * 74 * Permission to use, copy, modify and distribute this software and 75 * its documentation is hereby granted, provided that both the copyright 76 * notice and this permission notice appear in all copies of the 77 * software, derivative works or modified versions, and any portions 78 * thereof, and that both notices appear in supporting documentation. 79 * 80 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 81 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 82 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 83 * 84 * Carnegie Mellon requests users of this software to return to 85 * 86 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 87 * School of Computer Science 88 * Carnegie Mellon University 89 * Pittsburgh PA 15213-3890 90 * 91 * any improvements or extensions that they make and grant Carnegie the 92 * rights to redistribute these changes. 93 */ 94 95 /* 96 * uvm_page.c: page ops. 97 */ 98 99 #include <sys/cdefs.h> 100 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.169 2011/01/04 08:26:33 matt Exp $"); 101 102 #include "opt_ddb.h" 103 #include "opt_uvmhist.h" 104 #include "opt_readahead.h" 105 106 #include <sys/param.h> 107 #include <sys/systm.h> 108 #include <sys/malloc.h> 109 #include <sys/sched.h> 110 #include <sys/kernel.h> 111 #include <sys/vnode.h> 112 #include <sys/proc.h> 113 #include <sys/atomic.h> 114 #include <sys/cpu.h> 115 116 #include <uvm/uvm.h> 117 #include <uvm/uvm_ddb.h> 118 #include <uvm/uvm_pdpolicy.h> 119 120 /* 121 * global vars... XXXCDC: move to uvm. structure. 122 */ 123 124 /* 125 * physical memory config is stored in vm_physmem. 126 */ 127 128 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */ 129 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */ 130 #define vm_nphysmem vm_nphysseg 131 132 /* 133 * Some supported CPUs in a given architecture don't support all 134 * of the things necessary to do idle page zero'ing efficiently. 135 * We therefore provide a way to enable it from machdep code here. 136 */ 137 bool vm_page_zero_enable = false; 138 139 /* 140 * number of pages per-CPU to reserve for the kernel. 141 */ 142 int vm_page_reserve_kernel = 5; 143 144 /* 145 * physical memory size; 146 */ 147 int physmem; 148 149 /* 150 * local variables 151 */ 152 153 /* 154 * these variables record the values returned by vm_page_bootstrap, 155 * for debugging purposes. The implementation of uvm_pageboot_alloc 156 * and pmap_startup here also uses them internally. 157 */ 158 159 static vaddr_t virtual_space_start; 160 static vaddr_t virtual_space_end; 161 162 /* 163 * we allocate an initial number of page colors in uvm_page_init(), 164 * and remember them. We may re-color pages as cache sizes are 165 * discovered during the autoconfiguration phase. But we can never 166 * free the initial set of buckets, since they are allocated using 167 * uvm_pageboot_alloc(). 168 */ 169 170 static bool have_recolored_pages /* = false */; 171 172 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page"); 173 174 #ifdef DEBUG 175 vaddr_t uvm_zerocheckkva; 176 #endif /* DEBUG */ 177 178 /* 179 * local prototypes 180 */ 181 182 static void uvm_pageinsert(struct uvm_object *, struct vm_page *); 183 static void uvm_pageremove(struct uvm_object *, struct vm_page *); 184 185 /* 186 * per-object tree of pages 187 */ 188 189 static signed int 190 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2) 191 { 192 const struct vm_page *pg1 = n1; 193 const struct vm_page *pg2 = n2; 194 const voff_t a = pg1->offset; 195 const voff_t b = pg2->offset; 196 197 if (a < b) 198 return -1; 199 if (a > b) 200 return 1; 201 return 0; 202 } 203 204 static signed int 205 uvm_page_compare_key(void *ctx, const void *n, const void *key) 206 { 207 const struct vm_page *pg = n; 208 const voff_t a = pg->offset; 209 const voff_t b = *(const voff_t *)key; 210 211 if (a < b) 212 return -1; 213 if (a > b) 214 return 1; 215 return 0; 216 } 217 218 const rb_tree_ops_t uvm_page_tree_ops = { 219 .rbto_compare_nodes = uvm_page_compare_nodes, 220 .rbto_compare_key = uvm_page_compare_key, 221 .rbto_node_offset = offsetof(struct vm_page, rb_node), 222 .rbto_context = NULL 223 }; 224 225 /* 226 * inline functions 227 */ 228 229 /* 230 * uvm_pageinsert: insert a page in the object. 231 * 232 * => caller must lock object 233 * => caller must lock page queues 234 * => call should have already set pg's object and offset pointers 235 * and bumped the version counter 236 */ 237 238 static inline void 239 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg, 240 struct vm_page *where) 241 { 242 243 KASSERT(uobj == pg->uobject); 244 KASSERT(mutex_owned(&uobj->vmobjlock)); 245 KASSERT((pg->flags & PG_TABLED) == 0); 246 KASSERT(where == NULL || (where->flags & PG_TABLED)); 247 KASSERT(where == NULL || (where->uobject == uobj)); 248 249 if (UVM_OBJ_IS_VNODE(uobj)) { 250 if (uobj->uo_npages == 0) { 251 struct vnode *vp = (struct vnode *)uobj; 252 253 vholdl(vp); 254 } 255 if (UVM_OBJ_IS_VTEXT(uobj)) { 256 atomic_inc_uint(&uvmexp.execpages); 257 } else { 258 atomic_inc_uint(&uvmexp.filepages); 259 } 260 } else if (UVM_OBJ_IS_AOBJ(uobj)) { 261 atomic_inc_uint(&uvmexp.anonpages); 262 } 263 264 if (where) 265 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue); 266 else 267 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue); 268 pg->flags |= PG_TABLED; 269 uobj->uo_npages++; 270 } 271 272 273 static inline void 274 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg) 275 { 276 struct vm_page *ret; 277 278 KASSERT(uobj == pg->uobject); 279 ret = rb_tree_insert_node(&uobj->rb_tree, pg); 280 KASSERT(ret == pg); 281 } 282 283 static inline void 284 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg) 285 { 286 287 KDASSERT(uobj != NULL); 288 uvm_pageinsert_tree(uobj, pg); 289 uvm_pageinsert_list(uobj, pg, NULL); 290 } 291 292 /* 293 * uvm_page_remove: remove page from object. 294 * 295 * => caller must lock object 296 * => caller must lock page queues 297 */ 298 299 static inline void 300 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg) 301 { 302 303 KASSERT(uobj == pg->uobject); 304 KASSERT(mutex_owned(&uobj->vmobjlock)); 305 KASSERT(pg->flags & PG_TABLED); 306 307 if (UVM_OBJ_IS_VNODE(uobj)) { 308 if (uobj->uo_npages == 1) { 309 struct vnode *vp = (struct vnode *)uobj; 310 311 holdrelel(vp); 312 } 313 if (UVM_OBJ_IS_VTEXT(uobj)) { 314 atomic_dec_uint(&uvmexp.execpages); 315 } else { 316 atomic_dec_uint(&uvmexp.filepages); 317 } 318 } else if (UVM_OBJ_IS_AOBJ(uobj)) { 319 atomic_dec_uint(&uvmexp.anonpages); 320 } 321 322 /* object should be locked */ 323 uobj->uo_npages--; 324 TAILQ_REMOVE(&uobj->memq, pg, listq.queue); 325 pg->flags &= ~PG_TABLED; 326 pg->uobject = NULL; 327 } 328 329 static inline void 330 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg) 331 { 332 333 KASSERT(uobj == pg->uobject); 334 rb_tree_remove_node(&uobj->rb_tree, pg); 335 } 336 337 static inline void 338 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg) 339 { 340 341 KDASSERT(uobj != NULL); 342 uvm_pageremove_tree(uobj, pg); 343 uvm_pageremove_list(uobj, pg); 344 } 345 346 static void 347 uvm_page_init_buckets(struct pgfreelist *pgfl) 348 { 349 int color, i; 350 351 for (color = 0; color < uvmexp.ncolors; color++) { 352 for (i = 0; i < PGFL_NQUEUES; i++) { 353 LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]); 354 } 355 } 356 } 357 358 /* 359 * uvm_page_init: init the page system. called from uvm_init(). 360 * 361 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp 362 */ 363 364 void 365 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp) 366 { 367 static struct uvm_cpu boot_cpu; 368 psize_t freepages, pagecount, bucketcount, n; 369 struct pgflbucket *bucketarray, *cpuarray; 370 struct vm_physseg *seg; 371 struct vm_page *pagearray; 372 int lcv; 373 u_int i; 374 paddr_t paddr; 375 376 KASSERT(ncpu <= 1); 377 CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *)); 378 379 /* 380 * init the page queues and page queue locks, except the free 381 * list; we allocate that later (with the initial vm_page 382 * structures). 383 */ 384 385 uvm.cpus[0] = &boot_cpu; 386 curcpu()->ci_data.cpu_uvm = &boot_cpu; 387 uvm_reclaim_init(); 388 uvmpdpol_init(); 389 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE); 390 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM); 391 392 /* 393 * allocate vm_page structures. 394 */ 395 396 /* 397 * sanity check: 398 * before calling this function the MD code is expected to register 399 * some free RAM with the uvm_page_physload() function. our job 400 * now is to allocate vm_page structures for this memory. 401 */ 402 403 if (vm_nphysmem == 0) 404 panic("uvm_page_bootstrap: no memory pre-allocated"); 405 406 /* 407 * first calculate the number of free pages... 408 * 409 * note that we use start/end rather than avail_start/avail_end. 410 * this allows us to allocate extra vm_page structures in case we 411 * want to return some memory to the pool after booting. 412 */ 413 414 freepages = 0; 415 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) { 416 seg = VM_PHYSMEM_PTR(lcv); 417 freepages += (seg->end - seg->start); 418 } 419 420 /* 421 * Let MD code initialize the number of colors, or default 422 * to 1 color if MD code doesn't care. 423 */ 424 if (uvmexp.ncolors == 0) 425 uvmexp.ncolors = 1; 426 uvmexp.colormask = uvmexp.ncolors - 1; 427 428 /* 429 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can 430 * use. for each page of memory we use we need a vm_page structure. 431 * thus, the total number of pages we can use is the total size of 432 * the memory divided by the PAGE_SIZE plus the size of the vm_page 433 * structure. we add one to freepages as a fudge factor to avoid 434 * truncation errors (since we can only allocate in terms of whole 435 * pages). 436 */ 437 438 bucketcount = uvmexp.ncolors * VM_NFREELIST; 439 pagecount = ((freepages + 1) << PAGE_SHIFT) / 440 (PAGE_SIZE + sizeof(struct vm_page)); 441 442 bucketarray = (void *)uvm_pageboot_alloc((bucketcount * 443 sizeof(struct pgflbucket) * 2) + (pagecount * 444 sizeof(struct vm_page))); 445 cpuarray = bucketarray + bucketcount; 446 pagearray = (struct vm_page *)(bucketarray + bucketcount * 2); 447 448 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 449 uvm.page_free[lcv].pgfl_buckets = 450 (bucketarray + (lcv * uvmexp.ncolors)); 451 uvm_page_init_buckets(&uvm.page_free[lcv]); 452 uvm.cpus[0]->page_free[lcv].pgfl_buckets = 453 (cpuarray + (lcv * uvmexp.ncolors)); 454 uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]); 455 } 456 memset(pagearray, 0, pagecount * sizeof(struct vm_page)); 457 458 /* 459 * init the vm_page structures and put them in the correct place. 460 */ 461 462 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) { 463 seg = VM_PHYSMEM_PTR(lcv); 464 n = seg->end - seg->start; 465 466 /* set up page array pointers */ 467 seg->pgs = pagearray; 468 pagearray += n; 469 pagecount -= n; 470 seg->lastpg = seg->pgs + n; 471 472 /* init and free vm_pages (we've already zeroed them) */ 473 paddr = ctob(seg->start); 474 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) { 475 seg->pgs[i].phys_addr = paddr; 476 #ifdef __HAVE_VM_PAGE_MD 477 VM_MDPAGE_INIT(&seg->pgs[i]); 478 #endif 479 if (atop(paddr) >= seg->avail_start && 480 atop(paddr) <= seg->avail_end) { 481 uvmexp.npages++; 482 /* add page to free pool */ 483 uvm_pagefree(&seg->pgs[i]); 484 } 485 } 486 } 487 488 /* 489 * pass up the values of virtual_space_start and 490 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper 491 * layers of the VM. 492 */ 493 494 *kvm_startp = round_page(virtual_space_start); 495 *kvm_endp = trunc_page(virtual_space_end); 496 #ifdef DEBUG 497 /* 498 * steal kva for uvm_pagezerocheck(). 499 */ 500 uvm_zerocheckkva = *kvm_startp; 501 *kvm_startp += PAGE_SIZE; 502 #endif /* DEBUG */ 503 504 /* 505 * init various thresholds. 506 */ 507 508 uvmexp.reserve_pagedaemon = 1; 509 uvmexp.reserve_kernel = vm_page_reserve_kernel; 510 511 /* 512 * determine if we should zero pages in the idle loop. 513 */ 514 515 uvm.cpus[0]->page_idle_zero = vm_page_zero_enable; 516 517 /* 518 * done! 519 */ 520 521 uvm.page_init_done = true; 522 } 523 524 /* 525 * uvm_setpagesize: set the page size 526 * 527 * => sets page_shift and page_mask from uvmexp.pagesize. 528 */ 529 530 void 531 uvm_setpagesize(void) 532 { 533 534 /* 535 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE 536 * to be a constant (indicated by being a non-zero value). 537 */ 538 if (uvmexp.pagesize == 0) { 539 if (PAGE_SIZE == 0) 540 panic("uvm_setpagesize: uvmexp.pagesize not set"); 541 uvmexp.pagesize = PAGE_SIZE; 542 } 543 uvmexp.pagemask = uvmexp.pagesize - 1; 544 if ((uvmexp.pagemask & uvmexp.pagesize) != 0) 545 panic("uvm_setpagesize: page size %u (%#x) not a power of two", 546 uvmexp.pagesize, uvmexp.pagesize); 547 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++) 548 if ((1 << uvmexp.pageshift) == uvmexp.pagesize) 549 break; 550 } 551 552 /* 553 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping 554 */ 555 556 vaddr_t 557 uvm_pageboot_alloc(vsize_t size) 558 { 559 static bool initialized = false; 560 vaddr_t addr; 561 #if !defined(PMAP_STEAL_MEMORY) 562 vaddr_t vaddr; 563 paddr_t paddr; 564 #endif 565 566 /* 567 * on first call to this function, initialize ourselves. 568 */ 569 if (initialized == false) { 570 pmap_virtual_space(&virtual_space_start, &virtual_space_end); 571 572 /* round it the way we like it */ 573 virtual_space_start = round_page(virtual_space_start); 574 virtual_space_end = trunc_page(virtual_space_end); 575 576 initialized = true; 577 } 578 579 /* round to page size */ 580 size = round_page(size); 581 582 #if defined(PMAP_STEAL_MEMORY) 583 584 /* 585 * defer bootstrap allocation to MD code (it may want to allocate 586 * from a direct-mapped segment). pmap_steal_memory should adjust 587 * virtual_space_start/virtual_space_end if necessary. 588 */ 589 590 addr = pmap_steal_memory(size, &virtual_space_start, 591 &virtual_space_end); 592 593 return(addr); 594 595 #else /* !PMAP_STEAL_MEMORY */ 596 597 /* 598 * allocate virtual memory for this request 599 */ 600 if (virtual_space_start == virtual_space_end || 601 (virtual_space_end - virtual_space_start) < size) 602 panic("uvm_pageboot_alloc: out of virtual space"); 603 604 addr = virtual_space_start; 605 606 #ifdef PMAP_GROWKERNEL 607 /* 608 * If the kernel pmap can't map the requested space, 609 * then allocate more resources for it. 610 */ 611 if (uvm_maxkaddr < (addr + size)) { 612 uvm_maxkaddr = pmap_growkernel(addr + size); 613 if (uvm_maxkaddr < (addr + size)) 614 panic("uvm_pageboot_alloc: pmap_growkernel() failed"); 615 } 616 #endif 617 618 virtual_space_start += size; 619 620 /* 621 * allocate and mapin physical pages to back new virtual pages 622 */ 623 624 for (vaddr = round_page(addr) ; vaddr < addr + size ; 625 vaddr += PAGE_SIZE) { 626 627 if (!uvm_page_physget(&paddr)) 628 panic("uvm_pageboot_alloc: out of memory"); 629 630 /* 631 * Note this memory is no longer managed, so using 632 * pmap_kenter is safe. 633 */ 634 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0); 635 } 636 pmap_update(pmap_kernel()); 637 return(addr); 638 #endif /* PMAP_STEAL_MEMORY */ 639 } 640 641 #if !defined(PMAP_STEAL_MEMORY) 642 /* 643 * uvm_page_physget: "steal" one page from the vm_physmem structure. 644 * 645 * => attempt to allocate it off the end of a segment in which the "avail" 646 * values match the start/end values. if we can't do that, then we 647 * will advance both values (making them equal, and removing some 648 * vm_page structures from the non-avail area). 649 * => return false if out of memory. 650 */ 651 652 /* subroutine: try to allocate from memory chunks on the specified freelist */ 653 static bool uvm_page_physget_freelist(paddr_t *, int); 654 655 static bool 656 uvm_page_physget_freelist(paddr_t *paddrp, int freelist) 657 { 658 struct vm_physseg *seg; 659 int lcv, x; 660 661 /* pass 1: try allocating from a matching end */ 662 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 663 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--) 664 #else 665 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) 666 #endif 667 { 668 seg = VM_PHYSMEM_PTR(lcv); 669 670 if (uvm.page_init_done == true) 671 panic("uvm_page_physget: called _after_ bootstrap"); 672 673 if (seg->free_list != freelist) 674 continue; 675 676 /* try from front */ 677 if (seg->avail_start == seg->start && 678 seg->avail_start < seg->avail_end) { 679 *paddrp = ctob(seg->avail_start); 680 seg->avail_start++; 681 seg->start++; 682 /* nothing left? nuke it */ 683 if (seg->avail_start == seg->end) { 684 if (vm_nphysmem == 1) 685 panic("uvm_page_physget: out of memory!"); 686 vm_nphysmem--; 687 for (x = lcv ; x < vm_nphysmem ; x++) 688 /* structure copy */ 689 VM_PHYSMEM_PTR_SWAP(x, x + 1); 690 } 691 return (true); 692 } 693 694 /* try from rear */ 695 if (seg->avail_end == seg->end && 696 seg->avail_start < seg->avail_end) { 697 *paddrp = ctob(seg->avail_end - 1); 698 seg->avail_end--; 699 seg->end--; 700 /* nothing left? nuke it */ 701 if (seg->avail_end == seg->start) { 702 if (vm_nphysmem == 1) 703 panic("uvm_page_physget: out of memory!"); 704 vm_nphysmem--; 705 for (x = lcv ; x < vm_nphysmem ; x++) 706 /* structure copy */ 707 VM_PHYSMEM_PTR_SWAP(x, x + 1); 708 } 709 return (true); 710 } 711 } 712 713 /* pass2: forget about matching ends, just allocate something */ 714 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 715 for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--) 716 #else 717 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) 718 #endif 719 { 720 seg = VM_PHYSMEM_PTR(lcv); 721 722 /* any room in this bank? */ 723 if (seg->avail_start >= seg->avail_end) 724 continue; /* nope */ 725 726 *paddrp = ctob(seg->avail_start); 727 seg->avail_start++; 728 /* truncate! */ 729 seg->start = seg->avail_start; 730 731 /* nothing left? nuke it */ 732 if (seg->avail_start == seg->end) { 733 if (vm_nphysmem == 1) 734 panic("uvm_page_physget: out of memory!"); 735 vm_nphysmem--; 736 for (x = lcv ; x < vm_nphysmem ; x++) 737 /* structure copy */ 738 VM_PHYSMEM_PTR_SWAP(x, x + 1); 739 } 740 return (true); 741 } 742 743 return (false); /* whoops! */ 744 } 745 746 bool 747 uvm_page_physget(paddr_t *paddrp) 748 { 749 int i; 750 751 /* try in the order of freelist preference */ 752 for (i = 0; i < VM_NFREELIST; i++) 753 if (uvm_page_physget_freelist(paddrp, i) == true) 754 return (true); 755 return (false); 756 } 757 #endif /* PMAP_STEAL_MEMORY */ 758 759 /* 760 * uvm_page_physload: load physical memory into VM system 761 * 762 * => all args are PFs 763 * => all pages in start/end get vm_page structures 764 * => areas marked by avail_start/avail_end get added to the free page pool 765 * => we are limited to VM_PHYSSEG_MAX physical memory segments 766 */ 767 768 void 769 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start, 770 paddr_t avail_end, int free_list) 771 { 772 int preload, lcv; 773 psize_t npages; 774 struct vm_page *pgs; 775 struct vm_physseg *ps; 776 777 if (uvmexp.pagesize == 0) 778 panic("uvm_page_physload: page size not set!"); 779 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT) 780 panic("uvm_page_physload: bad free list %d", free_list); 781 if (start >= end) 782 panic("uvm_page_physload: start >= end"); 783 784 /* 785 * do we have room? 786 */ 787 788 if (vm_nphysmem == VM_PHYSSEG_MAX) { 789 printf("uvm_page_physload: unable to load physical memory " 790 "segment\n"); 791 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n", 792 VM_PHYSSEG_MAX, (long long)start, (long long)end); 793 printf("\tincrease VM_PHYSSEG_MAX\n"); 794 return; 795 } 796 797 /* 798 * check to see if this is a "preload" (i.e. uvm_page_init hasn't been 799 * called yet, so malloc is not available). 800 */ 801 802 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) { 803 if (VM_PHYSMEM_PTR(lcv)->pgs) 804 break; 805 } 806 preload = (lcv == vm_nphysmem); 807 808 /* 809 * if VM is already running, attempt to malloc() vm_page structures 810 */ 811 812 if (!preload) { 813 panic("uvm_page_physload: tried to add RAM after vm_mem_init"); 814 } else { 815 pgs = NULL; 816 npages = 0; 817 } 818 819 /* 820 * now insert us in the proper place in vm_physmem[] 821 */ 822 823 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM) 824 /* random: put it at the end (easy!) */ 825 ps = VM_PHYSMEM_PTR(vm_nphysmem); 826 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 827 { 828 int x; 829 /* sort by address for binary search */ 830 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) 831 if (start < VM_PHYSMEM_PTR(lcv)->start) 832 break; 833 ps = VM_PHYSMEM_PTR(lcv); 834 /* move back other entries, if necessary ... */ 835 for (x = vm_nphysmem ; x > lcv ; x--) 836 /* structure copy */ 837 VM_PHYSMEM_PTR_SWAP(x, x - 1); 838 } 839 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 840 { 841 int x; 842 /* sort by largest segment first */ 843 for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) 844 if ((end - start) > 845 (VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start)) 846 break; 847 ps = VM_PHYSMEM_PTR(lcv); 848 /* move back other entries, if necessary ... */ 849 for (x = vm_nphysmem ; x > lcv ; x--) 850 /* structure copy */ 851 VM_PHYSMEM_PTR_SWAP(x, x - 1); 852 } 853 #else 854 panic("uvm_page_physload: unknown physseg strategy selected!"); 855 #endif 856 857 ps->start = start; 858 ps->end = end; 859 ps->avail_start = avail_start; 860 ps->avail_end = avail_end; 861 if (preload) { 862 ps->pgs = NULL; 863 } else { 864 ps->pgs = pgs; 865 ps->lastpg = pgs + npages; 866 } 867 ps->free_list = free_list; 868 vm_nphysmem++; 869 870 if (!preload) { 871 uvmpdpol_reinit(); 872 } 873 } 874 875 /* 876 * when VM_PHYSSEG_MAX is 1, we can simplify these functions 877 */ 878 879 #if VM_PHYSSEG_MAX == 1 880 static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *); 881 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 882 static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *); 883 #else 884 static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *); 885 #endif 886 887 /* 888 * vm_physseg_find: find vm_physseg structure that belongs to a PA 889 */ 890 int 891 vm_physseg_find(paddr_t pframe, int *offp) 892 { 893 894 #if VM_PHYSSEG_MAX == 1 895 return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp); 896 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 897 return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp); 898 #else 899 return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp); 900 #endif 901 } 902 903 #if VM_PHYSSEG_MAX == 1 904 static inline int 905 vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp) 906 { 907 908 /* 'contig' case */ 909 if (pframe >= segs[0].start && pframe < segs[0].end) { 910 if (offp) 911 *offp = pframe - segs[0].start; 912 return(0); 913 } 914 return(-1); 915 } 916 917 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 918 919 static inline int 920 vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp) 921 { 922 /* binary search for it */ 923 u_int start, len, try; 924 925 /* 926 * if try is too large (thus target is less than try) we reduce 927 * the length to trunc(len/2) [i.e. everything smaller than "try"] 928 * 929 * if the try is too small (thus target is greater than try) then 930 * we set the new start to be (try + 1). this means we need to 931 * reduce the length to (round(len/2) - 1). 932 * 933 * note "adjust" below which takes advantage of the fact that 934 * (round(len/2) - 1) == trunc((len - 1) / 2) 935 * for any value of len we may have 936 */ 937 938 for (start = 0, len = nsegs ; len != 0 ; len = len / 2) { 939 try = start + (len / 2); /* try in the middle */ 940 941 /* start past our try? */ 942 if (pframe >= segs[try].start) { 943 /* was try correct? */ 944 if (pframe < segs[try].end) { 945 if (offp) 946 *offp = pframe - segs[try].start; 947 return(try); /* got it */ 948 } 949 start = try + 1; /* next time, start here */ 950 len--; /* "adjust" */ 951 } else { 952 /* 953 * pframe before try, just reduce length of 954 * region, done in "for" loop 955 */ 956 } 957 } 958 return(-1); 959 } 960 961 #else 962 963 static inline int 964 vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp) 965 { 966 /* linear search for it */ 967 int lcv; 968 969 for (lcv = 0; lcv < nsegs; lcv++) { 970 if (pframe >= segs[lcv].start && 971 pframe < segs[lcv].end) { 972 if (offp) 973 *offp = pframe - segs[lcv].start; 974 return(lcv); /* got it */ 975 } 976 } 977 return(-1); 978 } 979 #endif 980 981 /* 982 * PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages 983 * back from an I/O mapping (ugh!). used in some MD code as well. 984 */ 985 struct vm_page * 986 uvm_phys_to_vm_page(paddr_t pa) 987 { 988 paddr_t pf = atop(pa); 989 int off; 990 int psi; 991 992 psi = vm_physseg_find(pf, &off); 993 if (psi != -1) 994 return(&VM_PHYSMEM_PTR(psi)->pgs[off]); 995 return(NULL); 996 } 997 998 paddr_t 999 uvm_vm_page_to_phys(const struct vm_page *pg) 1000 { 1001 1002 return pg->phys_addr; 1003 } 1004 1005 /* 1006 * uvm_page_recolor: Recolor the pages if the new bucket count is 1007 * larger than the old one. 1008 */ 1009 1010 void 1011 uvm_page_recolor(int newncolors) 1012 { 1013 struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray; 1014 struct pgfreelist gpgfl, pgfl; 1015 struct vm_page *pg; 1016 vsize_t bucketcount; 1017 int lcv, color, i, ocolors; 1018 struct uvm_cpu *ucpu; 1019 1020 if (newncolors <= uvmexp.ncolors) 1021 return; 1022 1023 if (uvm.page_init_done == false) { 1024 uvmexp.ncolors = newncolors; 1025 return; 1026 } 1027 1028 bucketcount = newncolors * VM_NFREELIST; 1029 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket) * 2, 1030 M_VMPAGE, M_NOWAIT); 1031 cpuarray = bucketarray + bucketcount; 1032 if (bucketarray == NULL) { 1033 printf("WARNING: unable to allocate %ld page color buckets\n", 1034 (long) bucketcount); 1035 return; 1036 } 1037 1038 mutex_spin_enter(&uvm_fpageqlock); 1039 1040 /* Make sure we should still do this. */ 1041 if (newncolors <= uvmexp.ncolors) { 1042 mutex_spin_exit(&uvm_fpageqlock); 1043 free(bucketarray, M_VMPAGE); 1044 return; 1045 } 1046 1047 oldbucketarray = uvm.page_free[0].pgfl_buckets; 1048 ocolors = uvmexp.ncolors; 1049 1050 uvmexp.ncolors = newncolors; 1051 uvmexp.colormask = uvmexp.ncolors - 1; 1052 1053 ucpu = curcpu()->ci_data.cpu_uvm; 1054 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 1055 gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors)); 1056 pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors)); 1057 uvm_page_init_buckets(&gpgfl); 1058 uvm_page_init_buckets(&pgfl); 1059 for (color = 0; color < ocolors; color++) { 1060 for (i = 0; i < PGFL_NQUEUES; i++) { 1061 while ((pg = LIST_FIRST(&uvm.page_free[ 1062 lcv].pgfl_buckets[color].pgfl_queues[i])) 1063 != NULL) { 1064 LIST_REMOVE(pg, pageq.list); /* global */ 1065 LIST_REMOVE(pg, listq.list); /* cpu */ 1066 LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[ 1067 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[ 1068 i], pg, pageq.list); 1069 LIST_INSERT_HEAD(&pgfl.pgfl_buckets[ 1070 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[ 1071 i], pg, listq.list); 1072 } 1073 } 1074 } 1075 uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets; 1076 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets; 1077 } 1078 1079 if (have_recolored_pages) { 1080 mutex_spin_exit(&uvm_fpageqlock); 1081 free(oldbucketarray, M_VMPAGE); 1082 return; 1083 } 1084 1085 have_recolored_pages = true; 1086 mutex_spin_exit(&uvm_fpageqlock); 1087 } 1088 1089 /* 1090 * uvm_cpu_attach: initialize per-CPU data structures. 1091 */ 1092 1093 void 1094 uvm_cpu_attach(struct cpu_info *ci) 1095 { 1096 struct pgflbucket *bucketarray; 1097 struct pgfreelist pgfl; 1098 struct uvm_cpu *ucpu; 1099 vsize_t bucketcount; 1100 int lcv; 1101 1102 if (CPU_IS_PRIMARY(ci)) { 1103 /* Already done in uvm_page_init(). */ 1104 return; 1105 } 1106 1107 /* Add more reserve pages for this CPU. */ 1108 uvmexp.reserve_kernel += vm_page_reserve_kernel; 1109 1110 /* Configure this CPU's free lists. */ 1111 bucketcount = uvmexp.ncolors * VM_NFREELIST; 1112 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket), 1113 M_VMPAGE, M_WAITOK); 1114 ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP); 1115 uvm.cpus[cpu_index(ci)] = ucpu; 1116 ci->ci_data.cpu_uvm = ucpu; 1117 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 1118 pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors)); 1119 uvm_page_init_buckets(&pgfl); 1120 ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets; 1121 } 1122 } 1123 1124 /* 1125 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat 1126 */ 1127 1128 static struct vm_page * 1129 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2, 1130 int *trycolorp) 1131 { 1132 struct pgflist *freeq; 1133 struct vm_page *pg; 1134 int color, trycolor = *trycolorp; 1135 struct pgfreelist *gpgfl, *pgfl; 1136 1137 KASSERT(mutex_owned(&uvm_fpageqlock)); 1138 1139 color = trycolor; 1140 pgfl = &ucpu->page_free[flist]; 1141 gpgfl = &uvm.page_free[flist]; 1142 do { 1143 /* cpu, try1 */ 1144 if ((pg = LIST_FIRST((freeq = 1145 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) { 1146 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--; 1147 uvmexp.cpuhit++; 1148 goto gotit; 1149 } 1150 /* global, try1 */ 1151 if ((pg = LIST_FIRST((freeq = 1152 &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) { 1153 VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--; 1154 uvmexp.cpumiss++; 1155 goto gotit; 1156 } 1157 /* cpu, try2 */ 1158 if ((pg = LIST_FIRST((freeq = 1159 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) { 1160 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--; 1161 uvmexp.cpuhit++; 1162 goto gotit; 1163 } 1164 /* global, try2 */ 1165 if ((pg = LIST_FIRST((freeq = 1166 &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) { 1167 VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--; 1168 uvmexp.cpumiss++; 1169 goto gotit; 1170 } 1171 color = (color + 1) & uvmexp.colormask; 1172 } while (color != trycolor); 1173 1174 return (NULL); 1175 1176 gotit: 1177 LIST_REMOVE(pg, pageq.list); /* global list */ 1178 LIST_REMOVE(pg, listq.list); /* per-cpu list */ 1179 uvmexp.free--; 1180 1181 /* update zero'd page count */ 1182 if (pg->flags & PG_ZERO) 1183 uvmexp.zeropages--; 1184 1185 if (color == trycolor) 1186 uvmexp.colorhit++; 1187 else { 1188 uvmexp.colormiss++; 1189 *trycolorp = color; 1190 } 1191 1192 return (pg); 1193 } 1194 1195 /* 1196 * uvm_pagealloc_strat: allocate vm_page from a particular free list. 1197 * 1198 * => return null if no pages free 1199 * => wake up pagedaemon if number of free pages drops below low water mark 1200 * => if obj != NULL, obj must be locked (to put in obj's tree) 1201 * => if anon != NULL, anon must be locked (to put in anon) 1202 * => only one of obj or anon can be non-null 1203 * => caller must activate/deactivate page if it is not wired. 1204 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL. 1205 * => policy decision: it is more important to pull a page off of the 1206 * appropriate priority free list than it is to get a zero'd or 1207 * unknown contents page. This is because we live with the 1208 * consequences of a bad free list decision for the entire 1209 * lifetime of the page, e.g. if the page comes from memory that 1210 * is slower to access. 1211 */ 1212 1213 struct vm_page * 1214 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon, 1215 int flags, int strat, int free_list) 1216 { 1217 int lcv, try1, try2, zeroit = 0, color; 1218 struct uvm_cpu *ucpu; 1219 struct vm_page *pg; 1220 lwp_t *l; 1221 1222 KASSERT(obj == NULL || anon == NULL); 1223 KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0); 1224 KASSERT(off == trunc_page(off)); 1225 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock)); 1226 KASSERT(anon == NULL || mutex_owned(&anon->an_lock)); 1227 1228 mutex_spin_enter(&uvm_fpageqlock); 1229 1230 /* 1231 * This implements a global round-robin page coloring 1232 * algorithm. 1233 */ 1234 1235 ucpu = curcpu()->ci_data.cpu_uvm; 1236 if (flags & UVM_FLAG_COLORMATCH) { 1237 color = atop(off) & uvmexp.colormask; 1238 } else { 1239 color = ucpu->page_free_nextcolor; 1240 } 1241 1242 /* 1243 * check to see if we need to generate some free pages waking 1244 * the pagedaemon. 1245 */ 1246 1247 uvm_kick_pdaemon(); 1248 1249 /* 1250 * fail if any of these conditions is true: 1251 * [1] there really are no free pages, or 1252 * [2] only kernel "reserved" pages remain and 1253 * reserved pages have not been requested. 1254 * [3] only pagedaemon "reserved" pages remain and 1255 * the requestor isn't the pagedaemon. 1256 * we make kernel reserve pages available if called by a 1257 * kernel thread or a realtime thread. 1258 */ 1259 l = curlwp; 1260 if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) { 1261 flags |= UVM_PGA_USERESERVE; 1262 } 1263 if ((uvmexp.free <= uvmexp.reserve_kernel && 1264 (flags & UVM_PGA_USERESERVE) == 0) || 1265 (uvmexp.free <= uvmexp.reserve_pagedaemon && 1266 curlwp != uvm.pagedaemon_lwp)) 1267 goto fail; 1268 1269 #if PGFL_NQUEUES != 2 1270 #error uvm_pagealloc_strat needs to be updated 1271 #endif 1272 1273 /* 1274 * If we want a zero'd page, try the ZEROS queue first, otherwise 1275 * we try the UNKNOWN queue first. 1276 */ 1277 if (flags & UVM_PGA_ZERO) { 1278 try1 = PGFL_ZEROS; 1279 try2 = PGFL_UNKNOWN; 1280 } else { 1281 try1 = PGFL_UNKNOWN; 1282 try2 = PGFL_ZEROS; 1283 } 1284 1285 again: 1286 switch (strat) { 1287 case UVM_PGA_STRAT_NORMAL: 1288 /* Check freelists: descending priority (ascending id) order */ 1289 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 1290 pg = uvm_pagealloc_pgfl(ucpu, lcv, 1291 try1, try2, &color); 1292 if (pg != NULL) 1293 goto gotit; 1294 } 1295 1296 /* No pages free! */ 1297 goto fail; 1298 1299 case UVM_PGA_STRAT_ONLY: 1300 case UVM_PGA_STRAT_FALLBACK: 1301 /* Attempt to allocate from the specified free list. */ 1302 KASSERT(free_list >= 0 && free_list < VM_NFREELIST); 1303 pg = uvm_pagealloc_pgfl(ucpu, free_list, 1304 try1, try2, &color); 1305 if (pg != NULL) 1306 goto gotit; 1307 1308 /* Fall back, if possible. */ 1309 if (strat == UVM_PGA_STRAT_FALLBACK) { 1310 strat = UVM_PGA_STRAT_NORMAL; 1311 goto again; 1312 } 1313 1314 /* No pages free! */ 1315 goto fail; 1316 1317 default: 1318 panic("uvm_pagealloc_strat: bad strat %d", strat); 1319 /* NOTREACHED */ 1320 } 1321 1322 gotit: 1323 /* 1324 * We now know which color we actually allocated from; set 1325 * the next color accordingly. 1326 */ 1327 1328 ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask; 1329 1330 /* 1331 * update allocation statistics and remember if we have to 1332 * zero the page 1333 */ 1334 1335 if (flags & UVM_PGA_ZERO) { 1336 if (pg->flags & PG_ZERO) { 1337 uvmexp.pga_zerohit++; 1338 zeroit = 0; 1339 } else { 1340 uvmexp.pga_zeromiss++; 1341 zeroit = 1; 1342 } 1343 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) { 1344 ucpu->page_idle_zero = vm_page_zero_enable; 1345 } 1346 } 1347 KASSERT(pg->pqflags == PQ_FREE); 1348 1349 pg->offset = off; 1350 pg->uobject = obj; 1351 pg->uanon = anon; 1352 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE; 1353 if (anon) { 1354 anon->an_page = pg; 1355 pg->pqflags = PQ_ANON; 1356 atomic_inc_uint(&uvmexp.anonpages); 1357 } else { 1358 if (obj) { 1359 uvm_pageinsert(obj, pg); 1360 } 1361 pg->pqflags = 0; 1362 } 1363 mutex_spin_exit(&uvm_fpageqlock); 1364 1365 #if defined(UVM_PAGE_TRKOWN) 1366 pg->owner_tag = NULL; 1367 #endif 1368 UVM_PAGE_OWN(pg, "new alloc"); 1369 1370 if (flags & UVM_PGA_ZERO) { 1371 /* 1372 * A zero'd page is not clean. If we got a page not already 1373 * zero'd, then we have to zero it ourselves. 1374 */ 1375 pg->flags &= ~PG_CLEAN; 1376 if (zeroit) 1377 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1378 } 1379 1380 return(pg); 1381 1382 fail: 1383 mutex_spin_exit(&uvm_fpageqlock); 1384 return (NULL); 1385 } 1386 1387 /* 1388 * uvm_pagereplace: replace a page with another 1389 * 1390 * => object must be locked 1391 */ 1392 1393 void 1394 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg) 1395 { 1396 struct uvm_object *uobj = oldpg->uobject; 1397 1398 KASSERT((oldpg->flags & PG_TABLED) != 0); 1399 KASSERT(uobj != NULL); 1400 KASSERT((newpg->flags & PG_TABLED) == 0); 1401 KASSERT(newpg->uobject == NULL); 1402 KASSERT(mutex_owned(&uobj->vmobjlock)); 1403 1404 newpg->uobject = uobj; 1405 newpg->offset = oldpg->offset; 1406 1407 uvm_pageremove_tree(uobj, oldpg); 1408 uvm_pageinsert_tree(uobj, newpg); 1409 uvm_pageinsert_list(uobj, newpg, oldpg); 1410 uvm_pageremove_list(uobj, oldpg); 1411 } 1412 1413 /* 1414 * uvm_pagerealloc: reallocate a page from one object to another 1415 * 1416 * => both objects must be locked 1417 */ 1418 1419 void 1420 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff) 1421 { 1422 /* 1423 * remove it from the old object 1424 */ 1425 1426 if (pg->uobject) { 1427 uvm_pageremove(pg->uobject, pg); 1428 } 1429 1430 /* 1431 * put it in the new object 1432 */ 1433 1434 if (newobj) { 1435 pg->uobject = newobj; 1436 pg->offset = newoff; 1437 uvm_pageinsert(newobj, pg); 1438 } 1439 } 1440 1441 #ifdef DEBUG 1442 /* 1443 * check if page is zero-filled 1444 * 1445 * - called with free page queue lock held. 1446 */ 1447 void 1448 uvm_pagezerocheck(struct vm_page *pg) 1449 { 1450 int *p, *ep; 1451 1452 KASSERT(uvm_zerocheckkva != 0); 1453 KASSERT(mutex_owned(&uvm_fpageqlock)); 1454 1455 /* 1456 * XXX assuming pmap_kenter_pa and pmap_kremove never call 1457 * uvm page allocator. 1458 * 1459 * it might be better to have "CPU-local temporary map" pmap interface. 1460 */ 1461 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0); 1462 p = (int *)uvm_zerocheckkva; 1463 ep = (int *)((char *)p + PAGE_SIZE); 1464 pmap_update(pmap_kernel()); 1465 while (p < ep) { 1466 if (*p != 0) 1467 panic("PG_ZERO page isn't zero-filled"); 1468 p++; 1469 } 1470 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE); 1471 /* 1472 * pmap_update() is not necessary here because no one except us 1473 * uses this VA. 1474 */ 1475 } 1476 #endif /* DEBUG */ 1477 1478 /* 1479 * uvm_pagefree: free page 1480 * 1481 * => erase page's identity (i.e. remove from object) 1482 * => put page on free list 1483 * => caller must lock owning object (either anon or uvm_object) 1484 * => caller must lock page queues 1485 * => assumes all valid mappings of pg are gone 1486 */ 1487 1488 void 1489 uvm_pagefree(struct vm_page *pg) 1490 { 1491 struct pgflist *pgfl; 1492 struct uvm_cpu *ucpu; 1493 int index, color, queue; 1494 bool iszero; 1495 1496 #ifdef DEBUG 1497 if (pg->uobject == (void *)0xdeadbeef && 1498 pg->uanon == (void *)0xdeadbeef) { 1499 panic("uvm_pagefree: freeing free page %p", pg); 1500 } 1501 #endif /* DEBUG */ 1502 1503 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1504 KASSERT(!(pg->pqflags & PQ_FREE)); 1505 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg)); 1506 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock)); 1507 KASSERT(pg->uobject != NULL || pg->uanon == NULL || 1508 mutex_owned(&pg->uanon->an_lock)); 1509 1510 /* 1511 * if the page is loaned, resolve the loan instead of freeing. 1512 */ 1513 1514 if (pg->loan_count) { 1515 KASSERT(pg->wire_count == 0); 1516 1517 /* 1518 * if the page is owned by an anon then we just want to 1519 * drop anon ownership. the kernel will free the page when 1520 * it is done with it. if the page is owned by an object, 1521 * remove it from the object and mark it dirty for the benefit 1522 * of possible anon owners. 1523 * 1524 * regardless of previous ownership, wakeup any waiters, 1525 * unbusy the page, and we're done. 1526 */ 1527 1528 if (pg->uobject != NULL) { 1529 uvm_pageremove(pg->uobject, pg); 1530 pg->flags &= ~PG_CLEAN; 1531 } else if (pg->uanon != NULL) { 1532 if ((pg->pqflags & PQ_ANON) == 0) { 1533 pg->loan_count--; 1534 } else { 1535 pg->pqflags &= ~PQ_ANON; 1536 atomic_dec_uint(&uvmexp.anonpages); 1537 } 1538 pg->uanon->an_page = NULL; 1539 pg->uanon = NULL; 1540 } 1541 if (pg->flags & PG_WANTED) { 1542 wakeup(pg); 1543 } 1544 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1); 1545 #ifdef UVM_PAGE_TRKOWN 1546 pg->owner_tag = NULL; 1547 #endif 1548 if (pg->loan_count) { 1549 KASSERT(pg->uobject == NULL); 1550 if (pg->uanon == NULL) { 1551 uvm_pagedequeue(pg); 1552 } 1553 return; 1554 } 1555 } 1556 1557 /* 1558 * remove page from its object or anon. 1559 */ 1560 1561 if (pg->uobject != NULL) { 1562 uvm_pageremove(pg->uobject, pg); 1563 } else if (pg->uanon != NULL) { 1564 pg->uanon->an_page = NULL; 1565 atomic_dec_uint(&uvmexp.anonpages); 1566 } 1567 1568 /* 1569 * now remove the page from the queues. 1570 */ 1571 1572 uvm_pagedequeue(pg); 1573 1574 /* 1575 * if the page was wired, unwire it now. 1576 */ 1577 1578 if (pg->wire_count) { 1579 pg->wire_count = 0; 1580 uvmexp.wired--; 1581 } 1582 1583 /* 1584 * and put on free queue 1585 */ 1586 1587 iszero = (pg->flags & PG_ZERO); 1588 index = uvm_page_lookup_freelist(pg); 1589 color = VM_PGCOLOR_BUCKET(pg); 1590 queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN); 1591 1592 #ifdef DEBUG 1593 pg->uobject = (void *)0xdeadbeef; 1594 pg->uanon = (void *)0xdeadbeef; 1595 #endif 1596 1597 mutex_spin_enter(&uvm_fpageqlock); 1598 pg->pqflags = PQ_FREE; 1599 1600 #ifdef DEBUG 1601 if (iszero) 1602 uvm_pagezerocheck(pg); 1603 #endif /* DEBUG */ 1604 1605 1606 /* global list */ 1607 pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue]; 1608 LIST_INSERT_HEAD(pgfl, pg, pageq.list); 1609 uvmexp.free++; 1610 if (iszero) { 1611 uvmexp.zeropages++; 1612 } 1613 1614 /* per-cpu list */ 1615 ucpu = curcpu()->ci_data.cpu_uvm; 1616 pg->offset = (uintptr_t)ucpu; 1617 pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue]; 1618 LIST_INSERT_HEAD(pgfl, pg, listq.list); 1619 ucpu->pages[queue]++; 1620 if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) { 1621 ucpu->page_idle_zero = vm_page_zero_enable; 1622 } 1623 1624 mutex_spin_exit(&uvm_fpageqlock); 1625 } 1626 1627 /* 1628 * uvm_page_unbusy: unbusy an array of pages. 1629 * 1630 * => pages must either all belong to the same object, or all belong to anons. 1631 * => if pages are object-owned, object must be locked. 1632 * => if pages are anon-owned, anons must be locked. 1633 * => caller must lock page queues if pages may be released. 1634 * => caller must make sure that anon-owned pages are not PG_RELEASED. 1635 */ 1636 1637 void 1638 uvm_page_unbusy(struct vm_page **pgs, int npgs) 1639 { 1640 struct vm_page *pg; 1641 int i; 1642 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist); 1643 1644 for (i = 0; i < npgs; i++) { 1645 pg = pgs[i]; 1646 if (pg == NULL || pg == PGO_DONTCARE) { 1647 continue; 1648 } 1649 1650 KASSERT(pg->uobject == NULL || 1651 mutex_owned(&pg->uobject->vmobjlock)); 1652 KASSERT(pg->uobject != NULL || 1653 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock))); 1654 1655 KASSERT(pg->flags & PG_BUSY); 1656 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1657 if (pg->flags & PG_WANTED) { 1658 wakeup(pg); 1659 } 1660 if (pg->flags & PG_RELEASED) { 1661 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0); 1662 KASSERT(pg->uobject != NULL || 1663 (pg->uanon != NULL && pg->uanon->an_ref > 0)); 1664 pg->flags &= ~PG_RELEASED; 1665 uvm_pagefree(pg); 1666 } else { 1667 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0); 1668 KASSERT((pg->flags & PG_FAKE) == 0); 1669 pg->flags &= ~(PG_WANTED|PG_BUSY); 1670 UVM_PAGE_OWN(pg, NULL); 1671 } 1672 } 1673 } 1674 1675 #if defined(UVM_PAGE_TRKOWN) 1676 /* 1677 * uvm_page_own: set or release page ownership 1678 * 1679 * => this is a debugging function that keeps track of who sets PG_BUSY 1680 * and where they do it. it can be used to track down problems 1681 * such a process setting "PG_BUSY" and never releasing it. 1682 * => page's object [if any] must be locked 1683 * => if "tag" is NULL then we are releasing page ownership 1684 */ 1685 void 1686 uvm_page_own(struct vm_page *pg, const char *tag) 1687 { 1688 struct uvm_object *uobj; 1689 struct vm_anon *anon; 1690 1691 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0); 1692 1693 uobj = pg->uobject; 1694 anon = pg->uanon; 1695 if (uobj != NULL) { 1696 KASSERT(mutex_owned(&uobj->vmobjlock)); 1697 } else if (anon != NULL) { 1698 KASSERT(mutex_owned(&anon->an_lock)); 1699 } 1700 1701 KASSERT((pg->flags & PG_WANTED) == 0); 1702 1703 /* gain ownership? */ 1704 if (tag) { 1705 KASSERT((pg->flags & PG_BUSY) != 0); 1706 if (pg->owner_tag) { 1707 printf("uvm_page_own: page %p already owned " 1708 "by proc %d [%s]\n", pg, 1709 pg->owner, pg->owner_tag); 1710 panic("uvm_page_own"); 1711 } 1712 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1; 1713 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1; 1714 pg->owner_tag = tag; 1715 return; 1716 } 1717 1718 /* drop ownership */ 1719 KASSERT((pg->flags & PG_BUSY) == 0); 1720 if (pg->owner_tag == NULL) { 1721 printf("uvm_page_own: dropping ownership of an non-owned " 1722 "page (%p)\n", pg); 1723 panic("uvm_page_own"); 1724 } 1725 if (!uvmpdpol_pageisqueued_p(pg)) { 1726 KASSERT((pg->uanon == NULL && pg->uobject == NULL) || 1727 pg->wire_count > 0); 1728 } else { 1729 KASSERT(pg->wire_count == 0); 1730 } 1731 pg->owner_tag = NULL; 1732 } 1733 #endif 1734 1735 /* 1736 * uvm_pageidlezero: zero free pages while the system is idle. 1737 * 1738 * => try to complete one color bucket at a time, to reduce our impact 1739 * on the CPU cache. 1740 * => we loop until we either reach the target or there is a lwp ready 1741 * to run, or MD code detects a reason to break early. 1742 */ 1743 void 1744 uvm_pageidlezero(void) 1745 { 1746 struct vm_page *pg; 1747 struct pgfreelist *pgfl, *gpgfl; 1748 struct uvm_cpu *ucpu; 1749 int free_list, firstbucket, nextbucket; 1750 1751 ucpu = curcpu()->ci_data.cpu_uvm; 1752 if (!ucpu->page_idle_zero || 1753 ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) { 1754 ucpu->page_idle_zero = false; 1755 return; 1756 } 1757 mutex_enter(&uvm_fpageqlock); 1758 firstbucket = ucpu->page_free_nextcolor; 1759 nextbucket = firstbucket; 1760 do { 1761 for (free_list = 0; free_list < VM_NFREELIST; free_list++) { 1762 if (sched_curcpu_runnable_p()) { 1763 goto quit; 1764 } 1765 pgfl = &ucpu->page_free[free_list]; 1766 gpgfl = &uvm.page_free[free_list]; 1767 while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[ 1768 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) { 1769 if (sched_curcpu_runnable_p()) { 1770 goto quit; 1771 } 1772 LIST_REMOVE(pg, pageq.list); /* global list */ 1773 LIST_REMOVE(pg, listq.list); /* per-cpu list */ 1774 ucpu->pages[PGFL_UNKNOWN]--; 1775 uvmexp.free--; 1776 KASSERT(pg->pqflags == PQ_FREE); 1777 pg->pqflags = 0; 1778 mutex_spin_exit(&uvm_fpageqlock); 1779 #ifdef PMAP_PAGEIDLEZERO 1780 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) { 1781 1782 /* 1783 * The machine-dependent code detected 1784 * some reason for us to abort zeroing 1785 * pages, probably because there is a 1786 * process now ready to run. 1787 */ 1788 1789 mutex_spin_enter(&uvm_fpageqlock); 1790 pg->pqflags = PQ_FREE; 1791 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[ 1792 nextbucket].pgfl_queues[ 1793 PGFL_UNKNOWN], pg, pageq.list); 1794 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[ 1795 nextbucket].pgfl_queues[ 1796 PGFL_UNKNOWN], pg, listq.list); 1797 ucpu->pages[PGFL_UNKNOWN]++; 1798 uvmexp.free++; 1799 uvmexp.zeroaborts++; 1800 goto quit; 1801 } 1802 #else 1803 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1804 #endif /* PMAP_PAGEIDLEZERO */ 1805 pg->flags |= PG_ZERO; 1806 1807 mutex_spin_enter(&uvm_fpageqlock); 1808 pg->pqflags = PQ_FREE; 1809 LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[ 1810 nextbucket].pgfl_queues[PGFL_ZEROS], 1811 pg, pageq.list); 1812 LIST_INSERT_HEAD(&pgfl->pgfl_buckets[ 1813 nextbucket].pgfl_queues[PGFL_ZEROS], 1814 pg, listq.list); 1815 ucpu->pages[PGFL_ZEROS]++; 1816 uvmexp.free++; 1817 uvmexp.zeropages++; 1818 } 1819 } 1820 if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) { 1821 break; 1822 } 1823 nextbucket = (nextbucket + 1) & uvmexp.colormask; 1824 } while (nextbucket != firstbucket); 1825 ucpu->page_idle_zero = false; 1826 quit: 1827 mutex_spin_exit(&uvm_fpageqlock); 1828 } 1829 1830 /* 1831 * uvm_pagelookup: look up a page 1832 * 1833 * => caller should lock object to keep someone from pulling the page 1834 * out from under it 1835 */ 1836 1837 struct vm_page * 1838 uvm_pagelookup(struct uvm_object *obj, voff_t off) 1839 { 1840 struct vm_page *pg; 1841 1842 KASSERT(mutex_owned(&obj->vmobjlock)); 1843 1844 pg = rb_tree_find_node(&obj->rb_tree, &off); 1845 1846 KASSERT(pg == NULL || obj->uo_npages != 0); 1847 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1848 (pg->flags & PG_BUSY) != 0); 1849 return pg; 1850 } 1851 1852 /* 1853 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp 1854 * 1855 * => caller must lock page queues 1856 */ 1857 1858 void 1859 uvm_pagewire(struct vm_page *pg) 1860 { 1861 KASSERT(mutex_owned(&uvm_pageqlock)); 1862 #if defined(READAHEAD_STATS) 1863 if ((pg->pqflags & PQ_READAHEAD) != 0) { 1864 uvm_ra_hit.ev_count++; 1865 pg->pqflags &= ~PQ_READAHEAD; 1866 } 1867 #endif /* defined(READAHEAD_STATS) */ 1868 if (pg->wire_count == 0) { 1869 uvm_pagedequeue(pg); 1870 uvmexp.wired++; 1871 } 1872 pg->wire_count++; 1873 } 1874 1875 /* 1876 * uvm_pageunwire: unwire the page. 1877 * 1878 * => activate if wire count goes to zero. 1879 * => caller must lock page queues 1880 */ 1881 1882 void 1883 uvm_pageunwire(struct vm_page *pg) 1884 { 1885 KASSERT(mutex_owned(&uvm_pageqlock)); 1886 pg->wire_count--; 1887 if (pg->wire_count == 0) { 1888 uvm_pageactivate(pg); 1889 uvmexp.wired--; 1890 } 1891 } 1892 1893 /* 1894 * uvm_pagedeactivate: deactivate page 1895 * 1896 * => caller must lock page queues 1897 * => caller must check to make sure page is not wired 1898 * => object that page belongs to must be locked (so we can adjust pg->flags) 1899 * => caller must clear the reference on the page before calling 1900 */ 1901 1902 void 1903 uvm_pagedeactivate(struct vm_page *pg) 1904 { 1905 1906 KASSERT(mutex_owned(&uvm_pageqlock)); 1907 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg)); 1908 uvmpdpol_pagedeactivate(pg); 1909 } 1910 1911 /* 1912 * uvm_pageactivate: activate page 1913 * 1914 * => caller must lock page queues 1915 */ 1916 1917 void 1918 uvm_pageactivate(struct vm_page *pg) 1919 { 1920 1921 KASSERT(mutex_owned(&uvm_pageqlock)); 1922 #if defined(READAHEAD_STATS) 1923 if ((pg->pqflags & PQ_READAHEAD) != 0) { 1924 uvm_ra_hit.ev_count++; 1925 pg->pqflags &= ~PQ_READAHEAD; 1926 } 1927 #endif /* defined(READAHEAD_STATS) */ 1928 if (pg->wire_count != 0) { 1929 return; 1930 } 1931 uvmpdpol_pageactivate(pg); 1932 } 1933 1934 /* 1935 * uvm_pagedequeue: remove a page from any paging queue 1936 */ 1937 1938 void 1939 uvm_pagedequeue(struct vm_page *pg) 1940 { 1941 1942 if (uvmpdpol_pageisqueued_p(pg)) { 1943 KASSERT(mutex_owned(&uvm_pageqlock)); 1944 } 1945 1946 uvmpdpol_pagedequeue(pg); 1947 } 1948 1949 /* 1950 * uvm_pageenqueue: add a page to a paging queue without activating. 1951 * used where a page is not really demanded (yet). eg. read-ahead 1952 */ 1953 1954 void 1955 uvm_pageenqueue(struct vm_page *pg) 1956 { 1957 1958 KASSERT(mutex_owned(&uvm_pageqlock)); 1959 if (pg->wire_count != 0) { 1960 return; 1961 } 1962 uvmpdpol_pageenqueue(pg); 1963 } 1964 1965 /* 1966 * uvm_pagezero: zero fill a page 1967 * 1968 * => if page is part of an object then the object should be locked 1969 * to protect pg->flags. 1970 */ 1971 1972 void 1973 uvm_pagezero(struct vm_page *pg) 1974 { 1975 pg->flags &= ~PG_CLEAN; 1976 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1977 } 1978 1979 /* 1980 * uvm_pagecopy: copy a page 1981 * 1982 * => if page is part of an object then the object should be locked 1983 * to protect pg->flags. 1984 */ 1985 1986 void 1987 uvm_pagecopy(struct vm_page *src, struct vm_page *dst) 1988 { 1989 1990 dst->flags &= ~PG_CLEAN; 1991 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst)); 1992 } 1993 1994 /* 1995 * uvm_pageismanaged: test it see that a page (specified by PA) is managed. 1996 */ 1997 1998 bool 1999 uvm_pageismanaged(paddr_t pa) 2000 { 2001 2002 return (vm_physseg_find(atop(pa), NULL) != -1); 2003 } 2004 2005 /* 2006 * uvm_page_lookup_freelist: look up the free list for the specified page 2007 */ 2008 2009 int 2010 uvm_page_lookup_freelist(struct vm_page *pg) 2011 { 2012 int lcv; 2013 2014 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL); 2015 KASSERT(lcv != -1); 2016 return (VM_PHYSMEM_PTR(lcv)->free_list); 2017 } 2018 2019 #if defined(DDB) || defined(DEBUGPRINT) 2020 2021 /* 2022 * uvm_page_printit: actually print the page 2023 */ 2024 2025 static const char page_flagbits[] = UVM_PGFLAGBITS; 2026 static const char page_pqflagbits[] = UVM_PQFLAGBITS; 2027 2028 void 2029 uvm_page_printit(struct vm_page *pg, bool full, 2030 void (*pr)(const char *, ...)) 2031 { 2032 struct vm_page *tpg; 2033 struct uvm_object *uobj; 2034 struct pgflist *pgl; 2035 char pgbuf[128]; 2036 char pqbuf[128]; 2037 2038 (*pr)("PAGE %p:\n", pg); 2039 snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags); 2040 snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags); 2041 (*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n", 2042 pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg)); 2043 (*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n", 2044 pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count); 2045 #if defined(UVM_PAGE_TRKOWN) 2046 if (pg->flags & PG_BUSY) 2047 (*pr)(" owning process = %d, tag=%s\n", 2048 pg->owner, pg->owner_tag); 2049 else 2050 (*pr)(" page not busy, no owner\n"); 2051 #else 2052 (*pr)(" [page ownership tracking disabled]\n"); 2053 #endif 2054 2055 if (!full) 2056 return; 2057 2058 /* cross-verify object/anon */ 2059 if ((pg->pqflags & PQ_FREE) == 0) { 2060 if (pg->pqflags & PQ_ANON) { 2061 if (pg->uanon == NULL || pg->uanon->an_page != pg) 2062 (*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n", 2063 (pg->uanon) ? pg->uanon->an_page : NULL); 2064 else 2065 (*pr)(" anon backpointer is OK\n"); 2066 } else { 2067 uobj = pg->uobject; 2068 if (uobj) { 2069 (*pr)(" checking object list\n"); 2070 TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) { 2071 if (tpg == pg) { 2072 break; 2073 } 2074 } 2075 if (tpg) 2076 (*pr)(" page found on object list\n"); 2077 else 2078 (*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n"); 2079 } 2080 } 2081 } 2082 2083 /* cross-verify page queue */ 2084 if (pg->pqflags & PQ_FREE) { 2085 int fl = uvm_page_lookup_freelist(pg); 2086 int color = VM_PGCOLOR_BUCKET(pg); 2087 pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[ 2088 ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN]; 2089 } else { 2090 pgl = NULL; 2091 } 2092 2093 if (pgl) { 2094 (*pr)(" checking pageq list\n"); 2095 LIST_FOREACH(tpg, pgl, pageq.list) { 2096 if (tpg == pg) { 2097 break; 2098 } 2099 } 2100 if (tpg) 2101 (*pr)(" page found on pageq list\n"); 2102 else 2103 (*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n"); 2104 } 2105 } 2106 2107 /* 2108 * uvm_pages_printthem - print a summary of all managed pages 2109 */ 2110 2111 void 2112 uvm_page_printall(void (*pr)(const char *, ...)) 2113 { 2114 unsigned i; 2115 struct vm_page *pg; 2116 2117 (*pr)("%18s %4s %4s %18s %18s" 2118 #ifdef UVM_PAGE_TRKOWN 2119 " OWNER" 2120 #endif 2121 "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON"); 2122 for (i = 0; i < vm_nphysmem; i++) { 2123 for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) { 2124 (*pr)("%18p %04x %04x %18p %18p", 2125 pg, pg->flags, pg->pqflags, pg->uobject, 2126 pg->uanon); 2127 #ifdef UVM_PAGE_TRKOWN 2128 if (pg->flags & PG_BUSY) 2129 (*pr)(" %d [%s]", pg->owner, pg->owner_tag); 2130 #endif 2131 (*pr)("\n"); 2132 } 2133 } 2134 } 2135 2136 #endif /* DDB || DEBUGPRINT */ 2137