xref: /netbsd-src/sys/uvm/uvm_page.c (revision afab4e300d3a9fb07dd8c80daf53d0feb3345706)
1 /*	$NetBSD: uvm_page.c,v 1.252 2023/04/09 09:00:56 riastradh Exp $	*/
2 
3 /*-
4  * Copyright (c) 2019, 2020 The NetBSD Foundation, Inc.
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to The NetBSD Foundation
8  * by Andrew Doran.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 /*
33  * Copyright (c) 1997 Charles D. Cranor and Washington University.
34  * Copyright (c) 1991, 1993, The Regents of the University of California.
35  *
36  * All rights reserved.
37  *
38  * This code is derived from software contributed to Berkeley by
39  * The Mach Operating System project at Carnegie-Mellon University.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. Neither the name of the University nor the names of its contributors
50  *    may be used to endorse or promote products derived from this software
51  *    without specific prior written permission.
52  *
53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63  * SUCH DAMAGE.
64  *
65  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
66  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
67  *
68  *
69  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
70  * All rights reserved.
71  *
72  * Permission to use, copy, modify and distribute this software and
73  * its documentation is hereby granted, provided that both the copyright
74  * notice and this permission notice appear in all copies of the
75  * software, derivative works or modified versions, and any portions
76  * thereof, and that both notices appear in supporting documentation.
77  *
78  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
79  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
80  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
81  *
82  * Carnegie Mellon requests users of this software to return to
83  *
84  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
85  *  School of Computer Science
86  *  Carnegie Mellon University
87  *  Pittsburgh PA 15213-3890
88  *
89  * any improvements or extensions that they make and grant Carnegie the
90  * rights to redistribute these changes.
91  */
92 
93 /*
94  * uvm_page.c: page ops.
95  */
96 
97 #include <sys/cdefs.h>
98 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.252 2023/04/09 09:00:56 riastradh Exp $");
99 
100 #include "opt_ddb.h"
101 #include "opt_uvm.h"
102 #include "opt_uvmhist.h"
103 #include "opt_readahead.h"
104 
105 #include <sys/param.h>
106 #include <sys/systm.h>
107 #include <sys/sched.h>
108 #include <sys/kernel.h>
109 #include <sys/vnode.h>
110 #include <sys/proc.h>
111 #include <sys/radixtree.h>
112 #include <sys/atomic.h>
113 #include <sys/cpu.h>
114 
115 #include <ddb/db_active.h>
116 
117 #include <uvm/uvm.h>
118 #include <uvm/uvm_ddb.h>
119 #include <uvm/uvm_pdpolicy.h>
120 #include <uvm/uvm_pgflcache.h>
121 
122 /*
123  * number of pages per-CPU to reserve for the kernel.
124  */
125 #ifndef	UVM_RESERVED_PAGES_PER_CPU
126 #define	UVM_RESERVED_PAGES_PER_CPU	5
127 #endif
128 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
129 
130 /*
131  * physical memory size;
132  */
133 psize_t physmem;
134 
135 /*
136  * local variables
137  */
138 
139 /*
140  * these variables record the values returned by vm_page_bootstrap,
141  * for debugging purposes.  The implementation of uvm_pageboot_alloc
142  * and pmap_startup here also uses them internally.
143  */
144 
145 static vaddr_t      virtual_space_start;
146 static vaddr_t      virtual_space_end;
147 
148 /*
149  * we allocate an initial number of page colors in uvm_page_init(),
150  * and remember them.  We may re-color pages as cache sizes are
151  * discovered during the autoconfiguration phase.  But we can never
152  * free the initial set of buckets, since they are allocated using
153  * uvm_pageboot_alloc().
154  */
155 
156 static size_t recolored_pages_memsize /* = 0 */;
157 static char *recolored_pages_mem;
158 
159 /*
160  * freelist locks - one per bucket.
161  */
162 
163 union uvm_freelist_lock	uvm_freelist_locks[PGFL_MAX_BUCKETS]
164     __cacheline_aligned;
165 
166 /*
167  * basic NUMA information.
168  */
169 
170 static struct uvm_page_numa_region {
171 	struct uvm_page_numa_region	*next;
172 	paddr_t				start;
173 	paddr_t				size;
174 	u_int				numa_id;
175 } *uvm_page_numa_region;
176 
177 #ifdef DEBUG
178 kmutex_t uvm_zerochecklock __cacheline_aligned;
179 vaddr_t uvm_zerocheckkva;
180 #endif /* DEBUG */
181 
182 /*
183  * These functions are reserved for uvm(9) internal use and are not
184  * exported in the header file uvm_physseg.h
185  *
186  * Thus they are redefined here.
187  */
188 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
189 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
190 
191 /* returns a pgs array */
192 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
193 
194 /*
195  * inline functions
196  */
197 
198 /*
199  * uvm_pageinsert: insert a page in the object.
200  *
201  * => caller must lock object
202  * => call should have already set pg's object and offset pointers
203  *    and bumped the version counter
204  */
205 
206 static inline void
207 uvm_pageinsert_object(struct uvm_object *uobj, struct vm_page *pg)
208 {
209 
210 	KASSERT(uobj == pg->uobject);
211 	KASSERT(rw_write_held(uobj->vmobjlock));
212 	KASSERT((pg->flags & PG_TABLED) == 0);
213 
214 	if ((pg->flags & PG_STAT) != 0) {
215 		/* Cannot use uvm_pagegetdirty(): not yet in radix tree. */
216 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
217 
218 		if ((pg->flags & PG_FILE) != 0) {
219 			if (uobj->uo_npages == 0) {
220 				struct vnode *vp = (struct vnode *)uobj;
221 				mutex_enter(vp->v_interlock);
222 				KASSERT((vp->v_iflag & VI_PAGES) == 0);
223 				vp->v_iflag |= VI_PAGES;
224 				vholdl(vp);
225 				mutex_exit(vp->v_interlock);
226 			}
227 			if (UVM_OBJ_IS_VTEXT(uobj)) {
228 				cpu_count(CPU_COUNT_EXECPAGES, 1);
229 			}
230 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, 1);
231 		} else {
232 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, 1);
233 		}
234 	}
235 	pg->flags |= PG_TABLED;
236 	uobj->uo_npages++;
237 }
238 
239 static inline int
240 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
241 {
242 	const uint64_t idx = pg->offset >> PAGE_SHIFT;
243 	int error;
244 
245 	KASSERT(rw_write_held(uobj->vmobjlock));
246 
247 	error = radix_tree_insert_node(&uobj->uo_pages, idx, pg);
248 	if (error != 0) {
249 		return error;
250 	}
251 	if ((pg->flags & PG_CLEAN) == 0) {
252 		uvm_obj_page_set_dirty(pg);
253 	}
254 	KASSERT(((pg->flags & PG_CLEAN) == 0) ==
255 		uvm_obj_page_dirty_p(pg));
256 	return 0;
257 }
258 
259 /*
260  * uvm_page_remove: remove page from object.
261  *
262  * => caller must lock object
263  */
264 
265 static inline void
266 uvm_pageremove_object(struct uvm_object *uobj, struct vm_page *pg)
267 {
268 
269 	KASSERT(uobj == pg->uobject);
270 	KASSERT(rw_write_held(uobj->vmobjlock));
271 	KASSERT(pg->flags & PG_TABLED);
272 
273 	if ((pg->flags & PG_STAT) != 0) {
274 		/* Cannot use uvm_pagegetdirty(): no longer in radix tree. */
275 		const unsigned int status = pg->flags & (PG_CLEAN | PG_DIRTY);
276 
277 		if ((pg->flags & PG_FILE) != 0) {
278 			if (uobj->uo_npages == 1) {
279 				struct vnode *vp = (struct vnode *)uobj;
280 				mutex_enter(vp->v_interlock);
281 				KASSERT((vp->v_iflag & VI_PAGES) != 0);
282 				vp->v_iflag &= ~VI_PAGES;
283 				holdrelel(vp);
284 				mutex_exit(vp->v_interlock);
285 			}
286 			if (UVM_OBJ_IS_VTEXT(uobj)) {
287 				cpu_count(CPU_COUNT_EXECPAGES, -1);
288 			}
289 			cpu_count(CPU_COUNT_FILEUNKNOWN + status, -1);
290 		} else {
291 			cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
292 		}
293 	}
294 	uobj->uo_npages--;
295 	pg->flags &= ~PG_TABLED;
296 	pg->uobject = NULL;
297 }
298 
299 static inline void
300 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
301 {
302 	struct vm_page *opg __unused;
303 
304 	KASSERT(rw_write_held(uobj->vmobjlock));
305 
306 	opg = radix_tree_remove_node(&uobj->uo_pages, pg->offset >> PAGE_SHIFT);
307 	KASSERT(pg == opg);
308 }
309 
310 static void
311 uvm_page_init_bucket(struct pgfreelist *pgfl, struct pgflbucket *pgb, int num)
312 {
313 	int i;
314 
315 	pgb->pgb_nfree = 0;
316 	for (i = 0; i < uvmexp.ncolors; i++) {
317 		LIST_INIT(&pgb->pgb_colors[i]);
318 	}
319 	pgfl->pgfl_buckets[num] = pgb;
320 }
321 
322 /*
323  * uvm_page_init: init the page system.   called from uvm_init().
324  *
325  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
326  */
327 
328 void
329 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
330 {
331 	static struct uvm_cpu boot_cpu __cacheline_aligned;
332 	psize_t freepages, pagecount, bucketsize, n;
333 	struct pgflbucket *pgb;
334 	struct vm_page *pagearray;
335 	char *bucketarray;
336 	uvm_physseg_t bank;
337 	int fl, b;
338 
339 	KASSERT(ncpu <= 1);
340 
341 	/*
342 	 * init the page queues and free page queue locks, except the
343 	 * free list; we allocate that later (with the initial vm_page
344 	 * structures).
345 	 */
346 
347 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
348 	uvmpdpol_init();
349 	for (b = 0; b < __arraycount(uvm_freelist_locks); b++) {
350 		mutex_init(&uvm_freelist_locks[b].lock, MUTEX_DEFAULT, IPL_VM);
351 	}
352 
353 	/*
354 	 * allocate vm_page structures.
355 	 */
356 
357 	/*
358 	 * sanity check:
359 	 * before calling this function the MD code is expected to register
360 	 * some free RAM with the uvm_page_physload() function.   our job
361 	 * now is to allocate vm_page structures for this memory.
362 	 */
363 
364 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
365 		panic("uvm_page_bootstrap: no memory pre-allocated");
366 
367 	/*
368 	 * first calculate the number of free pages...
369 	 *
370 	 * note that we use start/end rather than avail_start/avail_end.
371 	 * this allows us to allocate extra vm_page structures in case we
372 	 * want to return some memory to the pool after booting.
373 	 */
374 
375 	freepages = 0;
376 
377 	for (bank = uvm_physseg_get_first();
378 	     uvm_physseg_valid_p(bank) ;
379 	     bank = uvm_physseg_get_next(bank)) {
380 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
381 	}
382 
383 	/*
384 	 * Let MD code initialize the number of colors, or default
385 	 * to 1 color if MD code doesn't care.
386 	 */
387 	if (uvmexp.ncolors == 0)
388 		uvmexp.ncolors = 1;
389 	uvmexp.colormask = uvmexp.ncolors - 1;
390 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
391 
392 	/* We always start with only 1 bucket. */
393 	uvm.bucketcount = 1;
394 
395 	/*
396 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
397 	 * use.   for each page of memory we use we need a vm_page structure.
398 	 * thus, the total number of pages we can use is the total size of
399 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
400 	 * structure.   we add one to freepages as a fudge factor to avoid
401 	 * truncation errors (since we can only allocate in terms of whole
402 	 * pages).
403 	 */
404 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
405 	    (PAGE_SIZE + sizeof(struct vm_page));
406 	bucketsize = offsetof(struct pgflbucket, pgb_colors[uvmexp.ncolors]);
407 	bucketsize = roundup2(bucketsize, coherency_unit);
408 	bucketarray = (void *)uvm_pageboot_alloc(
409 	    bucketsize * VM_NFREELIST +
410 	    pagecount * sizeof(struct vm_page));
411 	pagearray = (struct vm_page *)
412 	    (bucketarray + bucketsize * VM_NFREELIST);
413 
414 	for (fl = 0; fl < VM_NFREELIST; fl++) {
415 		pgb = (struct pgflbucket *)(bucketarray + bucketsize * fl);
416 		uvm_page_init_bucket(&uvm.page_free[fl], pgb, 0);
417 	}
418 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
419 
420 	/*
421 	 * init the freelist cache in the disabled state.
422 	 */
423 	uvm_pgflcache_init();
424 
425 	/*
426 	 * init the vm_page structures and put them in the correct place.
427 	 */
428 	/* First init the extent */
429 
430 	for (bank = uvm_physseg_get_first(),
431 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
432 	     uvm_physseg_valid_p(bank);
433 	     bank = uvm_physseg_get_next(bank)) {
434 
435 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
436 		uvm_physseg_seg_alloc_from_slab(bank, n);
437 		uvm_physseg_init_seg(bank, pagearray);
438 
439 		/* set up page array pointers */
440 		pagearray += n;
441 		pagecount -= n;
442 	}
443 
444 	/*
445 	 * pass up the values of virtual_space_start and
446 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
447 	 * layers of the VM.
448 	 */
449 
450 	*kvm_startp = round_page(virtual_space_start);
451 	*kvm_endp = trunc_page(virtual_space_end);
452 
453 	/*
454 	 * init various thresholds.
455 	 */
456 
457 	uvmexp.reserve_pagedaemon = 1;
458 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
459 
460 	/*
461 	 * done!
462 	 */
463 
464 	uvm.page_init_done = true;
465 }
466 
467 /*
468  * uvm_pgfl_lock: lock all freelist buckets
469  */
470 
471 void
472 uvm_pgfl_lock(void)
473 {
474 	int i;
475 
476 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
477 		mutex_spin_enter(&uvm_freelist_locks[i].lock);
478 	}
479 }
480 
481 /*
482  * uvm_pgfl_unlock: unlock all freelist buckets
483  */
484 
485 void
486 uvm_pgfl_unlock(void)
487 {
488 	int i;
489 
490 	for (i = 0; i < __arraycount(uvm_freelist_locks); i++) {
491 		mutex_spin_exit(&uvm_freelist_locks[i].lock);
492 	}
493 }
494 
495 /*
496  * uvm_setpagesize: set the page size
497  *
498  * => sets page_shift and page_mask from uvmexp.pagesize.
499  */
500 
501 void
502 uvm_setpagesize(void)
503 {
504 
505 	/*
506 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
507 	 * to be a constant (indicated by being a non-zero value).
508 	 */
509 	if (uvmexp.pagesize == 0) {
510 		if (PAGE_SIZE == 0)
511 			panic("uvm_setpagesize: uvmexp.pagesize not set");
512 		uvmexp.pagesize = PAGE_SIZE;
513 	}
514 	uvmexp.pagemask = uvmexp.pagesize - 1;
515 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
516 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
517 		    uvmexp.pagesize, uvmexp.pagesize);
518 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
519 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
520 			break;
521 }
522 
523 /*
524  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
525  */
526 
527 vaddr_t
528 uvm_pageboot_alloc(vsize_t size)
529 {
530 	static bool initialized = false;
531 	vaddr_t addr;
532 #if !defined(PMAP_STEAL_MEMORY)
533 	vaddr_t vaddr;
534 	paddr_t paddr;
535 #endif
536 
537 	/*
538 	 * on first call to this function, initialize ourselves.
539 	 */
540 	if (initialized == false) {
541 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
542 
543 		/* round it the way we like it */
544 		virtual_space_start = round_page(virtual_space_start);
545 		virtual_space_end = trunc_page(virtual_space_end);
546 
547 		initialized = true;
548 	}
549 
550 	/* round to page size */
551 	size = round_page(size);
552 	uvmexp.bootpages += atop(size);
553 
554 #if defined(PMAP_STEAL_MEMORY)
555 
556 	/*
557 	 * defer bootstrap allocation to MD code (it may want to allocate
558 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
559 	 * virtual_space_start/virtual_space_end if necessary.
560 	 */
561 
562 	addr = pmap_steal_memory(size, &virtual_space_start,
563 	    &virtual_space_end);
564 
565 	return addr;
566 
567 #else /* !PMAP_STEAL_MEMORY */
568 
569 	/*
570 	 * allocate virtual memory for this request
571 	 */
572 	if (virtual_space_start == virtual_space_end ||
573 	    (virtual_space_end - virtual_space_start) < size)
574 		panic("uvm_pageboot_alloc: out of virtual space");
575 
576 	addr = virtual_space_start;
577 
578 #ifdef PMAP_GROWKERNEL
579 	/*
580 	 * If the kernel pmap can't map the requested space,
581 	 * then allocate more resources for it.
582 	 */
583 	if (uvm_maxkaddr < (addr + size)) {
584 		uvm_maxkaddr = pmap_growkernel(addr + size);
585 		if (uvm_maxkaddr < (addr + size))
586 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
587 	}
588 #endif
589 
590 	virtual_space_start += size;
591 
592 	/*
593 	 * allocate and mapin physical pages to back new virtual pages
594 	 */
595 
596 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
597 	    vaddr += PAGE_SIZE) {
598 
599 		if (!uvm_page_physget(&paddr))
600 			panic("uvm_pageboot_alloc: out of memory");
601 
602 		/*
603 		 * Note this memory is no longer managed, so using
604 		 * pmap_kenter is safe.
605 		 */
606 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
607 	}
608 	pmap_update(pmap_kernel());
609 	return addr;
610 #endif	/* PMAP_STEAL_MEMORY */
611 }
612 
613 #if !defined(PMAP_STEAL_MEMORY)
614 /*
615  * uvm_page_physget: "steal" one page from the vm_physmem structure.
616  *
617  * => attempt to allocate it off the end of a segment in which the "avail"
618  *    values match the start/end values.   if we can't do that, then we
619  *    will advance both values (making them equal, and removing some
620  *    vm_page structures from the non-avail area).
621  * => return false if out of memory.
622  */
623 
624 /* subroutine: try to allocate from memory chunks on the specified freelist */
625 static bool uvm_page_physget_freelist(paddr_t *, int);
626 
627 static bool
628 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
629 {
630 	uvm_physseg_t lcv;
631 
632 	/* pass 1: try allocating from a matching end */
633 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
634 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
635 #else
636 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
637 #endif
638 	{
639 		if (uvm.page_init_done == true)
640 			panic("uvm_page_physget: called _after_ bootstrap");
641 
642 		/* Try to match at front or back on unused segment */
643 		if (uvm_page_physunload(lcv, freelist, paddrp))
644 			return true;
645 	}
646 
647 	/* pass2: forget about matching ends, just allocate something */
648 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
649 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
650 #else
651 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
652 #endif
653 	{
654 		/* Try the front regardless. */
655 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
656 			return true;
657 	}
658 	return false;
659 }
660 
661 bool
662 uvm_page_physget(paddr_t *paddrp)
663 {
664 	int i;
665 
666 	/* try in the order of freelist preference */
667 	for (i = 0; i < VM_NFREELIST; i++)
668 		if (uvm_page_physget_freelist(paddrp, i) == true)
669 			return (true);
670 	return (false);
671 }
672 #endif /* PMAP_STEAL_MEMORY */
673 
674 /*
675  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
676  * back from an I/O mapping (ugh!).   used in some MD code as well.
677  */
678 struct vm_page *
679 uvm_phys_to_vm_page(paddr_t pa)
680 {
681 	paddr_t pf = atop(pa);
682 	paddr_t	off;
683 	uvm_physseg_t	upm;
684 
685 	upm = uvm_physseg_find(pf, &off);
686 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
687 		return uvm_physseg_get_pg(upm, off);
688 	return(NULL);
689 }
690 
691 paddr_t
692 uvm_vm_page_to_phys(const struct vm_page *pg)
693 {
694 
695 	return pg->phys_addr & ~(PAGE_SIZE - 1);
696 }
697 
698 /*
699  * uvm_page_numa_load: load NUMA range description.
700  */
701 void
702 uvm_page_numa_load(paddr_t start, paddr_t size, u_int numa_id)
703 {
704 	struct uvm_page_numa_region *d;
705 
706 	KASSERT(numa_id < PGFL_MAX_BUCKETS);
707 
708 	d = kmem_alloc(sizeof(*d), KM_SLEEP);
709 	d->start = start;
710 	d->size = size;
711 	d->numa_id = numa_id;
712 	d->next = uvm_page_numa_region;
713 	uvm_page_numa_region = d;
714 }
715 
716 /*
717  * uvm_page_numa_lookup: lookup NUMA node for the given page.
718  */
719 static u_int
720 uvm_page_numa_lookup(struct vm_page *pg)
721 {
722 	struct uvm_page_numa_region *d;
723 	static bool warned;
724 	paddr_t pa;
725 
726 	KASSERT(uvm_page_numa_region != NULL);
727 
728 	pa = VM_PAGE_TO_PHYS(pg);
729 	for (d = uvm_page_numa_region; d != NULL; d = d->next) {
730 		if (pa >= d->start && pa < d->start + d->size) {
731 			return d->numa_id;
732 		}
733 	}
734 
735 	if (!warned) {
736 		printf("uvm_page_numa_lookup: failed, first pg=%p pa=%#"
737 		    PRIxPADDR "\n", pg, VM_PAGE_TO_PHYS(pg));
738 		warned = true;
739 	}
740 
741 	return 0;
742 }
743 
744 /*
745  * uvm_page_redim: adjust freelist dimensions if they have changed.
746  */
747 
748 static void
749 uvm_page_redim(int newncolors, int newnbuckets)
750 {
751 	struct pgfreelist npgfl;
752 	struct pgflbucket *opgb, *npgb;
753 	struct pgflist *ohead, *nhead;
754 	struct vm_page *pg;
755 	size_t bucketsize, bucketmemsize, oldbucketmemsize;
756 	int fl, ob, oc, nb, nc, obuckets, ocolors;
757 	char *bucketarray, *oldbucketmem, *bucketmem;
758 
759 	KASSERT(((newncolors - 1) & newncolors) == 0);
760 
761 	/* Anything to do? */
762 	if (newncolors <= uvmexp.ncolors &&
763 	    newnbuckets == uvm.bucketcount) {
764 		return;
765 	}
766 	if (uvm.page_init_done == false) {
767 		uvmexp.ncolors = newncolors;
768 		return;
769 	}
770 
771 	bucketsize = offsetof(struct pgflbucket, pgb_colors[newncolors]);
772 	bucketsize = roundup2(bucketsize, coherency_unit);
773 	bucketmemsize = bucketsize * newnbuckets * VM_NFREELIST +
774 	    coherency_unit - 1;
775 	bucketmem = kmem_zalloc(bucketmemsize, KM_SLEEP);
776 	bucketarray = (char *)roundup2((uintptr_t)bucketmem, coherency_unit);
777 
778 	ocolors = uvmexp.ncolors;
779 	obuckets = uvm.bucketcount;
780 
781 	/* Freelist cache musn't be enabled. */
782 	uvm_pgflcache_pause();
783 
784 	/* Make sure we should still do this. */
785 	uvm_pgfl_lock();
786 	if (newncolors <= uvmexp.ncolors &&
787 	    newnbuckets == uvm.bucketcount) {
788 		uvm_pgfl_unlock();
789 		uvm_pgflcache_resume();
790 		kmem_free(bucketmem, bucketmemsize);
791 		return;
792 	}
793 
794 	uvmexp.ncolors = newncolors;
795 	uvmexp.colormask = uvmexp.ncolors - 1;
796 	uvm.bucketcount = newnbuckets;
797 
798 	for (fl = 0; fl < VM_NFREELIST; fl++) {
799 		/* Init new buckets in new freelist. */
800 		memset(&npgfl, 0, sizeof(npgfl));
801 		for (nb = 0; nb < newnbuckets; nb++) {
802 			npgb = (struct pgflbucket *)bucketarray;
803 			uvm_page_init_bucket(&npgfl, npgb, nb);
804 			bucketarray += bucketsize;
805 		}
806 		/* Now transfer pages from the old freelist. */
807 		for (nb = ob = 0; ob < obuckets; ob++) {
808 			opgb = uvm.page_free[fl].pgfl_buckets[ob];
809 			for (oc = 0; oc < ocolors; oc++) {
810 				ohead = &opgb->pgb_colors[oc];
811 				while ((pg = LIST_FIRST(ohead)) != NULL) {
812 					LIST_REMOVE(pg, pageq.list);
813 					/*
814 					 * Here we decide on the NEW color &
815 					 * bucket for the page.  For NUMA
816 					 * we'll use the info that the
817 					 * hardware gave us.  For non-NUMA
818 					 * assign take physical page frame
819 					 * number and cache color into
820 					 * account.  We do this to try and
821 					 * avoid defeating any memory
822 					 * interleaving in the hardware.
823 					 */
824 					KASSERT(
825 					    uvm_page_get_bucket(pg) == ob);
826 					KASSERT(fl ==
827 					    uvm_page_get_freelist(pg));
828 					if (uvm_page_numa_region != NULL) {
829 						nb = uvm_page_numa_lookup(pg);
830 					} else {
831 						nb = atop(VM_PAGE_TO_PHYS(pg))
832 						    / uvmexp.ncolors / 8
833 						    % newnbuckets;
834 					}
835 					uvm_page_set_bucket(pg, nb);
836 					npgb = npgfl.pgfl_buckets[nb];
837 					npgb->pgb_nfree++;
838 					nc = VM_PGCOLOR(pg);
839 					nhead = &npgb->pgb_colors[nc];
840 					LIST_INSERT_HEAD(nhead, pg, pageq.list);
841 				}
842 			}
843 		}
844 		/* Install the new freelist. */
845 		memcpy(&uvm.page_free[fl], &npgfl, sizeof(npgfl));
846 	}
847 
848 	/* Unlock and free the old memory. */
849 	oldbucketmemsize = recolored_pages_memsize;
850 	oldbucketmem = recolored_pages_mem;
851 	recolored_pages_memsize = bucketmemsize;
852 	recolored_pages_mem = bucketmem;
853 
854 	uvm_pgfl_unlock();
855 	uvm_pgflcache_resume();
856 
857 	if (oldbucketmemsize) {
858 		kmem_free(oldbucketmem, oldbucketmemsize);
859 	}
860 
861 	/*
862 	 * this calls uvm_km_alloc() which may want to hold
863 	 * uvm_freelist_lock.
864 	 */
865 	uvm_pager_realloc_emerg();
866 }
867 
868 /*
869  * uvm_page_recolor: Recolor the pages if the new color count is
870  * larger than the old one.
871  */
872 
873 void
874 uvm_page_recolor(int newncolors)
875 {
876 
877 	uvm_page_redim(newncolors, uvm.bucketcount);
878 }
879 
880 /*
881  * uvm_page_rebucket: Determine a bucket structure and redim the free
882  * lists to match.
883  */
884 
885 void
886 uvm_page_rebucket(void)
887 {
888 	u_int min_numa, max_numa, npackage, shift;
889 	struct cpu_info *ci, *ci2, *ci3;
890 	CPU_INFO_ITERATOR cii;
891 
892 	/*
893 	 * If we have more than one NUMA node, and the maximum NUMA node ID
894 	 * is less than PGFL_MAX_BUCKETS, then we'll use NUMA distribution
895 	 * for free pages.
896 	 */
897 	min_numa = (u_int)-1;
898 	max_numa = 0;
899 	for (CPU_INFO_FOREACH(cii, ci)) {
900 		if (ci->ci_numa_id < min_numa) {
901 			min_numa = ci->ci_numa_id;
902 		}
903 		if (ci->ci_numa_id > max_numa) {
904 			max_numa = ci->ci_numa_id;
905 		}
906 	}
907 	if (min_numa != max_numa && max_numa < PGFL_MAX_BUCKETS) {
908 		aprint_debug("UVM: using NUMA allocation scheme\n");
909 		for (CPU_INFO_FOREACH(cii, ci)) {
910 			ci->ci_data.cpu_uvm->pgflbucket = ci->ci_numa_id;
911 		}
912 	 	uvm_page_redim(uvmexp.ncolors, max_numa + 1);
913 	 	return;
914 	}
915 
916 	/*
917 	 * Otherwise we'll go with a scheme to maximise L2/L3 cache locality
918 	 * and minimise lock contention.  Count the total number of CPU
919 	 * packages, and then try to distribute the buckets among CPU
920 	 * packages evenly.
921 	 */
922 	npackage = curcpu()->ci_nsibling[CPUREL_PACKAGE1ST];
923 
924 	/*
925 	 * Figure out how to arrange the packages & buckets, and the total
926 	 * number of buckets we need.  XXX 2 may not be the best factor.
927 	 */
928 	for (shift = 0; npackage > PGFL_MAX_BUCKETS; shift++) {
929 		npackage >>= 1;
930 	}
931  	uvm_page_redim(uvmexp.ncolors, npackage);
932 
933  	/*
934  	 * Now tell each CPU which bucket to use.  In the outer loop, scroll
935  	 * through all CPU packages.
936  	 */
937  	npackage = 0;
938 	ci = curcpu();
939 	ci2 = ci->ci_sibling[CPUREL_PACKAGE1ST];
940 	do {
941 		/*
942 		 * In the inner loop, scroll through all CPUs in the package
943 		 * and assign the same bucket ID.
944 		 */
945 		ci3 = ci2;
946 		do {
947 			ci3->ci_data.cpu_uvm->pgflbucket = npackage >> shift;
948 			ci3 = ci3->ci_sibling[CPUREL_PACKAGE];
949 		} while (ci3 != ci2);
950 		npackage++;
951 		ci2 = ci2->ci_sibling[CPUREL_PACKAGE1ST];
952 	} while (ci2 != ci->ci_sibling[CPUREL_PACKAGE1ST]);
953 
954 	aprint_debug("UVM: using package allocation scheme, "
955 	    "%d package(s) per bucket\n", 1 << shift);
956 }
957 
958 /*
959  * uvm_cpu_attach: initialize per-CPU data structures.
960  */
961 
962 void
963 uvm_cpu_attach(struct cpu_info *ci)
964 {
965 	struct uvm_cpu *ucpu;
966 
967 	/* Already done in uvm_page_init(). */
968 	if (!CPU_IS_PRIMARY(ci)) {
969 		/* Add more reserve pages for this CPU. */
970 		uvmexp.reserve_kernel += vm_page_reserve_kernel;
971 
972 		/* Allocate per-CPU data structures. */
973 		ucpu = kmem_zalloc(sizeof(struct uvm_cpu) + coherency_unit - 1,
974 		    KM_SLEEP);
975 		ucpu = (struct uvm_cpu *)roundup2((uintptr_t)ucpu,
976 		    coherency_unit);
977 		ci->ci_data.cpu_uvm = ucpu;
978 	} else {
979 		ucpu = ci->ci_data.cpu_uvm;
980 	}
981 
982 	uvmpdpol_init_cpu(ucpu);
983 
984 	/*
985 	 * Attach RNG source for this CPU's VM events
986 	 */
987         rnd_attach_source(&ucpu->rs, ci->ci_data.cpu_name, RND_TYPE_VM,
988 	    RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
989 	    RND_FLAG_ESTIMATE_VALUE);
990 }
991 
992 /*
993  * uvm_availmem: fetch the total amount of free memory in pages.  this can
994  * have a detrimental effect on performance due to false sharing; don't call
995  * unless needed.
996  *
997  * some users can request the amount of free memory so often that it begins
998  * to impact upon performance.  if calling frequently and an inexact value
999  * is okay, call with cached = true.
1000  */
1001 
1002 int
1003 uvm_availmem(bool cached)
1004 {
1005 	int64_t fp;
1006 
1007 	cpu_count_sync(cached);
1008 	if ((fp = cpu_count_get(CPU_COUNT_FREEPAGES)) < 0) {
1009 		/*
1010 		 * XXXAD could briefly go negative because it's impossible
1011 		 * to get a clean snapshot.  address this for other counters
1012 		 * used as running totals before NetBSD 10 although less
1013 		 * important for those.
1014 		 */
1015 		fp = 0;
1016 	}
1017 	return (int)fp;
1018 }
1019 
1020 /*
1021  * uvm_pagealloc_pgb: helper routine that tries to allocate any color from a
1022  * specific freelist and specific bucket only.
1023  *
1024  * => must be at IPL_VM or higher to protect per-CPU data structures.
1025  */
1026 
1027 static struct vm_page *
1028 uvm_pagealloc_pgb(struct uvm_cpu *ucpu, int f, int b, int *trycolorp, int flags)
1029 {
1030 	int c, trycolor, colormask;
1031 	struct pgflbucket *pgb;
1032 	struct vm_page *pg;
1033 	kmutex_t *lock;
1034 	bool fill;
1035 
1036 	/*
1037 	 * Skip the bucket if empty, no lock needed.  There could be many
1038 	 * empty freelists/buckets.
1039 	 */
1040 	pgb = uvm.page_free[f].pgfl_buckets[b];
1041 	if (pgb->pgb_nfree == 0) {
1042 		return NULL;
1043 	}
1044 
1045 	/* Skip bucket if low on memory. */
1046 	lock = &uvm_freelist_locks[b].lock;
1047 	mutex_spin_enter(lock);
1048 	if (__predict_false(pgb->pgb_nfree <= uvmexp.reserve_kernel)) {
1049 		if ((flags & UVM_PGA_USERESERVE) == 0 ||
1050 		    (pgb->pgb_nfree <= uvmexp.reserve_pagedaemon &&
1051 		     curlwp != uvm.pagedaemon_lwp)) {
1052 			mutex_spin_exit(lock);
1053 		     	return NULL;
1054 		}
1055 		fill = false;
1056 	} else {
1057 		fill = true;
1058 	}
1059 
1060 	/* Try all page colors as needed. */
1061 	c = trycolor = *trycolorp;
1062 	colormask = uvmexp.colormask;
1063 	do {
1064 		pg = LIST_FIRST(&pgb->pgb_colors[c]);
1065 		if (__predict_true(pg != NULL)) {
1066 			/*
1067 			 * Got a free page!  PG_FREE must be cleared under
1068 			 * lock because of uvm_pglistalloc().
1069 			 */
1070 			LIST_REMOVE(pg, pageq.list);
1071 			KASSERT(pg->flags == PG_FREE);
1072 			pg->flags = PG_BUSY | PG_CLEAN | PG_FAKE;
1073 			pgb->pgb_nfree--;
1074 			CPU_COUNT(CPU_COUNT_FREEPAGES, -1);
1075 
1076 			/*
1077 			 * While we have the bucket locked and our data
1078 			 * structures fresh in L1 cache, we have an ideal
1079 			 * opportunity to grab some pages for the freelist
1080 			 * cache without causing extra contention.  Only do
1081 			 * so if we found pages in this CPU's preferred
1082 			 * bucket.
1083 			 */
1084 			if (__predict_true(b == ucpu->pgflbucket && fill)) {
1085 				uvm_pgflcache_fill(ucpu, f, b, c);
1086 			}
1087 			mutex_spin_exit(lock);
1088 			KASSERT(uvm_page_get_bucket(pg) == b);
1089 			CPU_COUNT(c == trycolor ?
1090 			    CPU_COUNT_COLORHIT : CPU_COUNT_COLORMISS, 1);
1091 			CPU_COUNT(CPU_COUNT_CPUMISS, 1);
1092 			*trycolorp = c;
1093 			return pg;
1094 		}
1095 		c = (c + 1) & colormask;
1096 	} while (c != trycolor);
1097 	mutex_spin_exit(lock);
1098 
1099 	return NULL;
1100 }
1101 
1102 /*
1103  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat that allocates
1104  * any color from any bucket, in a specific freelist.
1105  *
1106  * => must be at IPL_VM or higher to protect per-CPU data structures.
1107  */
1108 
1109 static struct vm_page *
1110 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int f, int *trycolorp, int flags)
1111 {
1112 	int b, trybucket, bucketcount;
1113 	struct vm_page *pg;
1114 
1115 	/* Try for the exact thing in the per-CPU cache. */
1116 	if ((pg = uvm_pgflcache_alloc(ucpu, f, *trycolorp)) != NULL) {
1117 		CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1118 		CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1119 		return pg;
1120 	}
1121 
1122 	/* Walk through all buckets, trying our preferred bucket first. */
1123 	trybucket = ucpu->pgflbucket;
1124 	b = trybucket;
1125 	bucketcount = uvm.bucketcount;
1126 	do {
1127 		pg = uvm_pagealloc_pgb(ucpu, f, b, trycolorp, flags);
1128 		if (pg != NULL) {
1129 			return pg;
1130 		}
1131 		b = (b + 1 == bucketcount ? 0 : b + 1);
1132 	} while (b != trybucket);
1133 
1134 	return NULL;
1135 }
1136 
1137 /*
1138  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
1139  *
1140  * => return null if no pages free
1141  * => wake up pagedaemon if number of free pages drops below low water mark
1142  * => if obj != NULL, obj must be locked (to put in obj's tree)
1143  * => if anon != NULL, anon must be locked (to put in anon)
1144  * => only one of obj or anon can be non-null
1145  * => caller must activate/deactivate page if it is not wired.
1146  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
1147  * => policy decision: it is more important to pull a page off of the
1148  *	appropriate priority free list than it is to get a page from the
1149  *	correct bucket or color bin.  This is because we live with the
1150  *	consequences of a bad free list decision for the entire
1151  *	lifetime of the page, e.g. if the page comes from memory that
1152  *	is slower to access.
1153  */
1154 
1155 struct vm_page *
1156 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
1157     int flags, int strat, int free_list)
1158 {
1159 	int color, lcv, error, s;
1160 	struct uvm_cpu *ucpu;
1161 	struct vm_page *pg;
1162 	lwp_t *l;
1163 
1164 	KASSERT(obj == NULL || anon == NULL);
1165 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
1166 	KASSERT(off == trunc_page(off));
1167 	KASSERT(obj == NULL || rw_write_held(obj->vmobjlock));
1168 	KASSERT(anon == NULL || anon->an_lock == NULL ||
1169 	    rw_write_held(anon->an_lock));
1170 
1171 	/*
1172 	 * This implements a global round-robin page coloring
1173 	 * algorithm.
1174 	 */
1175 
1176 	s = splvm();
1177 	ucpu = curcpu()->ci_data.cpu_uvm;
1178 	if (flags & UVM_FLAG_COLORMATCH) {
1179 		color = atop(off) & uvmexp.colormask;
1180 	} else {
1181 		color = ucpu->pgflcolor;
1182 	}
1183 
1184 	/*
1185 	 * fail if any of these conditions is true:
1186 	 * [1]  there really are no free pages, or
1187 	 * [2]  only kernel "reserved" pages remain and
1188 	 *        reserved pages have not been requested.
1189 	 * [3]  only pagedaemon "reserved" pages remain and
1190 	 *        the requestor isn't the pagedaemon.
1191 	 * we make kernel reserve pages available if called by a
1192 	 * kernel thread.
1193 	 */
1194 	l = curlwp;
1195 	if (__predict_true(l != NULL) && (l->l_flag & LW_SYSTEM) != 0) {
1196 		flags |= UVM_PGA_USERESERVE;
1197 	}
1198 
1199  again:
1200 	switch (strat) {
1201 	case UVM_PGA_STRAT_NORMAL:
1202 		/* Check freelists: descending priority (ascending id) order. */
1203 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1204 			pg = uvm_pagealloc_pgfl(ucpu, lcv, &color, flags);
1205 			if (pg != NULL) {
1206 				goto gotit;
1207 			}
1208 		}
1209 
1210 		/* No pages free!  Have pagedaemon free some memory. */
1211 		splx(s);
1212 		uvm_kick_pdaemon();
1213 		return NULL;
1214 
1215 	case UVM_PGA_STRAT_ONLY:
1216 	case UVM_PGA_STRAT_FALLBACK:
1217 		/* Attempt to allocate from the specified free list. */
1218 		KASSERT(free_list >= 0);
1219 		KASSERT(free_list < VM_NFREELIST);
1220 		pg = uvm_pagealloc_pgfl(ucpu, free_list, &color, flags);
1221 		if (pg != NULL) {
1222 			goto gotit;
1223 		}
1224 
1225 		/* Fall back, if possible. */
1226 		if (strat == UVM_PGA_STRAT_FALLBACK) {
1227 			strat = UVM_PGA_STRAT_NORMAL;
1228 			goto again;
1229 		}
1230 
1231 		/* No pages free!  Have pagedaemon free some memory. */
1232 		splx(s);
1233 		uvm_kick_pdaemon();
1234 		return NULL;
1235 
1236 	case UVM_PGA_STRAT_NUMA:
1237 		/*
1238 		 * NUMA strategy (experimental): allocating from the correct
1239 		 * bucket is more important than observing freelist
1240 		 * priority.  Look only to the current NUMA node; if that
1241 		 * fails, we need to look to other NUMA nodes, so retry with
1242 		 * the normal strategy.
1243 		 */
1244 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1245 			pg = uvm_pgflcache_alloc(ucpu, lcv, color);
1246 			if (pg != NULL) {
1247 				CPU_COUNT(CPU_COUNT_CPUHIT, 1);
1248 				CPU_COUNT(CPU_COUNT_COLORHIT, 1);
1249 				goto gotit;
1250 			}
1251 			pg = uvm_pagealloc_pgb(ucpu, lcv,
1252 			    ucpu->pgflbucket, &color, flags);
1253 			if (pg != NULL) {
1254 				goto gotit;
1255 			}
1256 		}
1257 		strat = UVM_PGA_STRAT_NORMAL;
1258 		goto again;
1259 
1260 	default:
1261 		panic("uvm_pagealloc_strat: bad strat %d", strat);
1262 		/* NOTREACHED */
1263 	}
1264 
1265  gotit:
1266 	/*
1267 	 * We now know which color we actually allocated from; set
1268 	 * the next color accordingly.
1269 	 */
1270 
1271 	ucpu->pgflcolor = (color + 1) & uvmexp.colormask;
1272 
1273 	/*
1274 	 * while still at IPL_VM, update allocation statistics.
1275 	 */
1276 
1277 	if (anon) {
1278 		CPU_COUNT(CPU_COUNT_ANONCLEAN, 1);
1279 	}
1280 	splx(s);
1281 	KASSERT(pg->flags == (PG_BUSY|PG_CLEAN|PG_FAKE));
1282 
1283 	/*
1284 	 * assign the page to the object.  as the page was free, we know
1285 	 * that pg->uobject and pg->uanon are NULL.  we only need to take
1286 	 * the page's interlock if we are changing the values.
1287 	 */
1288 	if (anon != NULL || obj != NULL) {
1289 		mutex_enter(&pg->interlock);
1290 	}
1291 	pg->offset = off;
1292 	pg->uobject = obj;
1293 	pg->uanon = anon;
1294 	KASSERT(uvm_page_owner_locked_p(pg, true));
1295 	if (anon) {
1296 		anon->an_page = pg;
1297 		pg->flags |= PG_ANON;
1298 		mutex_exit(&pg->interlock);
1299 	} else if (obj) {
1300 		/*
1301 		 * set PG_FILE|PG_AOBJ before the first uvm_pageinsert.
1302 		 */
1303 		if (UVM_OBJ_IS_VNODE(obj)) {
1304 			pg->flags |= PG_FILE;
1305 		} else if (UVM_OBJ_IS_AOBJ(obj)) {
1306 			pg->flags |= PG_AOBJ;
1307 		}
1308 		uvm_pageinsert_object(obj, pg);
1309 		mutex_exit(&pg->interlock);
1310 		error = uvm_pageinsert_tree(obj, pg);
1311 		if (error != 0) {
1312 			mutex_enter(&pg->interlock);
1313 			uvm_pageremove_object(obj, pg);
1314 			mutex_exit(&pg->interlock);
1315 			uvm_pagefree(pg);
1316 			return NULL;
1317 		}
1318 	}
1319 
1320 #if defined(UVM_PAGE_TRKOWN)
1321 	pg->owner_tag = NULL;
1322 #endif
1323 	UVM_PAGE_OWN(pg, "new alloc");
1324 
1325 	if (flags & UVM_PGA_ZERO) {
1326 		/* A zero'd page is not clean. */
1327 		if (obj != NULL || anon != NULL) {
1328 			uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1329 		}
1330 		pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1331 	}
1332 
1333 	return(pg);
1334 }
1335 
1336 /*
1337  * uvm_pagereplace: replace a page with another
1338  *
1339  * => object must be locked
1340  * => page interlocks must be held
1341  */
1342 
1343 void
1344 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1345 {
1346 	struct uvm_object *uobj = oldpg->uobject;
1347 	struct vm_page *pg __diagused;
1348 	uint64_t idx;
1349 
1350 	KASSERT((oldpg->flags & PG_TABLED) != 0);
1351 	KASSERT(uobj != NULL);
1352 	KASSERT((newpg->flags & PG_TABLED) == 0);
1353 	KASSERT(newpg->uobject == NULL);
1354 	KASSERT(rw_write_held(uobj->vmobjlock));
1355 	KASSERT(mutex_owned(&oldpg->interlock));
1356 	KASSERT(mutex_owned(&newpg->interlock));
1357 
1358 	newpg->uobject = uobj;
1359 	newpg->offset = oldpg->offset;
1360 	idx = newpg->offset >> PAGE_SHIFT;
1361 	pg = radix_tree_replace_node(&uobj->uo_pages, idx, newpg);
1362 	KASSERT(pg == oldpg);
1363 	if (((oldpg->flags ^ newpg->flags) & PG_CLEAN) != 0) {
1364 		if ((newpg->flags & PG_CLEAN) != 0) {
1365 			uvm_obj_page_clear_dirty(newpg);
1366 		} else {
1367 			uvm_obj_page_set_dirty(newpg);
1368 		}
1369 	}
1370 	/*
1371 	 * oldpg's PG_STAT is stable.  newpg is not reachable by others yet.
1372 	 */
1373 	newpg->flags |=
1374 	    (newpg->flags & ~PG_STAT) | (oldpg->flags & PG_STAT);
1375 	uvm_pageinsert_object(uobj, newpg);
1376 	uvm_pageremove_object(uobj, oldpg);
1377 }
1378 
1379 /*
1380  * uvm_pagerealloc: reallocate a page from one object to another
1381  *
1382  * => both objects must be locked
1383  */
1384 
1385 int
1386 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1387 {
1388 	int error = 0;
1389 
1390 	/*
1391 	 * remove it from the old object
1392 	 */
1393 
1394 	if (pg->uobject) {
1395 		uvm_pageremove_tree(pg->uobject, pg);
1396 		uvm_pageremove_object(pg->uobject, pg);
1397 	}
1398 
1399 	/*
1400 	 * put it in the new object
1401 	 */
1402 
1403 	if (newobj) {
1404 		mutex_enter(&pg->interlock);
1405 		pg->uobject = newobj;
1406 		pg->offset = newoff;
1407 		if (UVM_OBJ_IS_VNODE(newobj)) {
1408 			pg->flags |= PG_FILE;
1409 		} else if (UVM_OBJ_IS_AOBJ(newobj)) {
1410 			pg->flags |= PG_AOBJ;
1411 		}
1412 		uvm_pageinsert_object(newobj, pg);
1413 		mutex_exit(&pg->interlock);
1414 		error = uvm_pageinsert_tree(newobj, pg);
1415 		if (error != 0) {
1416 			mutex_enter(&pg->interlock);
1417 			uvm_pageremove_object(newobj, pg);
1418 			mutex_exit(&pg->interlock);
1419 		}
1420 	}
1421 
1422 	return error;
1423 }
1424 
1425 /*
1426  * uvm_pagefree: free page
1427  *
1428  * => erase page's identity (i.e. remove from object)
1429  * => put page on free list
1430  * => caller must lock owning object (either anon or uvm_object)
1431  * => assumes all valid mappings of pg are gone
1432  */
1433 
1434 void
1435 uvm_pagefree(struct vm_page *pg)
1436 {
1437 	struct pgfreelist *pgfl;
1438 	struct pgflbucket *pgb;
1439 	struct uvm_cpu *ucpu;
1440 	kmutex_t *lock;
1441 	int bucket, s;
1442 	bool locked;
1443 
1444 #ifdef DEBUG
1445 	if (pg->uobject == (void *)0xdeadbeef &&
1446 	    pg->uanon == (void *)0xdeadbeef) {
1447 		panic("uvm_pagefree: freeing free page %p", pg);
1448 	}
1449 #endif /* DEBUG */
1450 
1451 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1452 	KASSERT(!(pg->flags & PG_FREE));
1453 	KASSERT(pg->uobject == NULL || rw_write_held(pg->uobject->vmobjlock));
1454 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1455 		rw_write_held(pg->uanon->an_lock));
1456 
1457 	/*
1458 	 * remove the page from the object's tree before acquiring any page
1459 	 * interlocks: this can acquire locks to free radixtree nodes.
1460 	 */
1461 	if (pg->uobject != NULL) {
1462 		uvm_pageremove_tree(pg->uobject, pg);
1463 	}
1464 
1465 	/*
1466 	 * if the page is loaned, resolve the loan instead of freeing.
1467 	 */
1468 
1469 	if (pg->loan_count) {
1470 		KASSERT(pg->wire_count == 0);
1471 
1472 		/*
1473 		 * if the page is owned by an anon then we just want to
1474 		 * drop anon ownership.  the kernel will free the page when
1475 		 * it is done with it.  if the page is owned by an object,
1476 		 * remove it from the object and mark it dirty for the benefit
1477 		 * of possible anon owners.
1478 		 *
1479 		 * regardless of previous ownership, wakeup any waiters,
1480 		 * unbusy the page, and we're done.
1481 		 */
1482 
1483 		uvm_pagelock(pg);
1484 		locked = true;
1485 		if (pg->uobject != NULL) {
1486 			uvm_pageremove_object(pg->uobject, pg);
1487 			pg->flags &= ~(PG_FILE|PG_AOBJ);
1488 		} else if (pg->uanon != NULL) {
1489 			if ((pg->flags & PG_ANON) == 0) {
1490 				pg->loan_count--;
1491 			} else {
1492 				const unsigned status = uvm_pagegetdirty(pg);
1493 				pg->flags &= ~PG_ANON;
1494 				cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
1495 			}
1496 			pg->uanon->an_page = NULL;
1497 			pg->uanon = NULL;
1498 		}
1499 		if (pg->pqflags & PQ_WANTED) {
1500 			wakeup(pg);
1501 		}
1502 		pg->pqflags &= ~PQ_WANTED;
1503 		pg->flags &= ~(PG_BUSY|PG_RELEASED|PG_PAGER1);
1504 #ifdef UVM_PAGE_TRKOWN
1505 		pg->owner_tag = NULL;
1506 #endif
1507 		KASSERT((pg->flags & PG_STAT) == 0);
1508 		if (pg->loan_count) {
1509 			KASSERT(pg->uobject == NULL);
1510 			if (pg->uanon == NULL) {
1511 				uvm_pagedequeue(pg);
1512 			}
1513 			uvm_pageunlock(pg);
1514 			return;
1515 		}
1516 	} else if (pg->uobject != NULL || pg->uanon != NULL ||
1517 	           pg->wire_count != 0) {
1518 		uvm_pagelock(pg);
1519 		locked = true;
1520 	} else {
1521 		locked = false;
1522 	}
1523 
1524 	/*
1525 	 * remove page from its object or anon.
1526 	 */
1527 	if (pg->uobject != NULL) {
1528 		uvm_pageremove_object(pg->uobject, pg);
1529 	} else if (pg->uanon != NULL) {
1530 		const unsigned int status = uvm_pagegetdirty(pg);
1531 		pg->uanon->an_page = NULL;
1532 		pg->uanon = NULL;
1533 		cpu_count(CPU_COUNT_ANONUNKNOWN + status, -1);
1534 	}
1535 
1536 	/*
1537 	 * if the page was wired, unwire it now.
1538 	 */
1539 
1540 	if (pg->wire_count) {
1541 		pg->wire_count = 0;
1542 		atomic_dec_uint(&uvmexp.wired);
1543 	}
1544 	if (locked) {
1545 		/*
1546 		 * wake anyone waiting on the page.
1547 		 */
1548 		if ((pg->pqflags & PQ_WANTED) != 0) {
1549 			pg->pqflags &= ~PQ_WANTED;
1550 			wakeup(pg);
1551 		}
1552 
1553 		/*
1554 		 * now remove the page from the queues.
1555 		 */
1556 		uvm_pagedequeue(pg);
1557 		uvm_pageunlock(pg);
1558 	} else {
1559 		KASSERT(!uvmpdpol_pageisqueued_p(pg));
1560 	}
1561 
1562 	/*
1563 	 * and put on free queue
1564 	 */
1565 
1566 #ifdef DEBUG
1567 	pg->uobject = (void *)0xdeadbeef;
1568 	pg->uanon = (void *)0xdeadbeef;
1569 #endif /* DEBUG */
1570 
1571 	/* Try to send the page to the per-CPU cache. */
1572 	s = splvm();
1573 	ucpu = curcpu()->ci_data.cpu_uvm;
1574 	bucket = uvm_page_get_bucket(pg);
1575 	if (bucket == ucpu->pgflbucket && uvm_pgflcache_free(ucpu, pg)) {
1576 		splx(s);
1577 		return;
1578 	}
1579 
1580 	/* Didn't work.  Never mind, send it to a global bucket. */
1581 	pgfl = &uvm.page_free[uvm_page_get_freelist(pg)];
1582 	pgb = pgfl->pgfl_buckets[bucket];
1583 	lock = &uvm_freelist_locks[bucket].lock;
1584 
1585 	mutex_spin_enter(lock);
1586 	/* PG_FREE must be set under lock because of uvm_pglistalloc(). */
1587 	pg->flags = PG_FREE;
1588 	LIST_INSERT_HEAD(&pgb->pgb_colors[VM_PGCOLOR(pg)], pg, pageq.list);
1589 	pgb->pgb_nfree++;
1590     	CPU_COUNT(CPU_COUNT_FREEPAGES, 1);
1591 	mutex_spin_exit(lock);
1592 	splx(s);
1593 }
1594 
1595 /*
1596  * uvm_page_unbusy: unbusy an array of pages.
1597  *
1598  * => pages must either all belong to the same object, or all belong to anons.
1599  * => if pages are object-owned, object must be locked.
1600  * => if pages are anon-owned, anons must be locked.
1601  * => caller must make sure that anon-owned pages are not PG_RELEASED.
1602  */
1603 
1604 void
1605 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1606 {
1607 	struct vm_page *pg;
1608 	int i, pageout_done;
1609 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1610 
1611 	pageout_done = 0;
1612 	for (i = 0; i < npgs; i++) {
1613 		pg = pgs[i];
1614 		if (pg == NULL || pg == PGO_DONTCARE) {
1615 			continue;
1616 		}
1617 
1618 		KASSERT(uvm_page_owner_locked_p(pg, true));
1619 		KASSERT(pg->flags & PG_BUSY);
1620 
1621 		if (pg->flags & PG_PAGEOUT) {
1622 			pg->flags &= ~PG_PAGEOUT;
1623 			pg->flags |= PG_RELEASED;
1624 			pageout_done++;
1625 			atomic_inc_uint(&uvmexp.pdfreed);
1626 		}
1627 		if (pg->flags & PG_RELEASED) {
1628 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
1629 			    (uintptr_t)pg, 0, 0, 0);
1630 			KASSERT(pg->uobject != NULL ||
1631 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
1632 			pg->flags &= ~PG_RELEASED;
1633 			uvm_pagefree(pg);
1634 		} else {
1635 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1636 			    (uintptr_t)pg, 0, 0, 0);
1637 			KASSERT((pg->flags & PG_FAKE) == 0);
1638 			pg->flags &= ~PG_BUSY;
1639 			uvm_pagelock(pg);
1640 			uvm_pagewakeup(pg);
1641 			uvm_pageunlock(pg);
1642 			UVM_PAGE_OWN(pg, NULL);
1643 		}
1644 	}
1645 	if (pageout_done != 0) {
1646 		uvm_pageout_done(pageout_done);
1647 	}
1648 }
1649 
1650 /*
1651  * uvm_pagewait: wait for a busy page
1652  *
1653  * => page must be known PG_BUSY
1654  * => object must be read or write locked
1655  * => object will be unlocked on return
1656  */
1657 
1658 void
1659 uvm_pagewait(struct vm_page *pg, krwlock_t *lock, const char *wmesg)
1660 {
1661 
1662 	KASSERT(rw_lock_held(lock));
1663 	KASSERT((pg->flags & PG_BUSY) != 0);
1664 	KASSERT(uvm_page_owner_locked_p(pg, false));
1665 
1666 	mutex_enter(&pg->interlock);
1667 	pg->pqflags |= PQ_WANTED;
1668 	rw_exit(lock);
1669 	UVM_UNLOCK_AND_WAIT(pg, &pg->interlock, false, wmesg, 0);
1670 }
1671 
1672 /*
1673  * uvm_pagewakeup: wake anyone waiting on a page
1674  *
1675  * => page interlock must be held
1676  */
1677 
1678 void
1679 uvm_pagewakeup(struct vm_page *pg)
1680 {
1681 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(ubchist);
1682 
1683 	KASSERT(mutex_owned(&pg->interlock));
1684 
1685 	UVMHIST_LOG(ubchist, "waking pg %#jx", (uintptr_t)pg, 0, 0, 0);
1686 
1687 	if ((pg->pqflags & PQ_WANTED) != 0) {
1688 		wakeup(pg);
1689 		pg->pqflags &= ~PQ_WANTED;
1690 	}
1691 }
1692 
1693 /*
1694  * uvm_pagewanted_p: return true if someone is waiting on the page
1695  *
1696  * => object must be write locked (lock out all concurrent access)
1697  */
1698 
1699 bool
1700 uvm_pagewanted_p(struct vm_page *pg)
1701 {
1702 
1703 	KASSERT(uvm_page_owner_locked_p(pg, true));
1704 
1705 	return (atomic_load_relaxed(&pg->pqflags) & PQ_WANTED) != 0;
1706 }
1707 
1708 #if defined(UVM_PAGE_TRKOWN)
1709 /*
1710  * uvm_page_own: set or release page ownership
1711  *
1712  * => this is a debugging function that keeps track of who sets PG_BUSY
1713  *	and where they do it.   it can be used to track down problems
1714  *	such a process setting "PG_BUSY" and never releasing it.
1715  * => page's object [if any] must be locked
1716  * => if "tag" is NULL then we are releasing page ownership
1717  */
1718 void
1719 uvm_page_own(struct vm_page *pg, const char *tag)
1720 {
1721 
1722 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1723 	KASSERT(uvm_page_owner_locked_p(pg, true));
1724 
1725 	/* gain ownership? */
1726 	if (tag) {
1727 		KASSERT((pg->flags & PG_BUSY) != 0);
1728 		if (pg->owner_tag) {
1729 			printf("uvm_page_own: page %p already owned "
1730 			    "by proc %d.%d [%s]\n", pg,
1731 			    pg->owner, pg->lowner, pg->owner_tag);
1732 			panic("uvm_page_own");
1733 		}
1734 		pg->owner = curproc->p_pid;
1735 		pg->lowner = curlwp->l_lid;
1736 		pg->owner_tag = tag;
1737 		return;
1738 	}
1739 
1740 	/* drop ownership */
1741 	KASSERT((pg->flags & PG_BUSY) == 0);
1742 	if (pg->owner_tag == NULL) {
1743 		printf("uvm_page_own: dropping ownership of an non-owned "
1744 		    "page (%p)\n", pg);
1745 		panic("uvm_page_own");
1746 	}
1747 	pg->owner_tag = NULL;
1748 }
1749 #endif
1750 
1751 /*
1752  * uvm_pagelookup: look up a page
1753  *
1754  * => caller should lock object to keep someone from pulling the page
1755  *	out from under it
1756  */
1757 
1758 struct vm_page *
1759 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1760 {
1761 	struct vm_page *pg;
1762 
1763 	KASSERT(db_active || rw_lock_held(obj->vmobjlock));
1764 
1765 	pg = radix_tree_lookup_node(&obj->uo_pages, off >> PAGE_SHIFT);
1766 
1767 	KASSERT(pg == NULL || obj->uo_npages != 0);
1768 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1769 		(pg->flags & PG_BUSY) != 0);
1770 	return pg;
1771 }
1772 
1773 /*
1774  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1775  *
1776  * => caller must lock objects
1777  * => caller must hold pg->interlock
1778  */
1779 
1780 void
1781 uvm_pagewire(struct vm_page *pg)
1782 {
1783 
1784 	KASSERT(uvm_page_owner_locked_p(pg, true));
1785 	KASSERT(mutex_owned(&pg->interlock));
1786 #if defined(READAHEAD_STATS)
1787 	if ((pg->flags & PG_READAHEAD) != 0) {
1788 		uvm_ra_hit.ev_count++;
1789 		pg->flags &= ~PG_READAHEAD;
1790 	}
1791 #endif /* defined(READAHEAD_STATS) */
1792 	if (pg->wire_count == 0) {
1793 		uvm_pagedequeue(pg);
1794 		atomic_inc_uint(&uvmexp.wired);
1795 	}
1796 	pg->wire_count++;
1797 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
1798 }
1799 
1800 /*
1801  * uvm_pageunwire: unwire the page.
1802  *
1803  * => activate if wire count goes to zero.
1804  * => caller must lock objects
1805  * => caller must hold pg->interlock
1806  */
1807 
1808 void
1809 uvm_pageunwire(struct vm_page *pg)
1810 {
1811 
1812 	KASSERT(uvm_page_owner_locked_p(pg, true));
1813 	KASSERT(pg->wire_count != 0);
1814 	KASSERT(!uvmpdpol_pageisqueued_p(pg));
1815 	KASSERT(mutex_owned(&pg->interlock));
1816 	pg->wire_count--;
1817 	if (pg->wire_count == 0) {
1818 		uvm_pageactivate(pg);
1819 		KASSERT(uvmexp.wired != 0);
1820 		atomic_dec_uint(&uvmexp.wired);
1821 	}
1822 }
1823 
1824 /*
1825  * uvm_pagedeactivate: deactivate page
1826  *
1827  * => caller must lock objects
1828  * => caller must check to make sure page is not wired
1829  * => object that page belongs to must be locked (so we can adjust pg->flags)
1830  * => caller must clear the reference on the page before calling
1831  * => caller must hold pg->interlock
1832  */
1833 
1834 void
1835 uvm_pagedeactivate(struct vm_page *pg)
1836 {
1837 
1838 	KASSERT(uvm_page_owner_locked_p(pg, false));
1839 	KASSERT(mutex_owned(&pg->interlock));
1840 	if (pg->wire_count == 0) {
1841 		KASSERT(uvmpdpol_pageisqueued_p(pg));
1842 		uvmpdpol_pagedeactivate(pg);
1843 	}
1844 }
1845 
1846 /*
1847  * uvm_pageactivate: activate page
1848  *
1849  * => caller must lock objects
1850  * => caller must hold pg->interlock
1851  */
1852 
1853 void
1854 uvm_pageactivate(struct vm_page *pg)
1855 {
1856 
1857 	KASSERT(uvm_page_owner_locked_p(pg, false));
1858 	KASSERT(mutex_owned(&pg->interlock));
1859 #if defined(READAHEAD_STATS)
1860 	if ((pg->flags & PG_READAHEAD) != 0) {
1861 		uvm_ra_hit.ev_count++;
1862 		pg->flags &= ~PG_READAHEAD;
1863 	}
1864 #endif /* defined(READAHEAD_STATS) */
1865 	if (pg->wire_count == 0) {
1866 		uvmpdpol_pageactivate(pg);
1867 	}
1868 }
1869 
1870 /*
1871  * uvm_pagedequeue: remove a page from any paging queue
1872  *
1873  * => caller must lock objects
1874  * => caller must hold pg->interlock
1875  */
1876 void
1877 uvm_pagedequeue(struct vm_page *pg)
1878 {
1879 
1880 	KASSERT(uvm_page_owner_locked_p(pg, true));
1881 	KASSERT(mutex_owned(&pg->interlock));
1882 	if (uvmpdpol_pageisqueued_p(pg)) {
1883 		uvmpdpol_pagedequeue(pg);
1884 	}
1885 }
1886 
1887 /*
1888  * uvm_pageenqueue: add a page to a paging queue without activating.
1889  * used where a page is not really demanded (yet).  eg. read-ahead
1890  *
1891  * => caller must lock objects
1892  * => caller must hold pg->interlock
1893  */
1894 void
1895 uvm_pageenqueue(struct vm_page *pg)
1896 {
1897 
1898 	KASSERT(uvm_page_owner_locked_p(pg, false));
1899 	KASSERT(mutex_owned(&pg->interlock));
1900 	if (pg->wire_count == 0 && !uvmpdpol_pageisqueued_p(pg)) {
1901 		uvmpdpol_pageenqueue(pg);
1902 	}
1903 }
1904 
1905 /*
1906  * uvm_pagelock: acquire page interlock
1907  */
1908 void
1909 uvm_pagelock(struct vm_page *pg)
1910 {
1911 
1912 	mutex_enter(&pg->interlock);
1913 }
1914 
1915 /*
1916  * uvm_pagelock2: acquire two page interlocks
1917  */
1918 void
1919 uvm_pagelock2(struct vm_page *pg1, struct vm_page *pg2)
1920 {
1921 
1922 	if (pg1 < pg2) {
1923 		mutex_enter(&pg1->interlock);
1924 		mutex_enter(&pg2->interlock);
1925 	} else {
1926 		mutex_enter(&pg2->interlock);
1927 		mutex_enter(&pg1->interlock);
1928 	}
1929 }
1930 
1931 /*
1932  * uvm_pageunlock: release page interlock, and if a page replacement intent
1933  * is set on the page, pass it to uvmpdpol to make real.
1934  *
1935  * => caller must hold pg->interlock
1936  */
1937 void
1938 uvm_pageunlock(struct vm_page *pg)
1939 {
1940 
1941 	if ((pg->pqflags & PQ_INTENT_SET) == 0 ||
1942 	    (pg->pqflags & PQ_INTENT_QUEUED) != 0) {
1943 	    	mutex_exit(&pg->interlock);
1944 	    	return;
1945 	}
1946 	pg->pqflags |= PQ_INTENT_QUEUED;
1947 	mutex_exit(&pg->interlock);
1948 	uvmpdpol_pagerealize(pg);
1949 }
1950 
1951 /*
1952  * uvm_pageunlock2: release two page interlocks, and for both pages if a
1953  * page replacement intent is set on the page, pass it to uvmpdpol to make
1954  * real.
1955  *
1956  * => caller must hold pg->interlock
1957  */
1958 void
1959 uvm_pageunlock2(struct vm_page *pg1, struct vm_page *pg2)
1960 {
1961 
1962 	if ((pg1->pqflags & PQ_INTENT_SET) == 0 ||
1963 	    (pg1->pqflags & PQ_INTENT_QUEUED) != 0) {
1964 	    	mutex_exit(&pg1->interlock);
1965 	    	pg1 = NULL;
1966 	} else {
1967 		pg1->pqflags |= PQ_INTENT_QUEUED;
1968 		mutex_exit(&pg1->interlock);
1969 	}
1970 
1971 	if ((pg2->pqflags & PQ_INTENT_SET) == 0 ||
1972 	    (pg2->pqflags & PQ_INTENT_QUEUED) != 0) {
1973 	    	mutex_exit(&pg2->interlock);
1974 	    	pg2 = NULL;
1975 	} else {
1976 		pg2->pqflags |= PQ_INTENT_QUEUED;
1977 		mutex_exit(&pg2->interlock);
1978 	}
1979 
1980 	if (pg1 != NULL) {
1981 		uvmpdpol_pagerealize(pg1);
1982 	}
1983 	if (pg2 != NULL) {
1984 		uvmpdpol_pagerealize(pg2);
1985 	}
1986 }
1987 
1988 /*
1989  * uvm_pagezero: zero fill a page
1990  *
1991  * => if page is part of an object then the object should be locked
1992  *	to protect pg->flags.
1993  */
1994 
1995 void
1996 uvm_pagezero(struct vm_page *pg)
1997 {
1998 
1999 	uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
2000 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
2001 }
2002 
2003 /*
2004  * uvm_pagecopy: copy a page
2005  *
2006  * => if page is part of an object then the object should be locked
2007  *	to protect pg->flags.
2008  */
2009 
2010 void
2011 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
2012 {
2013 
2014 	uvm_pagemarkdirty(dst, UVM_PAGE_STATUS_DIRTY);
2015 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
2016 }
2017 
2018 /*
2019  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
2020  */
2021 
2022 bool
2023 uvm_pageismanaged(paddr_t pa)
2024 {
2025 
2026 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
2027 }
2028 
2029 /*
2030  * uvm_page_lookup_freelist: look up the free list for the specified page
2031  */
2032 
2033 int
2034 uvm_page_lookup_freelist(struct vm_page *pg)
2035 {
2036 	uvm_physseg_t upm;
2037 
2038 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
2039 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
2040 	return uvm_physseg_get_free_list(upm);
2041 }
2042 
2043 /*
2044  * uvm_page_owner_locked_p: return true if object associated with page is
2045  * locked.  this is a weak check for runtime assertions only.
2046  */
2047 
2048 bool
2049 uvm_page_owner_locked_p(struct vm_page *pg, bool exclusive)
2050 {
2051 
2052 	if (pg->uobject != NULL) {
2053 		return exclusive
2054 		    ? rw_write_held(pg->uobject->vmobjlock)
2055 		    : rw_lock_held(pg->uobject->vmobjlock);
2056 	}
2057 	if (pg->uanon != NULL) {
2058 		return exclusive
2059 		    ? rw_write_held(pg->uanon->an_lock)
2060 		    : rw_lock_held(pg->uanon->an_lock);
2061 	}
2062 	return true;
2063 }
2064 
2065 /*
2066  * uvm_pagereadonly_p: return if the page should be mapped read-only
2067  */
2068 
2069 bool
2070 uvm_pagereadonly_p(struct vm_page *pg)
2071 {
2072 	struct uvm_object * const uobj = pg->uobject;
2073 
2074 	KASSERT(uobj == NULL || rw_lock_held(uobj->vmobjlock));
2075 	KASSERT(uobj != NULL || rw_lock_held(pg->uanon->an_lock));
2076 	if ((pg->flags & PG_RDONLY) != 0) {
2077 		return true;
2078 	}
2079 	if (uvm_pagegetdirty(pg) == UVM_PAGE_STATUS_CLEAN) {
2080 		return true;
2081 	}
2082 	if (uobj == NULL) {
2083 		return false;
2084 	}
2085 	return UVM_OBJ_NEEDS_WRITEFAULT(uobj);
2086 }
2087 
2088 #ifdef PMAP_DIRECT
2089 /*
2090  * Call pmap to translate physical address into a virtual and to run a callback
2091  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
2092  * or equivalent.
2093  */
2094 int
2095 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
2096             int (*process)(void *, size_t, void *), void *arg)
2097 {
2098 	int error = 0;
2099 	paddr_t pa;
2100 	size_t todo;
2101 	voff_t pgoff = (off & PAGE_MASK);
2102 	struct vm_page *pg;
2103 
2104 	KASSERT(npages > 0);
2105 	KASSERT(len > 0);
2106 
2107 	for (int i = 0; i < npages; i++) {
2108 		pg = pgs[i];
2109 
2110 		KASSERT(len > 0);
2111 
2112 		/*
2113 		 * Caller is responsible for ensuring all the pages are
2114 		 * available.
2115 		 */
2116 		KASSERT(pg != NULL);
2117 		KASSERT(pg != PGO_DONTCARE);
2118 
2119 		pa = VM_PAGE_TO_PHYS(pg);
2120 		todo = MIN(len, PAGE_SIZE - pgoff);
2121 
2122 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
2123 		if (error)
2124 			break;
2125 
2126 		pgoff = 0;
2127 		len -= todo;
2128 	}
2129 
2130 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
2131 	return error;
2132 }
2133 #endif /* PMAP_DIRECT */
2134 
2135 #if defined(DDB) || defined(DEBUGPRINT)
2136 
2137 /*
2138  * uvm_page_printit: actually print the page
2139  */
2140 
2141 static const char page_flagbits[] = UVM_PGFLAGBITS;
2142 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
2143 
2144 void
2145 uvm_page_printit(struct vm_page *pg, bool full,
2146     void (*pr)(const char *, ...))
2147 {
2148 	struct vm_page *tpg;
2149 	struct uvm_object *uobj;
2150 	struct pgflbucket *pgb;
2151 	struct pgflist *pgl;
2152 	char pgbuf[128];
2153 
2154 	(*pr)("PAGE %p:\n", pg);
2155 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
2156 	(*pr)("  flags=%s\n", pgbuf);
2157 	snprintb(pgbuf, sizeof(pgbuf), page_pqflagbits, pg->pqflags);
2158 	(*pr)("  pqflags=%s\n", pgbuf);
2159 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx\n",
2160 	    pg->uobject, pg->uanon, (long long)pg->offset);
2161 	(*pr)("  loan_count=%d wire_count=%d bucket=%d freelist=%d\n",
2162 	    pg->loan_count, pg->wire_count, uvm_page_get_bucket(pg),
2163 	    uvm_page_get_freelist(pg));
2164 	(*pr)("  pa=0x%lx\n", (long)VM_PAGE_TO_PHYS(pg));
2165 #if defined(UVM_PAGE_TRKOWN)
2166 	if (pg->flags & PG_BUSY)
2167 		(*pr)("  owning process = %d.%d, tag=%s\n",
2168 		    pg->owner, pg->lowner, pg->owner_tag);
2169 	else
2170 		(*pr)("  page not busy, no owner\n");
2171 #else
2172 	(*pr)("  [page ownership tracking disabled]\n");
2173 #endif
2174 
2175 	if (!full)
2176 		return;
2177 
2178 	/* cross-verify object/anon */
2179 	if ((pg->flags & PG_FREE) == 0) {
2180 		if (pg->flags & PG_ANON) {
2181 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
2182 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
2183 				(pg->uanon) ? pg->uanon->an_page : NULL);
2184 			else
2185 				(*pr)("  anon backpointer is OK\n");
2186 		} else {
2187 			uobj = pg->uobject;
2188 			if (uobj) {
2189 				(*pr)("  checking object list\n");
2190 				tpg = uvm_pagelookup(uobj, pg->offset);
2191 				if (tpg)
2192 					(*pr)("  page found on object list\n");
2193 				else
2194 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
2195 			}
2196 		}
2197 	}
2198 
2199 	/* cross-verify page queue */
2200 	if (pg->flags & PG_FREE) {
2201 		int fl = uvm_page_get_freelist(pg);
2202 		int b = uvm_page_get_bucket(pg);
2203 		pgb = uvm.page_free[fl].pgfl_buckets[b];
2204 		pgl = &pgb->pgb_colors[VM_PGCOLOR(pg)];
2205 		(*pr)("  checking pageq list\n");
2206 		LIST_FOREACH(tpg, pgl, pageq.list) {
2207 			if (tpg == pg) {
2208 				break;
2209 			}
2210 		}
2211 		if (tpg)
2212 			(*pr)("  page found on pageq list\n");
2213 		else
2214 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
2215 	}
2216 }
2217 
2218 /*
2219  * uvm_page_printall - print a summary of all managed pages
2220  */
2221 
2222 void
2223 uvm_page_printall(void (*pr)(const char *, ...))
2224 {
2225 	uvm_physseg_t i;
2226 	paddr_t pfn;
2227 	struct vm_page *pg;
2228 
2229 	(*pr)("%18s %4s %4s %18s %18s"
2230 #ifdef UVM_PAGE_TRKOWN
2231 	    " OWNER"
2232 #endif
2233 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
2234 	for (i = uvm_physseg_get_first();
2235 	     uvm_physseg_valid_p(i);
2236 	     i = uvm_physseg_get_next(i)) {
2237 		for (pfn = uvm_physseg_get_start(i);
2238 		     pfn < uvm_physseg_get_end(i);
2239 		     pfn++) {
2240 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
2241 
2242 			(*pr)("%18p %04x %08x %18p %18p",
2243 			    pg, pg->flags, pg->pqflags, pg->uobject,
2244 			    pg->uanon);
2245 #ifdef UVM_PAGE_TRKOWN
2246 			if (pg->flags & PG_BUSY)
2247 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
2248 #endif
2249 			(*pr)("\n");
2250 		}
2251 	}
2252 }
2253 
2254 /*
2255  * uvm_page_print_freelists - print a summary freelists
2256  */
2257 
2258 void
2259 uvm_page_print_freelists(void (*pr)(const char *, ...))
2260 {
2261 	struct pgfreelist *pgfl;
2262 	struct pgflbucket *pgb;
2263 	int fl, b, c;
2264 
2265 	(*pr)("There are %d freelists with %d buckets of %d colors.\n\n",
2266 	    VM_NFREELIST, uvm.bucketcount, uvmexp.ncolors);
2267 
2268 	for (fl = 0; fl < VM_NFREELIST; fl++) {
2269 		pgfl = &uvm.page_free[fl];
2270 		(*pr)("freelist(%d) @ %p\n", fl, pgfl);
2271 		for (b = 0; b < uvm.bucketcount; b++) {
2272 			pgb = uvm.page_free[fl].pgfl_buckets[b];
2273 			(*pr)("    bucket(%d) @ %p, nfree = %d, lock @ %p:\n",
2274 			    b, pgb, pgb->pgb_nfree,
2275 			    &uvm_freelist_locks[b].lock);
2276 			for (c = 0; c < uvmexp.ncolors; c++) {
2277 				(*pr)("        color(%d) @ %p, ", c,
2278 				    &pgb->pgb_colors[c]);
2279 				(*pr)("first page = %p\n",
2280 				    LIST_FIRST(&pgb->pgb_colors[c]));
2281 			}
2282 		}
2283 	}
2284 }
2285 
2286 #endif /* DDB || DEBUGPRINT */
2287