1 /* $NetBSD: uvm_page.c,v 1.131 2008/03/24 08:53:25 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * Copyright (c) 1991, 1993, The Regents of the University of California. 6 * 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * The Mach Operating System project at Carnegie-Mellon University. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by Charles D. Cranor, 23 * Washington University, the University of California, Berkeley and 24 * its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94 42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Permission to use, copy, modify and distribute this software and 49 * its documentation is hereby granted, provided that both the copyright 50 * notice and this permission notice appear in all copies of the 51 * software, derivative works or modified versions, and any portions 52 * thereof, and that both notices appear in supporting documentation. 53 * 54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 57 * 58 * Carnegie Mellon requests users of this software to return to 59 * 60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 61 * School of Computer Science 62 * Carnegie Mellon University 63 * Pittsburgh PA 15213-3890 64 * 65 * any improvements or extensions that they make and grant Carnegie the 66 * rights to redistribute these changes. 67 */ 68 69 /* 70 * uvm_page.c: page ops. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.131 2008/03/24 08:53:25 yamt Exp $"); 75 76 #include "opt_uvmhist.h" 77 #include "opt_readahead.h" 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/malloc.h> 82 #include <sys/sched.h> 83 #include <sys/kernel.h> 84 #include <sys/vnode.h> 85 #include <sys/proc.h> 86 #include <sys/atomic.h> 87 88 #include <uvm/uvm.h> 89 #include <uvm/uvm_pdpolicy.h> 90 91 /* 92 * global vars... XXXCDC: move to uvm. structure. 93 */ 94 95 /* 96 * physical memory config is stored in vm_physmem. 97 */ 98 99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */ 100 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */ 101 102 /* 103 * Some supported CPUs in a given architecture don't support all 104 * of the things necessary to do idle page zero'ing efficiently. 105 * We therefore provide a way to disable it from machdep code here. 106 */ 107 /* 108 * XXX disabled until we can find a way to do this without causing 109 * problems for either CPU caches or DMA latency. 110 */ 111 bool vm_page_zero_enable = false; 112 113 /* 114 * local variables 115 */ 116 117 /* 118 * these variables record the values returned by vm_page_bootstrap, 119 * for debugging purposes. The implementation of uvm_pageboot_alloc 120 * and pmap_startup here also uses them internally. 121 */ 122 123 static vaddr_t virtual_space_start; 124 static vaddr_t virtual_space_end; 125 126 /* 127 * we use a hash table with only one bucket during bootup. we will 128 * later rehash (resize) the hash table once the allocator is ready. 129 * we static allocate the one bootstrap bucket below... 130 */ 131 132 static struct pglist uvm_bootbucket; 133 134 /* 135 * we allocate an initial number of page colors in uvm_page_init(), 136 * and remember them. We may re-color pages as cache sizes are 137 * discovered during the autoconfiguration phase. But we can never 138 * free the initial set of buckets, since they are allocated using 139 * uvm_pageboot_alloc(). 140 */ 141 142 static bool have_recolored_pages /* = false */; 143 144 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page"); 145 146 #ifdef DEBUG 147 vaddr_t uvm_zerocheckkva; 148 #endif /* DEBUG */ 149 150 /* 151 * locks on the hash table. allocated in 32 byte chunks to try 152 * and reduce cache traffic between CPUs. 153 */ 154 155 #define UVM_HASHLOCK_CNT 32 156 #define uvm_hashlock(hash) \ 157 (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock) 158 159 static union { 160 kmutex_t lock; 161 uint8_t pad[32]; 162 } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32); 163 164 /* 165 * local prototypes 166 */ 167 168 static void uvm_pageinsert(struct vm_page *); 169 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *); 170 static void uvm_pageremove(struct vm_page *); 171 172 /* 173 * inline functions 174 */ 175 176 /* 177 * uvm_pageinsert: insert a page in the object and the hash table 178 * uvm_pageinsert_after: insert a page into the specified place in listq 179 * 180 * => caller must lock object 181 * => caller must lock page queues 182 * => call should have already set pg's object and offset pointers 183 * and bumped the version counter 184 */ 185 186 inline static void 187 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where) 188 { 189 struct pglist *buck; 190 struct uvm_object *uobj = pg->uobject; 191 kmutex_t *lock; 192 u_int hash; 193 194 KASSERT(mutex_owned(&uobj->vmobjlock)); 195 KASSERT((pg->flags & PG_TABLED) == 0); 196 KASSERT(where == NULL || (where->flags & PG_TABLED)); 197 KASSERT(where == NULL || (where->uobject == uobj)); 198 199 hash = uvm_pagehash(uobj, pg->offset); 200 buck = &uvm.page_hash[hash]; 201 lock = uvm_hashlock(hash); 202 mutex_spin_enter(lock); 203 TAILQ_INSERT_TAIL(buck, pg, hashq); 204 mutex_spin_exit(lock); 205 206 if (UVM_OBJ_IS_VNODE(uobj)) { 207 if (uobj->uo_npages == 0) { 208 struct vnode *vp = (struct vnode *)uobj; 209 210 vholdl(vp); 211 } 212 if (UVM_OBJ_IS_VTEXT(uobj)) { 213 atomic_inc_uint(&uvmexp.execpages); 214 } else { 215 atomic_inc_uint(&uvmexp.filepages); 216 } 217 } else if (UVM_OBJ_IS_AOBJ(uobj)) { 218 atomic_inc_uint(&uvmexp.anonpages); 219 } 220 221 if (where) 222 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq); 223 else 224 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq); 225 pg->flags |= PG_TABLED; 226 uobj->uo_npages++; 227 } 228 229 inline static void 230 uvm_pageinsert(struct vm_page *pg) 231 { 232 233 uvm_pageinsert_after(pg, NULL); 234 } 235 236 /* 237 * uvm_page_remove: remove page from object and hash 238 * 239 * => caller must lock object 240 * => caller must lock page queues 241 */ 242 243 static inline void 244 uvm_pageremove(struct vm_page *pg) 245 { 246 struct pglist *buck; 247 struct uvm_object *uobj = pg->uobject; 248 kmutex_t *lock; 249 u_int hash; 250 251 KASSERT(mutex_owned(&uobj->vmobjlock)); 252 KASSERT(pg->flags & PG_TABLED); 253 254 hash = uvm_pagehash(uobj, pg->offset); 255 buck = &uvm.page_hash[hash]; 256 lock = uvm_hashlock(hash); 257 mutex_spin_enter(lock); 258 TAILQ_REMOVE(buck, pg, hashq); 259 mutex_spin_exit(lock); 260 261 if (UVM_OBJ_IS_VNODE(uobj)) { 262 if (uobj->uo_npages == 1) { 263 struct vnode *vp = (struct vnode *)uobj; 264 265 holdrelel(vp); 266 } 267 if (UVM_OBJ_IS_VTEXT(uobj)) { 268 atomic_dec_uint(&uvmexp.execpages); 269 } else { 270 atomic_dec_uint(&uvmexp.filepages); 271 } 272 } else if (UVM_OBJ_IS_AOBJ(uobj)) { 273 atomic_dec_uint(&uvmexp.anonpages); 274 } 275 276 /* object should be locked */ 277 uobj->uo_npages--; 278 TAILQ_REMOVE(&uobj->memq, pg, listq); 279 pg->flags &= ~PG_TABLED; 280 pg->uobject = NULL; 281 } 282 283 static void 284 uvm_page_init_buckets(struct pgfreelist *pgfl) 285 { 286 int color, i; 287 288 for (color = 0; color < uvmexp.ncolors; color++) { 289 for (i = 0; i < PGFL_NQUEUES; i++) { 290 TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]); 291 } 292 } 293 } 294 295 /* 296 * uvm_page_init: init the page system. called from uvm_init(). 297 * 298 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp 299 */ 300 301 void 302 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp) 303 { 304 vsize_t freepages, pagecount, bucketcount, n; 305 struct pgflbucket *bucketarray; 306 struct vm_page *pagearray; 307 int lcv; 308 u_int i; 309 paddr_t paddr; 310 311 /* 312 * init the page queues and page queue locks, except the free 313 * list; we allocate that later (with the initial vm_page 314 * structures). 315 */ 316 317 uvmpdpol_init(); 318 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE); 319 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM); 320 321 /* 322 * init the <obj,offset> => <page> hash table. for now 323 * we just have one bucket (the bootstrap bucket). later on we 324 * will allocate new buckets as we dynamically resize the hash table. 325 */ 326 327 uvm.page_nhash = 1; /* 1 bucket */ 328 uvm.page_hashmask = 0; /* mask for hash function */ 329 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */ 330 TAILQ_INIT(uvm.page_hash); /* init hash table */ 331 332 /* 333 * init hashtable locks. these must be spinlocks, as they are 334 * called from sites in the pmap modules where we cannot block. 335 * if taking multiple locks, the order is: low numbered first, 336 * high numbered second. 337 */ 338 339 for (i = 0; i < UVM_HASHLOCK_CNT; i++) 340 mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM); 341 342 /* 343 * allocate vm_page structures. 344 */ 345 346 /* 347 * sanity check: 348 * before calling this function the MD code is expected to register 349 * some free RAM with the uvm_page_physload() function. our job 350 * now is to allocate vm_page structures for this memory. 351 */ 352 353 if (vm_nphysseg == 0) 354 panic("uvm_page_bootstrap: no memory pre-allocated"); 355 356 /* 357 * first calculate the number of free pages... 358 * 359 * note that we use start/end rather than avail_start/avail_end. 360 * this allows us to allocate extra vm_page structures in case we 361 * want to return some memory to the pool after booting. 362 */ 363 364 freepages = 0; 365 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 366 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start); 367 368 /* 369 * Let MD code initialize the number of colors, or default 370 * to 1 color if MD code doesn't care. 371 */ 372 if (uvmexp.ncolors == 0) 373 uvmexp.ncolors = 1; 374 uvmexp.colormask = uvmexp.ncolors - 1; 375 376 /* 377 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can 378 * use. for each page of memory we use we need a vm_page structure. 379 * thus, the total number of pages we can use is the total size of 380 * the memory divided by the PAGE_SIZE plus the size of the vm_page 381 * structure. we add one to freepages as a fudge factor to avoid 382 * truncation errors (since we can only allocate in terms of whole 383 * pages). 384 */ 385 386 bucketcount = uvmexp.ncolors * VM_NFREELIST; 387 pagecount = ((freepages + 1) << PAGE_SHIFT) / 388 (PAGE_SIZE + sizeof(struct vm_page)); 389 390 bucketarray = (void *)uvm_pageboot_alloc((bucketcount * 391 sizeof(struct pgflbucket)) + (pagecount * 392 sizeof(struct vm_page))); 393 pagearray = (struct vm_page *)(bucketarray + bucketcount); 394 395 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 396 uvm.page_free[lcv].pgfl_buckets = 397 (bucketarray + (lcv * uvmexp.ncolors)); 398 uvm_page_init_buckets(&uvm.page_free[lcv]); 399 } 400 memset(pagearray, 0, pagecount * sizeof(struct vm_page)); 401 402 /* 403 * init the vm_page structures and put them in the correct place. 404 */ 405 406 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) { 407 n = vm_physmem[lcv].end - vm_physmem[lcv].start; 408 409 /* set up page array pointers */ 410 vm_physmem[lcv].pgs = pagearray; 411 pagearray += n; 412 pagecount -= n; 413 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1); 414 415 /* init and free vm_pages (we've already zeroed them) */ 416 paddr = ptoa(vm_physmem[lcv].start); 417 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) { 418 vm_physmem[lcv].pgs[i].phys_addr = paddr; 419 #ifdef __HAVE_VM_PAGE_MD 420 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]); 421 #endif 422 if (atop(paddr) >= vm_physmem[lcv].avail_start && 423 atop(paddr) <= vm_physmem[lcv].avail_end) { 424 uvmexp.npages++; 425 /* add page to free pool */ 426 uvm_pagefree(&vm_physmem[lcv].pgs[i]); 427 } 428 } 429 } 430 431 /* 432 * pass up the values of virtual_space_start and 433 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper 434 * layers of the VM. 435 */ 436 437 *kvm_startp = round_page(virtual_space_start); 438 *kvm_endp = trunc_page(virtual_space_end); 439 #ifdef DEBUG 440 /* 441 * steal kva for uvm_pagezerocheck(). 442 */ 443 uvm_zerocheckkva = *kvm_startp; 444 *kvm_startp += PAGE_SIZE; 445 #endif /* DEBUG */ 446 447 /* 448 * init various thresholds. 449 */ 450 451 uvmexp.reserve_pagedaemon = 1; 452 uvmexp.reserve_kernel = 5; 453 454 /* 455 * determine if we should zero pages in the idle loop. 456 */ 457 458 uvm.page_idle_zero = vm_page_zero_enable; 459 460 /* 461 * done! 462 */ 463 464 uvm.page_init_done = true; 465 } 466 467 /* 468 * uvm_setpagesize: set the page size 469 * 470 * => sets page_shift and page_mask from uvmexp.pagesize. 471 */ 472 473 void 474 uvm_setpagesize(void) 475 { 476 477 /* 478 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE 479 * to be a constant (indicated by being a non-zero value). 480 */ 481 if (uvmexp.pagesize == 0) { 482 if (PAGE_SIZE == 0) 483 panic("uvm_setpagesize: uvmexp.pagesize not set"); 484 uvmexp.pagesize = PAGE_SIZE; 485 } 486 uvmexp.pagemask = uvmexp.pagesize - 1; 487 if ((uvmexp.pagemask & uvmexp.pagesize) != 0) 488 panic("uvm_setpagesize: page size not a power of two"); 489 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++) 490 if ((1 << uvmexp.pageshift) == uvmexp.pagesize) 491 break; 492 } 493 494 /* 495 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping 496 */ 497 498 vaddr_t 499 uvm_pageboot_alloc(vsize_t size) 500 { 501 static bool initialized = false; 502 vaddr_t addr; 503 #if !defined(PMAP_STEAL_MEMORY) 504 vaddr_t vaddr; 505 paddr_t paddr; 506 #endif 507 508 /* 509 * on first call to this function, initialize ourselves. 510 */ 511 if (initialized == false) { 512 pmap_virtual_space(&virtual_space_start, &virtual_space_end); 513 514 /* round it the way we like it */ 515 virtual_space_start = round_page(virtual_space_start); 516 virtual_space_end = trunc_page(virtual_space_end); 517 518 initialized = true; 519 } 520 521 /* round to page size */ 522 size = round_page(size); 523 524 #if defined(PMAP_STEAL_MEMORY) 525 526 /* 527 * defer bootstrap allocation to MD code (it may want to allocate 528 * from a direct-mapped segment). pmap_steal_memory should adjust 529 * virtual_space_start/virtual_space_end if necessary. 530 */ 531 532 addr = pmap_steal_memory(size, &virtual_space_start, 533 &virtual_space_end); 534 535 return(addr); 536 537 #else /* !PMAP_STEAL_MEMORY */ 538 539 /* 540 * allocate virtual memory for this request 541 */ 542 if (virtual_space_start == virtual_space_end || 543 (virtual_space_end - virtual_space_start) < size) 544 panic("uvm_pageboot_alloc: out of virtual space"); 545 546 addr = virtual_space_start; 547 548 #ifdef PMAP_GROWKERNEL 549 /* 550 * If the kernel pmap can't map the requested space, 551 * then allocate more resources for it. 552 */ 553 if (uvm_maxkaddr < (addr + size)) { 554 uvm_maxkaddr = pmap_growkernel(addr + size); 555 if (uvm_maxkaddr < (addr + size)) 556 panic("uvm_pageboot_alloc: pmap_growkernel() failed"); 557 } 558 #endif 559 560 virtual_space_start += size; 561 562 /* 563 * allocate and mapin physical pages to back new virtual pages 564 */ 565 566 for (vaddr = round_page(addr) ; vaddr < addr + size ; 567 vaddr += PAGE_SIZE) { 568 569 if (!uvm_page_physget(&paddr)) 570 panic("uvm_pageboot_alloc: out of memory"); 571 572 /* 573 * Note this memory is no longer managed, so using 574 * pmap_kenter is safe. 575 */ 576 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE); 577 } 578 pmap_update(pmap_kernel()); 579 return(addr); 580 #endif /* PMAP_STEAL_MEMORY */ 581 } 582 583 #if !defined(PMAP_STEAL_MEMORY) 584 /* 585 * uvm_page_physget: "steal" one page from the vm_physmem structure. 586 * 587 * => attempt to allocate it off the end of a segment in which the "avail" 588 * values match the start/end values. if we can't do that, then we 589 * will advance both values (making them equal, and removing some 590 * vm_page structures from the non-avail area). 591 * => return false if out of memory. 592 */ 593 594 /* subroutine: try to allocate from memory chunks on the specified freelist */ 595 static bool uvm_page_physget_freelist(paddr_t *, int); 596 597 static bool 598 uvm_page_physget_freelist(paddr_t *paddrp, int freelist) 599 { 600 int lcv, x; 601 602 /* pass 1: try allocating from a matching end */ 603 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 604 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--) 605 #else 606 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 607 #endif 608 { 609 610 if (uvm.page_init_done == true) 611 panic("uvm_page_physget: called _after_ bootstrap"); 612 613 if (vm_physmem[lcv].free_list != freelist) 614 continue; 615 616 /* try from front */ 617 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start && 618 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) { 619 *paddrp = ptoa(vm_physmem[lcv].avail_start); 620 vm_physmem[lcv].avail_start++; 621 vm_physmem[lcv].start++; 622 /* nothing left? nuke it */ 623 if (vm_physmem[lcv].avail_start == 624 vm_physmem[lcv].end) { 625 if (vm_nphysseg == 1) 626 panic("uvm_page_physget: out of memory!"); 627 vm_nphysseg--; 628 for (x = lcv ; x < vm_nphysseg ; x++) 629 /* structure copy */ 630 vm_physmem[x] = vm_physmem[x+1]; 631 } 632 return (true); 633 } 634 635 /* try from rear */ 636 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end && 637 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) { 638 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1); 639 vm_physmem[lcv].avail_end--; 640 vm_physmem[lcv].end--; 641 /* nothing left? nuke it */ 642 if (vm_physmem[lcv].avail_end == 643 vm_physmem[lcv].start) { 644 if (vm_nphysseg == 1) 645 panic("uvm_page_physget: out of memory!"); 646 vm_nphysseg--; 647 for (x = lcv ; x < vm_nphysseg ; x++) 648 /* structure copy */ 649 vm_physmem[x] = vm_physmem[x+1]; 650 } 651 return (true); 652 } 653 } 654 655 /* pass2: forget about matching ends, just allocate something */ 656 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 657 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--) 658 #else 659 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 660 #endif 661 { 662 663 /* any room in this bank? */ 664 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end) 665 continue; /* nope */ 666 667 *paddrp = ptoa(vm_physmem[lcv].avail_start); 668 vm_physmem[lcv].avail_start++; 669 /* truncate! */ 670 vm_physmem[lcv].start = vm_physmem[lcv].avail_start; 671 672 /* nothing left? nuke it */ 673 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) { 674 if (vm_nphysseg == 1) 675 panic("uvm_page_physget: out of memory!"); 676 vm_nphysseg--; 677 for (x = lcv ; x < vm_nphysseg ; x++) 678 /* structure copy */ 679 vm_physmem[x] = vm_physmem[x+1]; 680 } 681 return (true); 682 } 683 684 return (false); /* whoops! */ 685 } 686 687 bool 688 uvm_page_physget(paddr_t *paddrp) 689 { 690 int i; 691 692 /* try in the order of freelist preference */ 693 for (i = 0; i < VM_NFREELIST; i++) 694 if (uvm_page_physget_freelist(paddrp, i) == true) 695 return (true); 696 return (false); 697 } 698 #endif /* PMAP_STEAL_MEMORY */ 699 700 /* 701 * uvm_page_physload: load physical memory into VM system 702 * 703 * => all args are PFs 704 * => all pages in start/end get vm_page structures 705 * => areas marked by avail_start/avail_end get added to the free page pool 706 * => we are limited to VM_PHYSSEG_MAX physical memory segments 707 */ 708 709 void 710 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start, 711 paddr_t avail_end, int free_list) 712 { 713 int preload, lcv; 714 psize_t npages; 715 struct vm_page *pgs; 716 struct vm_physseg *ps; 717 718 if (uvmexp.pagesize == 0) 719 panic("uvm_page_physload: page size not set!"); 720 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT) 721 panic("uvm_page_physload: bad free list %d", free_list); 722 if (start >= end) 723 panic("uvm_page_physload: start >= end"); 724 725 /* 726 * do we have room? 727 */ 728 729 if (vm_nphysseg == VM_PHYSSEG_MAX) { 730 printf("uvm_page_physload: unable to load physical memory " 731 "segment\n"); 732 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n", 733 VM_PHYSSEG_MAX, (long long)start, (long long)end); 734 printf("\tincrease VM_PHYSSEG_MAX\n"); 735 return; 736 } 737 738 /* 739 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been 740 * called yet, so malloc is not available). 741 */ 742 743 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) { 744 if (vm_physmem[lcv].pgs) 745 break; 746 } 747 preload = (lcv == vm_nphysseg); 748 749 /* 750 * if VM is already running, attempt to malloc() vm_page structures 751 */ 752 753 if (!preload) { 754 #if defined(VM_PHYSSEG_NOADD) 755 panic("uvm_page_physload: tried to add RAM after vm_mem_init"); 756 #else 757 /* XXXCDC: need some sort of lockout for this case */ 758 paddr_t paddr; 759 npages = end - start; /* # of pages */ 760 pgs = malloc(sizeof(struct vm_page) * npages, 761 M_VMPAGE, M_NOWAIT); 762 if (pgs == NULL) { 763 printf("uvm_page_physload: can not malloc vm_page " 764 "structs for segment\n"); 765 printf("\tignoring 0x%lx -> 0x%lx\n", start, end); 766 return; 767 } 768 /* zero data, init phys_addr and free_list, and free pages */ 769 memset(pgs, 0, sizeof(struct vm_page) * npages); 770 for (lcv = 0, paddr = ptoa(start) ; 771 lcv < npages ; lcv++, paddr += PAGE_SIZE) { 772 pgs[lcv].phys_addr = paddr; 773 pgs[lcv].free_list = free_list; 774 if (atop(paddr) >= avail_start && 775 atop(paddr) <= avail_end) 776 uvm_pagefree(&pgs[lcv]); 777 } 778 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */ 779 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */ 780 #endif 781 } else { 782 pgs = NULL; 783 npages = 0; 784 } 785 786 /* 787 * now insert us in the proper place in vm_physmem[] 788 */ 789 790 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM) 791 /* random: put it at the end (easy!) */ 792 ps = &vm_physmem[vm_nphysseg]; 793 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 794 { 795 int x; 796 /* sort by address for binary search */ 797 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 798 if (start < vm_physmem[lcv].start) 799 break; 800 ps = &vm_physmem[lcv]; 801 /* move back other entries, if necessary ... */ 802 for (x = vm_nphysseg ; x > lcv ; x--) 803 /* structure copy */ 804 vm_physmem[x] = vm_physmem[x - 1]; 805 } 806 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 807 { 808 int x; 809 /* sort by largest segment first */ 810 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 811 if ((end - start) > 812 (vm_physmem[lcv].end - vm_physmem[lcv].start)) 813 break; 814 ps = &vm_physmem[lcv]; 815 /* move back other entries, if necessary ... */ 816 for (x = vm_nphysseg ; x > lcv ; x--) 817 /* structure copy */ 818 vm_physmem[x] = vm_physmem[x - 1]; 819 } 820 #else 821 panic("uvm_page_physload: unknown physseg strategy selected!"); 822 #endif 823 824 ps->start = start; 825 ps->end = end; 826 ps->avail_start = avail_start; 827 ps->avail_end = avail_end; 828 if (preload) { 829 ps->pgs = NULL; 830 } else { 831 ps->pgs = pgs; 832 ps->lastpg = pgs + npages - 1; 833 } 834 ps->free_list = free_list; 835 vm_nphysseg++; 836 837 if (!preload) { 838 uvm_page_rehash(); 839 uvmpdpol_reinit(); 840 } 841 } 842 843 /* 844 * uvm_page_rehash: reallocate hash table based on number of free pages. 845 */ 846 847 void 848 uvm_page_rehash(void) 849 { 850 int freepages, lcv, bucketcount, oldcount, i; 851 struct pglist *newbuckets, *oldbuckets; 852 struct vm_page *pg; 853 size_t newsize, oldsize; 854 855 /* 856 * compute number of pages that can go in the free pool 857 */ 858 859 freepages = 0; 860 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 861 freepages += 862 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start); 863 864 /* 865 * compute number of buckets needed for this number of pages 866 */ 867 868 bucketcount = 1; 869 while (bucketcount < freepages) 870 bucketcount = bucketcount * 2; 871 872 /* 873 * compute the size of the current table and new table. 874 */ 875 876 oldbuckets = uvm.page_hash; 877 oldcount = uvm.page_nhash; 878 oldsize = round_page(sizeof(struct pglist) * oldcount); 879 newsize = round_page(sizeof(struct pglist) * bucketcount); 880 881 /* 882 * allocate the new buckets 883 */ 884 885 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize, 886 0, UVM_KMF_WIRED); 887 if (newbuckets == NULL) { 888 printf("uvm_page_physrehash: WARNING: could not grow page " 889 "hash table\n"); 890 return; 891 } 892 for (lcv = 0 ; lcv < bucketcount ; lcv++) 893 TAILQ_INIT(&newbuckets[lcv]); 894 895 /* 896 * now replace the old buckets with the new ones and rehash everything 897 */ 898 899 for (i = 0; i < UVM_HASHLOCK_CNT; i++) 900 mutex_spin_enter(&uvm_hashlocks[i].lock); 901 902 uvm.page_hash = newbuckets; 903 uvm.page_nhash = bucketcount; 904 uvm.page_hashmask = bucketcount - 1; /* power of 2 */ 905 906 /* ... and rehash */ 907 for (lcv = 0 ; lcv < oldcount ; lcv++) { 908 while ((pg = oldbuckets[lcv].tqh_first) != NULL) { 909 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq); 910 TAILQ_INSERT_TAIL( 911 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], 912 pg, hashq); 913 } 914 } 915 916 for (i = 0; i < UVM_HASHLOCK_CNT; i++) 917 mutex_spin_exit(&uvm_hashlocks[i].lock); 918 919 /* 920 * free old bucket array if is not the boot-time table 921 */ 922 923 if (oldbuckets != &uvm_bootbucket) 924 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize, 925 UVM_KMF_WIRED); 926 } 927 928 /* 929 * uvm_page_recolor: Recolor the pages if the new bucket count is 930 * larger than the old one. 931 */ 932 933 void 934 uvm_page_recolor(int newncolors) 935 { 936 struct pgflbucket *bucketarray, *oldbucketarray; 937 struct pgfreelist pgfl; 938 struct vm_page *pg; 939 vsize_t bucketcount; 940 int lcv, color, i, ocolors; 941 942 if (newncolors <= uvmexp.ncolors) 943 return; 944 945 if (uvm.page_init_done == false) { 946 uvmexp.ncolors = newncolors; 947 return; 948 } 949 950 bucketcount = newncolors * VM_NFREELIST; 951 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket), 952 M_VMPAGE, M_NOWAIT); 953 if (bucketarray == NULL) { 954 printf("WARNING: unable to allocate %ld page color buckets\n", 955 (long) bucketcount); 956 return; 957 } 958 959 mutex_spin_enter(&uvm_fpageqlock); 960 961 /* Make sure we should still do this. */ 962 if (newncolors <= uvmexp.ncolors) { 963 mutex_spin_exit(&uvm_fpageqlock); 964 free(bucketarray, M_VMPAGE); 965 return; 966 } 967 968 oldbucketarray = uvm.page_free[0].pgfl_buckets; 969 ocolors = uvmexp.ncolors; 970 971 uvmexp.ncolors = newncolors; 972 uvmexp.colormask = uvmexp.ncolors - 1; 973 974 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 975 pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors)); 976 uvm_page_init_buckets(&pgfl); 977 for (color = 0; color < ocolors; color++) { 978 for (i = 0; i < PGFL_NQUEUES; i++) { 979 while ((pg = TAILQ_FIRST(&uvm.page_free[ 980 lcv].pgfl_buckets[color].pgfl_queues[i])) 981 != NULL) { 982 TAILQ_REMOVE(&uvm.page_free[ 983 lcv].pgfl_buckets[ 984 color].pgfl_queues[i], pg, pageq); 985 TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[ 986 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[ 987 i], pg, pageq); 988 } 989 } 990 } 991 uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets; 992 } 993 994 if (have_recolored_pages) { 995 mutex_spin_exit(&uvm_fpageqlock); 996 free(oldbucketarray, M_VMPAGE); 997 return; 998 } 999 1000 have_recolored_pages = true; 1001 mutex_spin_exit(&uvm_fpageqlock); 1002 } 1003 1004 /* 1005 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat 1006 */ 1007 1008 static struct vm_page * 1009 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2, 1010 int *trycolorp) 1011 { 1012 struct pglist *freeq; 1013 struct vm_page *pg; 1014 int color, trycolor = *trycolorp; 1015 1016 KASSERT(mutex_owned(&uvm_fpageqlock)); 1017 1018 color = trycolor; 1019 do { 1020 if ((pg = TAILQ_FIRST((freeq = 1021 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) 1022 goto gotit; 1023 if ((pg = TAILQ_FIRST((freeq = 1024 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) 1025 goto gotit; 1026 color = (color + 1) & uvmexp.colormask; 1027 } while (color != trycolor); 1028 1029 return (NULL); 1030 1031 gotit: 1032 TAILQ_REMOVE(freeq, pg, pageq); 1033 uvmexp.free--; 1034 1035 /* update zero'd page count */ 1036 if (pg->flags & PG_ZERO) 1037 uvmexp.zeropages--; 1038 1039 if (color == trycolor) 1040 uvmexp.colorhit++; 1041 else { 1042 uvmexp.colormiss++; 1043 *trycolorp = color; 1044 } 1045 1046 return (pg); 1047 } 1048 1049 /* 1050 * uvm_pagealloc_strat: allocate vm_page from a particular free list. 1051 * 1052 * => return null if no pages free 1053 * => wake up pagedaemon if number of free pages drops below low water mark 1054 * => if obj != NULL, obj must be locked (to put in hash) 1055 * => if anon != NULL, anon must be locked (to put in anon) 1056 * => only one of obj or anon can be non-null 1057 * => caller must activate/deactivate page if it is not wired. 1058 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL. 1059 * => policy decision: it is more important to pull a page off of the 1060 * appropriate priority free list than it is to get a zero'd or 1061 * unknown contents page. This is because we live with the 1062 * consequences of a bad free list decision for the entire 1063 * lifetime of the page, e.g. if the page comes from memory that 1064 * is slower to access. 1065 */ 1066 1067 struct vm_page * 1068 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon, 1069 int flags, int strat, int free_list) 1070 { 1071 int lcv, try1, try2, zeroit = 0, color; 1072 struct vm_page *pg; 1073 bool use_reserve; 1074 1075 KASSERT(obj == NULL || anon == NULL); 1076 KASSERT(anon == NULL || off == 0); 1077 KASSERT(off == trunc_page(off)); 1078 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock)); 1079 KASSERT(anon == NULL || mutex_owned(&anon->an_lock)); 1080 1081 mutex_spin_enter(&uvm_fpageqlock); 1082 1083 /* 1084 * This implements a global round-robin page coloring 1085 * algorithm. 1086 * 1087 * XXXJRT: Should we make the `nextcolor' per-CPU? 1088 * XXXJRT: What about virtually-indexed caches? 1089 */ 1090 1091 color = uvm.page_free_nextcolor; 1092 1093 /* 1094 * check to see if we need to generate some free pages waking 1095 * the pagedaemon. 1096 */ 1097 1098 uvm_kick_pdaemon(); 1099 1100 /* 1101 * fail if any of these conditions is true: 1102 * [1] there really are no free pages, or 1103 * [2] only kernel "reserved" pages remain and 1104 * the page isn't being allocated to a kernel object. 1105 * [3] only pagedaemon "reserved" pages remain and 1106 * the requestor isn't the pagedaemon. 1107 */ 1108 1109 use_reserve = (flags & UVM_PGA_USERESERVE) || 1110 (obj && UVM_OBJ_IS_KERN_OBJECT(obj)); 1111 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) || 1112 (uvmexp.free <= uvmexp.reserve_pagedaemon && 1113 !(use_reserve && curlwp == uvm.pagedaemon_lwp))) 1114 goto fail; 1115 1116 #if PGFL_NQUEUES != 2 1117 #error uvm_pagealloc_strat needs to be updated 1118 #endif 1119 1120 /* 1121 * If we want a zero'd page, try the ZEROS queue first, otherwise 1122 * we try the UNKNOWN queue first. 1123 */ 1124 if (flags & UVM_PGA_ZERO) { 1125 try1 = PGFL_ZEROS; 1126 try2 = PGFL_UNKNOWN; 1127 } else { 1128 try1 = PGFL_UNKNOWN; 1129 try2 = PGFL_ZEROS; 1130 } 1131 1132 again: 1133 switch (strat) { 1134 case UVM_PGA_STRAT_NORMAL: 1135 /* Check all freelists in descending priority order. */ 1136 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 1137 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv], 1138 try1, try2, &color); 1139 if (pg != NULL) 1140 goto gotit; 1141 } 1142 1143 /* No pages free! */ 1144 goto fail; 1145 1146 case UVM_PGA_STRAT_ONLY: 1147 case UVM_PGA_STRAT_FALLBACK: 1148 /* Attempt to allocate from the specified free list. */ 1149 KASSERT(free_list >= 0 && free_list < VM_NFREELIST); 1150 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list], 1151 try1, try2, &color); 1152 if (pg != NULL) 1153 goto gotit; 1154 1155 /* Fall back, if possible. */ 1156 if (strat == UVM_PGA_STRAT_FALLBACK) { 1157 strat = UVM_PGA_STRAT_NORMAL; 1158 goto again; 1159 } 1160 1161 /* No pages free! */ 1162 goto fail; 1163 1164 default: 1165 panic("uvm_pagealloc_strat: bad strat %d", strat); 1166 /* NOTREACHED */ 1167 } 1168 1169 gotit: 1170 /* 1171 * We now know which color we actually allocated from; set 1172 * the next color accordingly. 1173 */ 1174 1175 uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask; 1176 1177 /* 1178 * update allocation statistics and remember if we have to 1179 * zero the page 1180 */ 1181 1182 if (flags & UVM_PGA_ZERO) { 1183 if (pg->flags & PG_ZERO) { 1184 uvmexp.pga_zerohit++; 1185 zeroit = 0; 1186 } else { 1187 uvmexp.pga_zeromiss++; 1188 zeroit = 1; 1189 } 1190 } 1191 mutex_spin_exit(&uvm_fpageqlock); 1192 1193 pg->offset = off; 1194 pg->uobject = obj; 1195 pg->uanon = anon; 1196 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE; 1197 if (anon) { 1198 anon->an_page = pg; 1199 pg->pqflags = PQ_ANON; 1200 atomic_inc_uint(&uvmexp.anonpages); 1201 } else { 1202 if (obj) { 1203 uvm_pageinsert(pg); 1204 } 1205 pg->pqflags = 0; 1206 } 1207 #if defined(UVM_PAGE_TRKOWN) 1208 pg->owner_tag = NULL; 1209 #endif 1210 UVM_PAGE_OWN(pg, "new alloc"); 1211 1212 if (flags & UVM_PGA_ZERO) { 1213 /* 1214 * A zero'd page is not clean. If we got a page not already 1215 * zero'd, then we have to zero it ourselves. 1216 */ 1217 pg->flags &= ~PG_CLEAN; 1218 if (zeroit) 1219 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1220 } 1221 1222 return(pg); 1223 1224 fail: 1225 mutex_spin_exit(&uvm_fpageqlock); 1226 return (NULL); 1227 } 1228 1229 /* 1230 * uvm_pagereplace: replace a page with another 1231 * 1232 * => object must be locked 1233 */ 1234 1235 void 1236 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg) 1237 { 1238 1239 KASSERT((oldpg->flags & PG_TABLED) != 0); 1240 KASSERT(oldpg->uobject != NULL); 1241 KASSERT((newpg->flags & PG_TABLED) == 0); 1242 KASSERT(newpg->uobject == NULL); 1243 KASSERT(mutex_owned(&oldpg->uobject->vmobjlock)); 1244 1245 newpg->uobject = oldpg->uobject; 1246 newpg->offset = oldpg->offset; 1247 1248 uvm_pageinsert_after(newpg, oldpg); 1249 uvm_pageremove(oldpg); 1250 } 1251 1252 /* 1253 * uvm_pagerealloc: reallocate a page from one object to another 1254 * 1255 * => both objects must be locked 1256 */ 1257 1258 void 1259 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff) 1260 { 1261 /* 1262 * remove it from the old object 1263 */ 1264 1265 if (pg->uobject) { 1266 uvm_pageremove(pg); 1267 } 1268 1269 /* 1270 * put it in the new object 1271 */ 1272 1273 if (newobj) { 1274 pg->uobject = newobj; 1275 pg->offset = newoff; 1276 uvm_pageinsert(pg); 1277 } 1278 } 1279 1280 #ifdef DEBUG 1281 /* 1282 * check if page is zero-filled 1283 * 1284 * - called with free page queue lock held. 1285 */ 1286 void 1287 uvm_pagezerocheck(struct vm_page *pg) 1288 { 1289 int *p, *ep; 1290 1291 KASSERT(uvm_zerocheckkva != 0); 1292 KASSERT(mutex_owned(&uvm_fpageqlock)); 1293 1294 /* 1295 * XXX assuming pmap_kenter_pa and pmap_kremove never call 1296 * uvm page allocator. 1297 * 1298 * it might be better to have "CPU-local temporary map" pmap interface. 1299 */ 1300 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ); 1301 p = (int *)uvm_zerocheckkva; 1302 ep = (int *)((char *)p + PAGE_SIZE); 1303 pmap_update(pmap_kernel()); 1304 while (p < ep) { 1305 if (*p != 0) 1306 panic("PG_ZERO page isn't zero-filled"); 1307 p++; 1308 } 1309 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE); 1310 /* 1311 * pmap_update() is not necessary here because no one except us 1312 * uses this VA. 1313 */ 1314 } 1315 #endif /* DEBUG */ 1316 1317 /* 1318 * uvm_pagefree: free page 1319 * 1320 * => erase page's identity (i.e. remove from hash/object) 1321 * => put page on free list 1322 * => caller must lock owning object (either anon or uvm_object) 1323 * => caller must lock page queues 1324 * => assumes all valid mappings of pg are gone 1325 */ 1326 1327 void 1328 uvm_pagefree(struct vm_page *pg) 1329 { 1330 struct pglist *pgfl; 1331 bool iszero; 1332 1333 #ifdef DEBUG 1334 if (pg->uobject == (void *)0xdeadbeef && 1335 pg->uanon == (void *)0xdeadbeef) { 1336 panic("uvm_pagefree: freeing free page %p", pg); 1337 } 1338 #endif /* DEBUG */ 1339 1340 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1341 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg)); 1342 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock)); 1343 KASSERT(pg->uobject != NULL || pg->uanon == NULL || 1344 mutex_owned(&pg->uanon->an_lock)); 1345 1346 /* 1347 * if the page is loaned, resolve the loan instead of freeing. 1348 */ 1349 1350 if (pg->loan_count) { 1351 KASSERT(pg->wire_count == 0); 1352 1353 /* 1354 * if the page is owned by an anon then we just want to 1355 * drop anon ownership. the kernel will free the page when 1356 * it is done with it. if the page is owned by an object, 1357 * remove it from the object and mark it dirty for the benefit 1358 * of possible anon owners. 1359 * 1360 * regardless of previous ownership, wakeup any waiters, 1361 * unbusy the page, and we're done. 1362 */ 1363 1364 if (pg->uobject != NULL) { 1365 uvm_pageremove(pg); 1366 pg->flags &= ~PG_CLEAN; 1367 } else if (pg->uanon != NULL) { 1368 if ((pg->pqflags & PQ_ANON) == 0) { 1369 pg->loan_count--; 1370 } else { 1371 pg->pqflags &= ~PQ_ANON; 1372 atomic_dec_uint(&uvmexp.anonpages); 1373 } 1374 pg->uanon->an_page = NULL; 1375 pg->uanon = NULL; 1376 } 1377 if (pg->flags & PG_WANTED) { 1378 wakeup(pg); 1379 } 1380 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1); 1381 #ifdef UVM_PAGE_TRKOWN 1382 pg->owner_tag = NULL; 1383 #endif 1384 if (pg->loan_count) { 1385 KASSERT(pg->uobject == NULL); 1386 if (pg->uanon == NULL) { 1387 uvm_pagedequeue(pg); 1388 } 1389 return; 1390 } 1391 } 1392 1393 /* 1394 * remove page from its object or anon. 1395 */ 1396 1397 if (pg->uobject != NULL) { 1398 uvm_pageremove(pg); 1399 } else if (pg->uanon != NULL) { 1400 pg->uanon->an_page = NULL; 1401 atomic_dec_uint(&uvmexp.anonpages); 1402 } 1403 1404 /* 1405 * now remove the page from the queues. 1406 */ 1407 1408 uvm_pagedequeue(pg); 1409 1410 /* 1411 * if the page was wired, unwire it now. 1412 */ 1413 1414 if (pg->wire_count) { 1415 pg->wire_count = 0; 1416 uvmexp.wired--; 1417 } 1418 1419 /* 1420 * and put on free queue 1421 */ 1422 1423 iszero = (pg->flags & PG_ZERO); 1424 pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)]. 1425 pgfl_buckets[VM_PGCOLOR_BUCKET(pg)]. 1426 pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN]; 1427 1428 pg->pqflags = PQ_FREE; 1429 #ifdef DEBUG 1430 pg->uobject = (void *)0xdeadbeef; 1431 pg->offset = 0xdeadbeef; 1432 pg->uanon = (void *)0xdeadbeef; 1433 #endif 1434 1435 mutex_spin_enter(&uvm_fpageqlock); 1436 1437 #ifdef DEBUG 1438 if (iszero) 1439 uvm_pagezerocheck(pg); 1440 #endif /* DEBUG */ 1441 1442 TAILQ_INSERT_HEAD(pgfl, pg, pageq); 1443 uvmexp.free++; 1444 if (iszero) 1445 uvmexp.zeropages++; 1446 1447 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET) 1448 uvm.page_idle_zero = vm_page_zero_enable; 1449 1450 mutex_spin_exit(&uvm_fpageqlock); 1451 } 1452 1453 /* 1454 * uvm_page_unbusy: unbusy an array of pages. 1455 * 1456 * => pages must either all belong to the same object, or all belong to anons. 1457 * => if pages are object-owned, object must be locked. 1458 * => if pages are anon-owned, anons must be locked. 1459 * => caller must lock page queues if pages may be released. 1460 * => caller must make sure that anon-owned pages are not PG_RELEASED. 1461 */ 1462 1463 void 1464 uvm_page_unbusy(struct vm_page **pgs, int npgs) 1465 { 1466 struct vm_page *pg; 1467 int i; 1468 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist); 1469 1470 for (i = 0; i < npgs; i++) { 1471 pg = pgs[i]; 1472 if (pg == NULL || pg == PGO_DONTCARE) { 1473 continue; 1474 } 1475 1476 KASSERT(pg->uobject == NULL || 1477 mutex_owned(&pg->uobject->vmobjlock)); 1478 KASSERT(pg->uobject != NULL || 1479 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock))); 1480 1481 KASSERT(pg->flags & PG_BUSY); 1482 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1483 if (pg->flags & PG_WANTED) { 1484 wakeup(pg); 1485 } 1486 if (pg->flags & PG_RELEASED) { 1487 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0); 1488 KASSERT(pg->uobject != NULL || 1489 (pg->uanon != NULL && pg->uanon->an_ref > 0)); 1490 pg->flags &= ~PG_RELEASED; 1491 uvm_pagefree(pg); 1492 } else { 1493 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0); 1494 pg->flags &= ~(PG_WANTED|PG_BUSY); 1495 UVM_PAGE_OWN(pg, NULL); 1496 } 1497 } 1498 } 1499 1500 #if defined(UVM_PAGE_TRKOWN) 1501 /* 1502 * uvm_page_own: set or release page ownership 1503 * 1504 * => this is a debugging function that keeps track of who sets PG_BUSY 1505 * and where they do it. it can be used to track down problems 1506 * such a process setting "PG_BUSY" and never releasing it. 1507 * => page's object [if any] must be locked 1508 * => if "tag" is NULL then we are releasing page ownership 1509 */ 1510 void 1511 uvm_page_own(struct vm_page *pg, const char *tag) 1512 { 1513 struct uvm_object *uobj; 1514 struct vm_anon *anon; 1515 1516 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0); 1517 1518 uobj = pg->uobject; 1519 anon = pg->uanon; 1520 if (uobj != NULL) { 1521 KASSERT(mutex_owned(&uobj->vmobjlock)); 1522 } else if (anon != NULL) { 1523 KASSERT(mutex_owned(&anon->an_lock)); 1524 } 1525 1526 KASSERT((pg->flags & PG_WANTED) == 0); 1527 1528 /* gain ownership? */ 1529 if (tag) { 1530 KASSERT((pg->flags & PG_BUSY) != 0); 1531 if (pg->owner_tag) { 1532 printf("uvm_page_own: page %p already owned " 1533 "by proc %d [%s]\n", pg, 1534 pg->owner, pg->owner_tag); 1535 panic("uvm_page_own"); 1536 } 1537 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1; 1538 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1; 1539 pg->owner_tag = tag; 1540 return; 1541 } 1542 1543 /* drop ownership */ 1544 KASSERT((pg->flags & PG_BUSY) == 0); 1545 if (pg->owner_tag == NULL) { 1546 printf("uvm_page_own: dropping ownership of an non-owned " 1547 "page (%p)\n", pg); 1548 panic("uvm_page_own"); 1549 } 1550 if (!uvmpdpol_pageisqueued_p(pg)) { 1551 KASSERT((pg->uanon == NULL && pg->uobject == NULL) || 1552 pg->wire_count > 0); 1553 } else { 1554 KASSERT(pg->wire_count == 0); 1555 } 1556 pg->owner_tag = NULL; 1557 } 1558 #endif 1559 1560 /* 1561 * uvm_pageidlezero: zero free pages while the system is idle. 1562 * 1563 * => try to complete one color bucket at a time, to reduce our impact 1564 * on the CPU cache. 1565 * => we loop until we either reach the target or there is a lwp ready to run. 1566 */ 1567 void 1568 uvm_pageidlezero(void) 1569 { 1570 struct vm_page *pg; 1571 struct pgfreelist *pgfl; 1572 int free_list, firstbucket; 1573 static int nextbucket; 1574 1575 mutex_spin_enter(&uvm_fpageqlock); 1576 firstbucket = nextbucket; 1577 do { 1578 if (sched_curcpu_runnable_p()) { 1579 goto quit; 1580 } 1581 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) { 1582 uvm.page_idle_zero = false; 1583 goto quit; 1584 } 1585 for (free_list = 0; free_list < VM_NFREELIST; free_list++) { 1586 pgfl = &uvm.page_free[free_list]; 1587 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[ 1588 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) { 1589 if (sched_curcpu_runnable_p()) 1590 goto quit; 1591 1592 TAILQ_REMOVE(&pgfl->pgfl_buckets[ 1593 nextbucket].pgfl_queues[PGFL_UNKNOWN], 1594 pg, pageq); 1595 uvmexp.free--; 1596 mutex_spin_exit(&uvm_fpageqlock); 1597 #ifdef PMAP_PAGEIDLEZERO 1598 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) { 1599 1600 /* 1601 * The machine-dependent code detected 1602 * some reason for us to abort zeroing 1603 * pages, probably because there is a 1604 * process now ready to run. 1605 */ 1606 1607 mutex_spin_enter(&uvm_fpageqlock); 1608 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[ 1609 nextbucket].pgfl_queues[ 1610 PGFL_UNKNOWN], pg, pageq); 1611 uvmexp.free++; 1612 uvmexp.zeroaborts++; 1613 goto quit; 1614 } 1615 #else 1616 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1617 #endif /* PMAP_PAGEIDLEZERO */ 1618 pg->flags |= PG_ZERO; 1619 1620 mutex_spin_enter(&uvm_fpageqlock); 1621 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[ 1622 nextbucket].pgfl_queues[PGFL_ZEROS], 1623 pg, pageq); 1624 uvmexp.free++; 1625 uvmexp.zeropages++; 1626 } 1627 } 1628 nextbucket = (nextbucket + 1) & uvmexp.colormask; 1629 } while (nextbucket != firstbucket); 1630 quit: 1631 mutex_spin_exit(&uvm_fpageqlock); 1632 } 1633 1634 /* 1635 * uvm_pagelookup: look up a page 1636 * 1637 * => caller should lock object to keep someone from pulling the page 1638 * out from under it 1639 */ 1640 1641 struct vm_page * 1642 uvm_pagelookup(struct uvm_object *obj, voff_t off) 1643 { 1644 struct vm_page *pg; 1645 struct pglist *buck; 1646 kmutex_t *lock; 1647 u_int hash; 1648 1649 KASSERT(mutex_owned(&obj->vmobjlock)); 1650 1651 hash = uvm_pagehash(obj, off); 1652 buck = &uvm.page_hash[hash]; 1653 lock = uvm_hashlock(hash); 1654 mutex_spin_enter(lock); 1655 TAILQ_FOREACH(pg, buck, hashq) { 1656 if (pg->uobject == obj && pg->offset == off) { 1657 break; 1658 } 1659 } 1660 mutex_spin_exit(lock); 1661 KASSERT(pg == NULL || obj->uo_npages != 0); 1662 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1663 (pg->flags & PG_BUSY) != 0); 1664 return(pg); 1665 } 1666 1667 /* 1668 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp 1669 * 1670 * => caller must lock page queues 1671 */ 1672 1673 void 1674 uvm_pagewire(struct vm_page *pg) 1675 { 1676 KASSERT(mutex_owned(&uvm_pageqlock)); 1677 #if defined(READAHEAD_STATS) 1678 if ((pg->pqflags & PQ_READAHEAD) != 0) { 1679 uvm_ra_hit.ev_count++; 1680 pg->pqflags &= ~PQ_READAHEAD; 1681 } 1682 #endif /* defined(READAHEAD_STATS) */ 1683 if (pg->wire_count == 0) { 1684 uvm_pagedequeue(pg); 1685 uvmexp.wired++; 1686 } 1687 pg->wire_count++; 1688 } 1689 1690 /* 1691 * uvm_pageunwire: unwire the page. 1692 * 1693 * => activate if wire count goes to zero. 1694 * => caller must lock page queues 1695 */ 1696 1697 void 1698 uvm_pageunwire(struct vm_page *pg) 1699 { 1700 KASSERT(mutex_owned(&uvm_pageqlock)); 1701 pg->wire_count--; 1702 if (pg->wire_count == 0) { 1703 uvm_pageactivate(pg); 1704 uvmexp.wired--; 1705 } 1706 } 1707 1708 /* 1709 * uvm_pagedeactivate: deactivate page 1710 * 1711 * => caller must lock page queues 1712 * => caller must check to make sure page is not wired 1713 * => object that page belongs to must be locked (so we can adjust pg->flags) 1714 * => caller must clear the reference on the page before calling 1715 */ 1716 1717 void 1718 uvm_pagedeactivate(struct vm_page *pg) 1719 { 1720 1721 KASSERT(mutex_owned(&uvm_pageqlock)); 1722 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg)); 1723 uvmpdpol_pagedeactivate(pg); 1724 } 1725 1726 /* 1727 * uvm_pageactivate: activate page 1728 * 1729 * => caller must lock page queues 1730 */ 1731 1732 void 1733 uvm_pageactivate(struct vm_page *pg) 1734 { 1735 1736 KASSERT(mutex_owned(&uvm_pageqlock)); 1737 #if defined(READAHEAD_STATS) 1738 if ((pg->pqflags & PQ_READAHEAD) != 0) { 1739 uvm_ra_hit.ev_count++; 1740 pg->pqflags &= ~PQ_READAHEAD; 1741 } 1742 #endif /* defined(READAHEAD_STATS) */ 1743 if (pg->wire_count != 0) { 1744 return; 1745 } 1746 uvmpdpol_pageactivate(pg); 1747 } 1748 1749 /* 1750 * uvm_pagedequeue: remove a page from any paging queue 1751 */ 1752 1753 void 1754 uvm_pagedequeue(struct vm_page *pg) 1755 { 1756 1757 if (uvmpdpol_pageisqueued_p(pg)) { 1758 KASSERT(mutex_owned(&uvm_pageqlock)); 1759 } 1760 1761 uvmpdpol_pagedequeue(pg); 1762 } 1763 1764 /* 1765 * uvm_pageenqueue: add a page to a paging queue without activating. 1766 * used where a page is not really demanded (yet). eg. read-ahead 1767 */ 1768 1769 void 1770 uvm_pageenqueue(struct vm_page *pg) 1771 { 1772 1773 KASSERT(mutex_owned(&uvm_pageqlock)); 1774 if (pg->wire_count != 0) { 1775 return; 1776 } 1777 uvmpdpol_pageenqueue(pg); 1778 } 1779 1780 /* 1781 * uvm_pagezero: zero fill a page 1782 * 1783 * => if page is part of an object then the object should be locked 1784 * to protect pg->flags. 1785 */ 1786 1787 void 1788 uvm_pagezero(struct vm_page *pg) 1789 { 1790 pg->flags &= ~PG_CLEAN; 1791 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1792 } 1793 1794 /* 1795 * uvm_pagecopy: copy a page 1796 * 1797 * => if page is part of an object then the object should be locked 1798 * to protect pg->flags. 1799 */ 1800 1801 void 1802 uvm_pagecopy(struct vm_page *src, struct vm_page *dst) 1803 { 1804 1805 dst->flags &= ~PG_CLEAN; 1806 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst)); 1807 } 1808 1809 /* 1810 * uvm_page_lookup_freelist: look up the free list for the specified page 1811 */ 1812 1813 int 1814 uvm_page_lookup_freelist(struct vm_page *pg) 1815 { 1816 int lcv; 1817 1818 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL); 1819 KASSERT(lcv != -1); 1820 return (vm_physmem[lcv].free_list); 1821 } 1822