1 /* $NetBSD: uvm_page.c,v 1.30 2000/02/13 03:34:40 thorpej Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * Copyright (c) 1991, 1993, The Regents of the University of California. 6 * 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * The Mach Operating System project at Carnegie-Mellon University. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by Charles D. Cranor, 23 * Washington University, the University of California, Berkeley and 24 * its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94 42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Permission to use, copy, modify and distribute this software and 49 * its documentation is hereby granted, provided that both the copyright 50 * notice and this permission notice appear in all copies of the 51 * software, derivative works or modified versions, and any portions 52 * thereof, and that both notices appear in supporting documentation. 53 * 54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 57 * 58 * Carnegie Mellon requests users of this software to return to 59 * 60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 61 * School of Computer Science 62 * Carnegie Mellon University 63 * Pittsburgh PA 15213-3890 64 * 65 * any improvements or extensions that they make and grant Carnegie the 66 * rights to redistribute these changes. 67 */ 68 69 /* 70 * uvm_page.c: page ops. 71 */ 72 73 #include <sys/param.h> 74 #include <sys/systm.h> 75 #include <sys/malloc.h> 76 #include <sys/proc.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_page.h> 80 #include <vm/vm_kern.h> 81 82 #define UVM_PAGE /* pull in uvm_page.h functions */ 83 #include <uvm/uvm.h> 84 85 /* 86 * global vars... XXXCDC: move to uvm. structure. 87 */ 88 89 /* 90 * physical memory config is stored in vm_physmem. 91 */ 92 93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */ 94 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */ 95 96 /* 97 * local variables 98 */ 99 100 /* 101 * these variables record the values returned by vm_page_bootstrap, 102 * for debugging purposes. The implementation of uvm_pageboot_alloc 103 * and pmap_startup here also uses them internally. 104 */ 105 106 static vaddr_t virtual_space_start; 107 static vaddr_t virtual_space_end; 108 109 /* 110 * we use a hash table with only one bucket during bootup. we will 111 * later rehash (resize) the hash table once the allocator is ready. 112 * we static allocate the one bootstrap bucket below... 113 */ 114 115 static struct pglist uvm_bootbucket; 116 117 /* 118 * local prototypes 119 */ 120 121 static void uvm_pageinsert __P((struct vm_page *)); 122 123 124 /* 125 * inline functions 126 */ 127 128 /* 129 * uvm_pageinsert: insert a page in the object and the hash table 130 * 131 * => caller must lock object 132 * => caller must lock page queues 133 * => call should have already set pg's object and offset pointers 134 * and bumped the version counter 135 */ 136 137 __inline static void 138 uvm_pageinsert(pg) 139 struct vm_page *pg; 140 { 141 struct pglist *buck; 142 int s; 143 144 #ifdef DIAGNOSTIC 145 if (pg->flags & PG_TABLED) 146 panic("uvm_pageinsert: already inserted"); 147 #endif 148 149 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)]; 150 s = splimp(); 151 simple_lock(&uvm.hashlock); 152 TAILQ_INSERT_TAIL(buck, pg, hashq); /* put in hash */ 153 simple_unlock(&uvm.hashlock); 154 splx(s); 155 156 TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */ 157 pg->flags |= PG_TABLED; 158 pg->uobject->uo_npages++; 159 160 } 161 162 /* 163 * uvm_page_remove: remove page from object and hash 164 * 165 * => caller must lock object 166 * => caller must lock page queues 167 */ 168 169 void __inline 170 uvm_pageremove(pg) 171 struct vm_page *pg; 172 { 173 struct pglist *buck; 174 int s; 175 176 #ifdef DIAGNOSTIC 177 if ((pg->flags & (PG_FAULTING)) != 0) 178 panic("uvm_pageremove: page is faulting"); 179 #endif 180 181 if ((pg->flags & PG_TABLED) == 0) 182 return; /* XXX: log */ 183 184 buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)]; 185 s = splimp(); 186 simple_lock(&uvm.hashlock); 187 TAILQ_REMOVE(buck, pg, hashq); 188 simple_unlock(&uvm.hashlock); 189 splx(s); 190 191 /* object should be locked */ 192 TAILQ_REMOVE(&pg->uobject->memq, pg, listq); 193 194 pg->flags &= ~PG_TABLED; 195 pg->uobject->uo_npages--; 196 pg->uobject = NULL; 197 pg->version++; 198 199 } 200 201 /* 202 * uvm_page_init: init the page system. called from uvm_init(). 203 * 204 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp 205 */ 206 207 void 208 uvm_page_init(kvm_startp, kvm_endp) 209 vaddr_t *kvm_startp, *kvm_endp; 210 { 211 vsize_t freepages, pagecount, n; 212 vm_page_t pagearray; 213 int lcv, i; 214 paddr_t paddr; 215 216 217 /* 218 * step 1: init the page queues and page queue locks 219 */ 220 for (lcv = 0; lcv < VM_NFREELIST; lcv++) 221 TAILQ_INIT(&uvm.page_free[lcv]); 222 TAILQ_INIT(&uvm.page_active); 223 TAILQ_INIT(&uvm.page_inactive_swp); 224 TAILQ_INIT(&uvm.page_inactive_obj); 225 simple_lock_init(&uvm.pageqlock); 226 simple_lock_init(&uvm.fpageqlock); 227 228 /* 229 * step 2: init the <obj,offset> => <page> hash table. for now 230 * we just have one bucket (the bootstrap bucket). later on we 231 * will allocate new buckets as we dynamically resize the hash table. 232 */ 233 234 uvm.page_nhash = 1; /* 1 bucket */ 235 uvm.page_hashmask = 0; /* mask for hash function */ 236 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */ 237 TAILQ_INIT(uvm.page_hash); /* init hash table */ 238 simple_lock_init(&uvm.hashlock); /* init hash table lock */ 239 240 /* 241 * step 3: allocate vm_page structures. 242 */ 243 244 /* 245 * sanity check: 246 * before calling this function the MD code is expected to register 247 * some free RAM with the uvm_page_physload() function. our job 248 * now is to allocate vm_page structures for this memory. 249 */ 250 251 if (vm_nphysseg == 0) 252 panic("vm_page_bootstrap: no memory pre-allocated"); 253 254 /* 255 * first calculate the number of free pages... 256 * 257 * note that we use start/end rather than avail_start/avail_end. 258 * this allows us to allocate extra vm_page structures in case we 259 * want to return some memory to the pool after booting. 260 */ 261 262 freepages = 0; 263 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 264 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start); 265 266 /* 267 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can 268 * use. for each page of memory we use we need a vm_page structure. 269 * thus, the total number of pages we can use is the total size of 270 * the memory divided by the PAGE_SIZE plus the size of the vm_page 271 * structure. we add one to freepages as a fudge factor to avoid 272 * truncation errors (since we can only allocate in terms of whole 273 * pages). 274 */ 275 276 pagecount = ((freepages + 1) << PAGE_SHIFT) / 277 (PAGE_SIZE + sizeof(struct vm_page)); 278 pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount * 279 sizeof(struct vm_page)); 280 memset(pagearray, 0, pagecount * sizeof(struct vm_page)); 281 282 /* 283 * step 4: init the vm_page structures and put them in the correct 284 * place... 285 */ 286 287 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) { 288 289 n = vm_physmem[lcv].end - vm_physmem[lcv].start; 290 if (n > pagecount) { 291 printf("uvm_page_init: lost %ld page(s) in init\n", 292 (long)(n - pagecount)); 293 panic("uvm_page_init"); /* XXXCDC: shouldn't happen? */ 294 /* n = pagecount; */ 295 } 296 /* set up page array pointers */ 297 vm_physmem[lcv].pgs = pagearray; 298 pagearray += n; 299 pagecount -= n; 300 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1); 301 302 /* init and free vm_pages (we've already zeroed them) */ 303 paddr = ptoa(vm_physmem[lcv].start); 304 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) { 305 vm_physmem[lcv].pgs[i].phys_addr = paddr; 306 if (atop(paddr) >= vm_physmem[lcv].avail_start && 307 atop(paddr) <= vm_physmem[lcv].avail_end) { 308 uvmexp.npages++; 309 /* add page to free pool */ 310 uvm_pagefree(&vm_physmem[lcv].pgs[i]); 311 } 312 } 313 } 314 /* 315 * step 5: pass up the values of virtual_space_start and 316 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper 317 * layers of the VM. 318 */ 319 320 *kvm_startp = round_page(virtual_space_start); 321 *kvm_endp = trunc_page(virtual_space_end); 322 323 /* 324 * step 6: init pagedaemon lock 325 */ 326 327 simple_lock_init(&uvm.pagedaemon_lock); 328 329 /* 330 * step 7: init reserve thresholds 331 * XXXCDC - values may need adjusting 332 */ 333 uvmexp.reserve_pagedaemon = 1; 334 uvmexp.reserve_kernel = 5; 335 336 /* 337 * done! 338 */ 339 340 } 341 342 /* 343 * uvm_setpagesize: set the page size 344 * 345 * => sets page_shift and page_mask from uvmexp.pagesize. 346 * => XXXCDC: move global vars. 347 */ 348 349 void 350 uvm_setpagesize() 351 { 352 if (uvmexp.pagesize == 0) 353 uvmexp.pagesize = DEFAULT_PAGE_SIZE; 354 uvmexp.pagemask = uvmexp.pagesize - 1; 355 if ((uvmexp.pagemask & uvmexp.pagesize) != 0) 356 panic("uvm_setpagesize: page size not a power of two"); 357 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++) 358 if ((1 << uvmexp.pageshift) == uvmexp.pagesize) 359 break; 360 } 361 362 /* 363 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping 364 */ 365 366 vaddr_t 367 uvm_pageboot_alloc(size) 368 vsize_t size; 369 { 370 #if defined(PMAP_STEAL_MEMORY) 371 vaddr_t addr; 372 373 /* 374 * defer bootstrap allocation to MD code (it may want to allocate 375 * from a direct-mapped segment). pmap_steal_memory should round 376 * off virtual_space_start/virtual_space_end. 377 */ 378 379 addr = pmap_steal_memory(size, &virtual_space_start, 380 &virtual_space_end); 381 382 return(addr); 383 384 #else /* !PMAP_STEAL_MEMORY */ 385 386 static boolean_t initialized = FALSE; 387 vaddr_t addr, vaddr; 388 paddr_t paddr; 389 390 /* round to page size */ 391 size = round_page(size); 392 393 /* 394 * on first call to this function, initialize ourselves. 395 */ 396 if (initialized == FALSE) { 397 pmap_virtual_space(&virtual_space_start, &virtual_space_end); 398 399 /* round it the way we like it */ 400 virtual_space_start = round_page(virtual_space_start); 401 virtual_space_end = trunc_page(virtual_space_end); 402 403 initialized = TRUE; 404 } 405 406 /* 407 * allocate virtual memory for this request 408 */ 409 if (virtual_space_start == virtual_space_end || 410 (virtual_space_end - virtual_space_start) < size) 411 panic("uvm_pageboot_alloc: out of virtual space"); 412 413 addr = virtual_space_start; 414 415 #ifdef PMAP_GROWKERNEL 416 /* 417 * If the kernel pmap can't map the requested space, 418 * then allocate more resources for it. 419 */ 420 if (uvm_maxkaddr < (addr + size)) { 421 uvm_maxkaddr = pmap_growkernel(addr + size); 422 if (uvm_maxkaddr < (addr + size)) 423 panic("uvm_pageboot_alloc: pmap_growkernel() failed"); 424 } 425 #endif 426 427 virtual_space_start += size; 428 429 /* 430 * allocate and mapin physical pages to back new virtual pages 431 */ 432 433 for (vaddr = round_page(addr) ; vaddr < addr + size ; 434 vaddr += PAGE_SIZE) { 435 436 if (!uvm_page_physget(&paddr)) 437 panic("uvm_pageboot_alloc: out of memory"); 438 439 /* 440 * Note this memory is no longer managed, so using 441 * pmap_kenter is safe. 442 */ 443 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE); 444 } 445 return(addr); 446 #endif /* PMAP_STEAL_MEMORY */ 447 } 448 449 #if !defined(PMAP_STEAL_MEMORY) 450 /* 451 * uvm_page_physget: "steal" one page from the vm_physmem structure. 452 * 453 * => attempt to allocate it off the end of a segment in which the "avail" 454 * values match the start/end values. if we can't do that, then we 455 * will advance both values (making them equal, and removing some 456 * vm_page structures from the non-avail area). 457 * => return false if out of memory. 458 */ 459 460 /* subroutine: try to allocate from memory chunks on the specified freelist */ 461 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int)); 462 463 static boolean_t 464 uvm_page_physget_freelist(paddrp, freelist) 465 paddr_t *paddrp; 466 int freelist; 467 { 468 int lcv, x; 469 470 /* pass 1: try allocating from a matching end */ 471 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 472 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--) 473 #else 474 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 475 #endif 476 { 477 478 if (vm_physmem[lcv].pgs) 479 panic("vm_page_physget: called _after_ bootstrap"); 480 481 if (vm_physmem[lcv].free_list != freelist) 482 continue; 483 484 /* try from front */ 485 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start && 486 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) { 487 *paddrp = ptoa(vm_physmem[lcv].avail_start); 488 vm_physmem[lcv].avail_start++; 489 vm_physmem[lcv].start++; 490 /* nothing left? nuke it */ 491 if (vm_physmem[lcv].avail_start == 492 vm_physmem[lcv].end) { 493 if (vm_nphysseg == 1) 494 panic("vm_page_physget: out of memory!"); 495 vm_nphysseg--; 496 for (x = lcv ; x < vm_nphysseg ; x++) 497 /* structure copy */ 498 vm_physmem[x] = vm_physmem[x+1]; 499 } 500 return (TRUE); 501 } 502 503 /* try from rear */ 504 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end && 505 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) { 506 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1); 507 vm_physmem[lcv].avail_end--; 508 vm_physmem[lcv].end--; 509 /* nothing left? nuke it */ 510 if (vm_physmem[lcv].avail_end == 511 vm_physmem[lcv].start) { 512 if (vm_nphysseg == 1) 513 panic("vm_page_physget: out of memory!"); 514 vm_nphysseg--; 515 for (x = lcv ; x < vm_nphysseg ; x++) 516 /* structure copy */ 517 vm_physmem[x] = vm_physmem[x+1]; 518 } 519 return (TRUE); 520 } 521 } 522 523 /* pass2: forget about matching ends, just allocate something */ 524 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 525 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--) 526 #else 527 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 528 #endif 529 { 530 531 /* any room in this bank? */ 532 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end) 533 continue; /* nope */ 534 535 *paddrp = ptoa(vm_physmem[lcv].avail_start); 536 vm_physmem[lcv].avail_start++; 537 /* truncate! */ 538 vm_physmem[lcv].start = vm_physmem[lcv].avail_start; 539 540 /* nothing left? nuke it */ 541 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) { 542 if (vm_nphysseg == 1) 543 panic("vm_page_physget: out of memory!"); 544 vm_nphysseg--; 545 for (x = lcv ; x < vm_nphysseg ; x++) 546 /* structure copy */ 547 vm_physmem[x] = vm_physmem[x+1]; 548 } 549 return (TRUE); 550 } 551 552 return (FALSE); /* whoops! */ 553 } 554 555 boolean_t 556 uvm_page_physget(paddrp) 557 paddr_t *paddrp; 558 { 559 int i; 560 561 /* try in the order of freelist preference */ 562 for (i = 0; i < VM_NFREELIST; i++) 563 if (uvm_page_physget_freelist(paddrp, i) == TRUE) 564 return (TRUE); 565 return (FALSE); 566 } 567 #endif /* PMAP_STEAL_MEMORY */ 568 569 /* 570 * uvm_page_physload: load physical memory into VM system 571 * 572 * => all args are PFs 573 * => all pages in start/end get vm_page structures 574 * => areas marked by avail_start/avail_end get added to the free page pool 575 * => we are limited to VM_PHYSSEG_MAX physical memory segments 576 */ 577 578 void 579 uvm_page_physload(start, end, avail_start, avail_end, free_list) 580 paddr_t start, end, avail_start, avail_end; 581 int free_list; 582 { 583 int preload, lcv; 584 psize_t npages; 585 struct vm_page *pgs; 586 struct vm_physseg *ps; 587 588 if (uvmexp.pagesize == 0) 589 panic("vm_page_physload: page size not set!"); 590 591 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT) 592 panic("uvm_page_physload: bad free list %d\n", free_list); 593 594 if (start >= end) 595 panic("uvm_page_physload: start >= end"); 596 597 /* 598 * do we have room? 599 */ 600 if (vm_nphysseg == VM_PHYSSEG_MAX) { 601 printf("vm_page_physload: unable to load physical memory " 602 "segment\n"); 603 printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n", 604 VM_PHYSSEG_MAX, start, end); 605 return; 606 } 607 608 /* 609 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been 610 * called yet, so malloc is not available). 611 */ 612 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) { 613 if (vm_physmem[lcv].pgs) 614 break; 615 } 616 preload = (lcv == vm_nphysseg); 617 618 /* 619 * if VM is already running, attempt to malloc() vm_page structures 620 */ 621 if (!preload) { 622 #if defined(VM_PHYSSEG_NOADD) 623 panic("vm_page_physload: tried to add RAM after vm_mem_init"); 624 #else 625 /* XXXCDC: need some sort of lockout for this case */ 626 paddr_t paddr; 627 npages = end - start; /* # of pages */ 628 MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages, 629 M_VMPAGE, M_NOWAIT); 630 if (pgs == NULL) { 631 printf("vm_page_physload: can not malloc vm_page " 632 "structs for segment\n"); 633 printf("\tignoring 0x%lx -> 0x%lx\n", start, end); 634 return; 635 } 636 /* zero data, init phys_addr and free_list, and free pages */ 637 memset(pgs, 0, sizeof(struct vm_page) * npages); 638 for (lcv = 0, paddr = ptoa(start) ; 639 lcv < npages ; lcv++, paddr += PAGE_SIZE) { 640 pgs[lcv].phys_addr = paddr; 641 pgs[lcv].free_list = free_list; 642 if (atop(paddr) >= avail_start && 643 atop(paddr) <= avail_end) 644 uvm_pagefree(&pgs[lcv]); 645 } 646 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */ 647 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */ 648 #endif 649 } else { 650 651 /* gcc complains if these don't get init'd */ 652 pgs = NULL; 653 npages = 0; 654 655 } 656 657 /* 658 * now insert us in the proper place in vm_physmem[] 659 */ 660 661 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM) 662 663 /* random: put it at the end (easy!) */ 664 ps = &vm_physmem[vm_nphysseg]; 665 666 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 667 668 { 669 int x; 670 /* sort by address for binary search */ 671 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 672 if (start < vm_physmem[lcv].start) 673 break; 674 ps = &vm_physmem[lcv]; 675 /* move back other entries, if necessary ... */ 676 for (x = vm_nphysseg ; x > lcv ; x--) 677 /* structure copy */ 678 vm_physmem[x] = vm_physmem[x - 1]; 679 } 680 681 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 682 683 { 684 int x; 685 /* sort by largest segment first */ 686 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 687 if ((end - start) > 688 (vm_physmem[lcv].end - vm_physmem[lcv].start)) 689 break; 690 ps = &vm_physmem[lcv]; 691 /* move back other entries, if necessary ... */ 692 for (x = vm_nphysseg ; x > lcv ; x--) 693 /* structure copy */ 694 vm_physmem[x] = vm_physmem[x - 1]; 695 } 696 697 #else 698 699 panic("vm_page_physload: unknown physseg strategy selected!"); 700 701 #endif 702 703 ps->start = start; 704 ps->end = end; 705 ps->avail_start = avail_start; 706 ps->avail_end = avail_end; 707 if (preload) { 708 ps->pgs = NULL; 709 } else { 710 ps->pgs = pgs; 711 ps->lastpg = pgs + npages - 1; 712 } 713 ps->free_list = free_list; 714 vm_nphysseg++; 715 716 /* 717 * done! 718 */ 719 720 if (!preload) 721 uvm_page_rehash(); 722 723 return; 724 } 725 726 /* 727 * uvm_page_rehash: reallocate hash table based on number of free pages. 728 */ 729 730 void 731 uvm_page_rehash() 732 { 733 int freepages, lcv, bucketcount, s, oldcount; 734 struct pglist *newbuckets, *oldbuckets; 735 struct vm_page *pg; 736 size_t newsize, oldsize; 737 738 /* 739 * compute number of pages that can go in the free pool 740 */ 741 742 freepages = 0; 743 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 744 freepages += 745 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start); 746 747 /* 748 * compute number of buckets needed for this number of pages 749 */ 750 751 bucketcount = 1; 752 while (bucketcount < freepages) 753 bucketcount = bucketcount * 2; 754 755 /* 756 * compute the size of the current table and new table. 757 */ 758 759 oldbuckets = uvm.page_hash; 760 oldcount = uvm.page_nhash; 761 oldsize = round_page(sizeof(struct pglist) * oldcount); 762 newsize = round_page(sizeof(struct pglist) * bucketcount); 763 764 /* 765 * allocate the new buckets 766 */ 767 768 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize); 769 if (newbuckets == NULL) { 770 printf("uvm_page_physrehash: WARNING: could not grow page " 771 "hash table\n"); 772 return; 773 } 774 for (lcv = 0 ; lcv < bucketcount ; lcv++) 775 TAILQ_INIT(&newbuckets[lcv]); 776 777 /* 778 * now replace the old buckets with the new ones and rehash everything 779 */ 780 781 s = splimp(); 782 simple_lock(&uvm.hashlock); 783 uvm.page_hash = newbuckets; 784 uvm.page_nhash = bucketcount; 785 uvm.page_hashmask = bucketcount - 1; /* power of 2 */ 786 787 /* ... and rehash */ 788 for (lcv = 0 ; lcv < oldcount ; lcv++) { 789 while ((pg = oldbuckets[lcv].tqh_first) != NULL) { 790 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq); 791 TAILQ_INSERT_TAIL( 792 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], 793 pg, hashq); 794 } 795 } 796 simple_unlock(&uvm.hashlock); 797 splx(s); 798 799 /* 800 * free old bucket array if is not the boot-time table 801 */ 802 803 if (oldbuckets != &uvm_bootbucket) 804 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize); 805 806 /* 807 * done 808 */ 809 return; 810 } 811 812 813 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */ 814 815 void uvm_page_physdump __P((void)); /* SHUT UP GCC */ 816 817 /* call from DDB */ 818 void 819 uvm_page_physdump() 820 { 821 int lcv; 822 823 printf("rehash: physical memory config [segs=%d of %d]:\n", 824 vm_nphysseg, VM_PHYSSEG_MAX); 825 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 826 printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start, 827 vm_physmem[lcv].end, vm_physmem[lcv].avail_start, 828 vm_physmem[lcv].avail_end); 829 printf("STRATEGY = "); 830 switch (VM_PHYSSEG_STRAT) { 831 case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break; 832 case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break; 833 case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break; 834 default: printf("<<UNKNOWN>>!!!!\n"); 835 } 836 printf("number of buckets = %d\n", uvm.page_nhash); 837 } 838 #endif 839 840 /* 841 * uvm_pagealloc_strat: allocate vm_page from a particular free list. 842 * 843 * => return null if no pages free 844 * => wake up pagedaemon if number of free pages drops below low water mark 845 * => if obj != NULL, obj must be locked (to put in hash) 846 * => if anon != NULL, anon must be locked (to put in anon) 847 * => only one of obj or anon can be non-null 848 * => caller must activate/deactivate page if it is not wired. 849 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL. 850 */ 851 852 struct vm_page * 853 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list) 854 struct uvm_object *obj; 855 vaddr_t off; 856 int flags; 857 struct vm_anon *anon; 858 int strat, free_list; 859 { 860 int lcv, s; 861 struct vm_page *pg; 862 struct pglist *freeq; 863 boolean_t use_reserve; 864 865 #ifdef DIAGNOSTIC 866 /* sanity check */ 867 if (obj && anon) 868 panic("uvm_pagealloc: obj and anon != NULL"); 869 #endif 870 871 s = uvm_lock_fpageq(); /* lock free page queue */ 872 873 /* 874 * check to see if we need to generate some free pages waking 875 * the pagedaemon. 876 */ 877 878 if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg && 879 uvmexp.inactive < uvmexp.inactarg)) 880 wakeup(&uvm.pagedaemon); 881 882 /* 883 * fail if any of these conditions is true: 884 * [1] there really are no free pages, or 885 * [2] only kernel "reserved" pages remain and 886 * the page isn't being allocated to a kernel object. 887 * [3] only pagedaemon "reserved" pages remain and 888 * the requestor isn't the pagedaemon. 889 */ 890 891 use_reserve = (flags & UVM_PGA_USERESERVE) || 892 (obj && UVM_OBJ_IS_KERN_OBJECT(obj)); 893 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) || 894 (uvmexp.free <= uvmexp.reserve_pagedaemon && 895 !(use_reserve && curproc == uvm.pagedaemon_proc))) 896 goto fail; 897 898 again: 899 switch (strat) { 900 case UVM_PGA_STRAT_NORMAL: 901 /* Check all freelists in descending priority order. */ 902 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 903 freeq = &uvm.page_free[lcv]; 904 if ((pg = freeq->tqh_first) != NULL) 905 goto gotit; 906 } 907 908 /* No pages free! */ 909 goto fail; 910 911 case UVM_PGA_STRAT_ONLY: 912 case UVM_PGA_STRAT_FALLBACK: 913 /* Attempt to allocate from the specified free list. */ 914 #ifdef DIAGNOSTIC 915 if (free_list >= VM_NFREELIST || free_list < 0) 916 panic("uvm_pagealloc_strat: bad free list %d", 917 free_list); 918 #endif 919 freeq = &uvm.page_free[free_list]; 920 if ((pg = freeq->tqh_first) != NULL) 921 goto gotit; 922 923 /* Fall back, if possible. */ 924 if (strat == UVM_PGA_STRAT_FALLBACK) { 925 strat = UVM_PGA_STRAT_NORMAL; 926 goto again; 927 } 928 929 /* No pages free! */ 930 goto fail; 931 932 default: 933 panic("uvm_pagealloc_strat: bad strat %d", strat); 934 /* NOTREACHED */ 935 } 936 937 gotit: 938 TAILQ_REMOVE(freeq, pg, pageq); 939 uvmexp.free--; 940 941 uvm_unlock_fpageq(s); /* unlock free page queue */ 942 943 pg->offset = off; 944 pg->uobject = obj; 945 pg->uanon = anon; 946 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE; 947 pg->version++; 948 pg->wire_count = 0; 949 pg->loan_count = 0; 950 if (anon) { 951 anon->u.an_page = pg; 952 pg->pqflags = PQ_ANON; 953 } else { 954 if (obj) 955 uvm_pageinsert(pg); 956 pg->pqflags = 0; 957 } 958 #if defined(UVM_PAGE_TRKOWN) 959 pg->owner_tag = NULL; 960 #endif 961 UVM_PAGE_OWN(pg, "new alloc"); 962 963 return(pg); 964 965 fail: 966 uvm_unlock_fpageq(s); 967 return (NULL); 968 } 969 970 /* 971 * uvm_pagerealloc: reallocate a page from one object to another 972 * 973 * => both objects must be locked 974 */ 975 976 void 977 uvm_pagerealloc(pg, newobj, newoff) 978 struct vm_page *pg; 979 struct uvm_object *newobj; 980 vaddr_t newoff; 981 { 982 /* 983 * remove it from the old object 984 */ 985 986 if (pg->uobject) { 987 uvm_pageremove(pg); 988 } 989 990 /* 991 * put it in the new object 992 */ 993 994 if (newobj) { 995 pg->uobject = newobj; 996 pg->offset = newoff; 997 pg->version++; 998 uvm_pageinsert(pg); 999 } 1000 1001 return; 1002 } 1003 1004 1005 /* 1006 * uvm_pagefree: free page 1007 * 1008 * => erase page's identity (i.e. remove from hash/object) 1009 * => put page on free list 1010 * => caller must lock owning object (either anon or uvm_object) 1011 * => caller must lock page queues 1012 * => assumes all valid mappings of pg are gone 1013 */ 1014 1015 void uvm_pagefree(pg) 1016 1017 struct vm_page *pg; 1018 1019 { 1020 int s; 1021 int saved_loan_count = pg->loan_count; 1022 1023 /* 1024 * if the page was an object page (and thus "TABLED"), remove it 1025 * from the object. 1026 */ 1027 1028 if (pg->flags & PG_TABLED) { 1029 1030 /* 1031 * if the object page is on loan we are going to drop ownership. 1032 * it is possible that an anon will take over as owner for this 1033 * page later on. the anon will want a !PG_CLEAN page so that 1034 * it knows it needs to allocate swap if it wants to page the 1035 * page out. 1036 */ 1037 1038 if (saved_loan_count) 1039 pg->flags &= ~PG_CLEAN; /* in case an anon takes over */ 1040 1041 uvm_pageremove(pg); 1042 1043 /* 1044 * if our page was on loan, then we just lost control over it 1045 * (in fact, if it was loaned to an anon, the anon may have 1046 * already taken over ownership of the page by now and thus 1047 * changed the loan_count [e.g. in uvmfault_anonget()]) we just 1048 * return (when the last loan is dropped, then the page can be 1049 * freed by whatever was holding the last loan). 1050 */ 1051 if (saved_loan_count) 1052 return; 1053 1054 } else if (saved_loan_count && (pg->pqflags & PQ_ANON)) { 1055 1056 /* 1057 * if our page is owned by an anon and is loaned out to the 1058 * kernel then we just want to drop ownership and return. 1059 * the kernel must free the page when all its loans clear ... 1060 * note that the kernel can't change the loan status of our 1061 * page as long as we are holding PQ lock. 1062 */ 1063 pg->pqflags &= ~PQ_ANON; 1064 pg->uanon = NULL; 1065 return; 1066 } 1067 1068 #ifdef DIAGNOSTIC 1069 if (saved_loan_count) { 1070 printf("uvm_pagefree: warning: freeing page with a loan " 1071 "count of %d\n", saved_loan_count); 1072 panic("uvm_pagefree: loan count"); 1073 } 1074 #endif 1075 1076 1077 /* 1078 * now remove the page from the queues 1079 */ 1080 1081 if (pg->pqflags & PQ_ACTIVE) { 1082 TAILQ_REMOVE(&uvm.page_active, pg, pageq); 1083 pg->pqflags &= ~PQ_ACTIVE; 1084 uvmexp.active--; 1085 } 1086 if (pg->pqflags & PQ_INACTIVE) { 1087 if (pg->pqflags & PQ_SWAPBACKED) 1088 TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq); 1089 else 1090 TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq); 1091 pg->pqflags &= ~PQ_INACTIVE; 1092 uvmexp.inactive--; 1093 } 1094 1095 /* 1096 * if the page was wired, unwire it now. 1097 */ 1098 if (pg->wire_count) 1099 { 1100 pg->wire_count = 0; 1101 uvmexp.wired--; 1102 } 1103 1104 /* 1105 * and put on free queue 1106 */ 1107 1108 s = uvm_lock_fpageq(); 1109 TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)], 1110 pg, pageq); 1111 pg->pqflags = PQ_FREE; 1112 #ifdef DEBUG 1113 pg->uobject = (void *)0xdeadbeef; 1114 pg->offset = 0xdeadbeef; 1115 pg->uanon = (void *)0xdeadbeef; 1116 #endif 1117 uvmexp.free++; 1118 uvm_unlock_fpageq(s); 1119 } 1120 1121 #if defined(UVM_PAGE_TRKOWN) 1122 /* 1123 * uvm_page_own: set or release page ownership 1124 * 1125 * => this is a debugging function that keeps track of who sets PG_BUSY 1126 * and where they do it. it can be used to track down problems 1127 * such a process setting "PG_BUSY" and never releasing it. 1128 * => page's object [if any] must be locked 1129 * => if "tag" is NULL then we are releasing page ownership 1130 */ 1131 void 1132 uvm_page_own(pg, tag) 1133 struct vm_page *pg; 1134 char *tag; 1135 { 1136 /* gain ownership? */ 1137 if (tag) { 1138 if (pg->owner_tag) { 1139 printf("uvm_page_own: page %p already owned " 1140 "by proc %d [%s]\n", pg, 1141 pg->owner, pg->owner_tag); 1142 panic("uvm_page_own"); 1143 } 1144 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1; 1145 pg->owner_tag = tag; 1146 return; 1147 } 1148 1149 /* drop ownership */ 1150 if (pg->owner_tag == NULL) { 1151 printf("uvm_page_own: dropping ownership of an non-owned " 1152 "page (%p)\n", pg); 1153 panic("uvm_page_own"); 1154 } 1155 pg->owner_tag = NULL; 1156 return; 1157 } 1158 #endif 1159