xref: /netbsd-src/sys/uvm/uvm_page.c (revision 89c5a767f8fc7a4633b2d409966e2becbb98ff92)
1 /*	$NetBSD: uvm_page.c,v 1.30 2000/02/13 03:34:40 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
42  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_page.c: page ops.
71  */
72 
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/malloc.h>
76 #include <sys/proc.h>
77 
78 #include <vm/vm.h>
79 #include <vm/vm_page.h>
80 #include <vm/vm_kern.h>
81 
82 #define UVM_PAGE                /* pull in uvm_page.h functions */
83 #include <uvm/uvm.h>
84 
85 /*
86  * global vars... XXXCDC: move to uvm. structure.
87  */
88 
89 /*
90  * physical memory config is stored in vm_physmem.
91  */
92 
93 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX];	/* XXXCDC: uvm.physmem */
94 int vm_nphysseg = 0;				/* XXXCDC: uvm.nphysseg */
95 
96 /*
97  * local variables
98  */
99 
100 /*
101  * these variables record the values returned by vm_page_bootstrap,
102  * for debugging purposes.  The implementation of uvm_pageboot_alloc
103  * and pmap_startup here also uses them internally.
104  */
105 
106 static vaddr_t      virtual_space_start;
107 static vaddr_t      virtual_space_end;
108 
109 /*
110  * we use a hash table with only one bucket during bootup.  we will
111  * later rehash (resize) the hash table once the allocator is ready.
112  * we static allocate the one bootstrap bucket below...
113  */
114 
115 static struct pglist uvm_bootbucket;
116 
117 /*
118  * local prototypes
119  */
120 
121 static void uvm_pageinsert __P((struct vm_page *));
122 
123 
124 /*
125  * inline functions
126  */
127 
128 /*
129  * uvm_pageinsert: insert a page in the object and the hash table
130  *
131  * => caller must lock object
132  * => caller must lock page queues
133  * => call should have already set pg's object and offset pointers
134  *    and bumped the version counter
135  */
136 
137 __inline static void
138 uvm_pageinsert(pg)
139 	struct vm_page *pg;
140 {
141 	struct pglist *buck;
142 	int s;
143 
144 #ifdef DIAGNOSTIC
145 	if (pg->flags & PG_TABLED)
146 		panic("uvm_pageinsert: already inserted");
147 #endif
148 
149 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
150 	s = splimp();
151 	simple_lock(&uvm.hashlock);
152 	TAILQ_INSERT_TAIL(buck, pg, hashq);	/* put in hash */
153 	simple_unlock(&uvm.hashlock);
154 	splx(s);
155 
156 	TAILQ_INSERT_TAIL(&pg->uobject->memq, pg, listq); /* put in object */
157 	pg->flags |= PG_TABLED;
158 	pg->uobject->uo_npages++;
159 
160 }
161 
162 /*
163  * uvm_page_remove: remove page from object and hash
164  *
165  * => caller must lock object
166  * => caller must lock page queues
167  */
168 
169 void __inline
170 uvm_pageremove(pg)
171 	struct vm_page *pg;
172 {
173 	struct pglist *buck;
174 	int s;
175 
176 #ifdef DIAGNOSTIC
177 	if ((pg->flags & (PG_FAULTING)) != 0)
178 		panic("uvm_pageremove: page is faulting");
179 #endif
180 
181 	if ((pg->flags & PG_TABLED) == 0)
182 		return;				/* XXX: log */
183 
184 	buck = &uvm.page_hash[uvm_pagehash(pg->uobject,pg->offset)];
185 	s = splimp();
186 	simple_lock(&uvm.hashlock);
187 	TAILQ_REMOVE(buck, pg, hashq);
188 	simple_unlock(&uvm.hashlock);
189 	splx(s);
190 
191 	/* object should be locked */
192 	TAILQ_REMOVE(&pg->uobject->memq, pg, listq);
193 
194 	pg->flags &= ~PG_TABLED;
195 	pg->uobject->uo_npages--;
196 	pg->uobject = NULL;
197 	pg->version++;
198 
199 }
200 
201 /*
202  * uvm_page_init: init the page system.   called from uvm_init().
203  *
204  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
205  */
206 
207 void
208 uvm_page_init(kvm_startp, kvm_endp)
209 	vaddr_t *kvm_startp, *kvm_endp;
210 {
211 	vsize_t freepages, pagecount, n;
212 	vm_page_t pagearray;
213 	int lcv, i;
214 	paddr_t paddr;
215 
216 
217 	/*
218 	 * step 1: init the page queues and page queue locks
219 	 */
220 	for (lcv = 0; lcv < VM_NFREELIST; lcv++)
221 	  TAILQ_INIT(&uvm.page_free[lcv]);
222 	TAILQ_INIT(&uvm.page_active);
223 	TAILQ_INIT(&uvm.page_inactive_swp);
224 	TAILQ_INIT(&uvm.page_inactive_obj);
225 	simple_lock_init(&uvm.pageqlock);
226 	simple_lock_init(&uvm.fpageqlock);
227 
228 	/*
229 	 * step 2: init the <obj,offset> => <page> hash table. for now
230 	 * we just have one bucket (the bootstrap bucket).   later on we
231 	 * will allocate new buckets as we dynamically resize the hash table.
232 	 */
233 
234 	uvm.page_nhash = 1;			/* 1 bucket */
235 	uvm.page_hashmask = 0;		/* mask for hash function */
236 	uvm.page_hash = &uvm_bootbucket;	/* install bootstrap bucket */
237 	TAILQ_INIT(uvm.page_hash);		/* init hash table */
238 	simple_lock_init(&uvm.hashlock);	/* init hash table lock */
239 
240 	/*
241 	 * step 3: allocate vm_page structures.
242 	 */
243 
244 	/*
245 	 * sanity check:
246 	 * before calling this function the MD code is expected to register
247 	 * some free RAM with the uvm_page_physload() function.   our job
248 	 * now is to allocate vm_page structures for this memory.
249 	 */
250 
251 	if (vm_nphysseg == 0)
252 		panic("vm_page_bootstrap: no memory pre-allocated");
253 
254 	/*
255 	 * first calculate the number of free pages...
256 	 *
257 	 * note that we use start/end rather than avail_start/avail_end.
258 	 * this allows us to allocate extra vm_page structures in case we
259 	 * want to return some memory to the pool after booting.
260 	 */
261 
262 	freepages = 0;
263 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
264 		freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start);
265 
266 	/*
267 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
268 	 * use.   for each page of memory we use we need a vm_page structure.
269 	 * thus, the total number of pages we can use is the total size of
270 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
271 	 * structure.   we add one to freepages as a fudge factor to avoid
272 	 * truncation errors (since we can only allocate in terms of whole
273 	 * pages).
274 	 */
275 
276 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
277 	    (PAGE_SIZE + sizeof(struct vm_page));
278 	pagearray = (vm_page_t)uvm_pageboot_alloc(pagecount *
279 	    sizeof(struct vm_page));
280 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
281 
282 	/*
283 	 * step 4: init the vm_page structures and put them in the correct
284 	 * place...
285 	 */
286 
287 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
288 
289 		n = vm_physmem[lcv].end - vm_physmem[lcv].start;
290 		if (n > pagecount) {
291 			printf("uvm_page_init: lost %ld page(s) in init\n",
292 			    (long)(n - pagecount));
293 			panic("uvm_page_init");  /* XXXCDC: shouldn't happen? */
294 			/* n = pagecount; */
295 		}
296 		/* set up page array pointers */
297 		vm_physmem[lcv].pgs = pagearray;
298 		pagearray += n;
299 		pagecount -= n;
300 		vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1);
301 
302 		/* init and free vm_pages (we've already zeroed them) */
303 		paddr = ptoa(vm_physmem[lcv].start);
304 		for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
305 			vm_physmem[lcv].pgs[i].phys_addr = paddr;
306 			if (atop(paddr) >= vm_physmem[lcv].avail_start &&
307 			    atop(paddr) <= vm_physmem[lcv].avail_end) {
308 				uvmexp.npages++;
309 				/* add page to free pool */
310 				uvm_pagefree(&vm_physmem[lcv].pgs[i]);
311 			}
312 		}
313 	}
314 	/*
315 	 * step 5: pass up the values of virtual_space_start and
316 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
317 	 * layers of the VM.
318 	 */
319 
320 	*kvm_startp = round_page(virtual_space_start);
321 	*kvm_endp = trunc_page(virtual_space_end);
322 
323 	/*
324 	 * step 6: init pagedaemon lock
325 	 */
326 
327 	simple_lock_init(&uvm.pagedaemon_lock);
328 
329 	/*
330 	 * step 7: init reserve thresholds
331 	 * XXXCDC - values may need adjusting
332 	 */
333 	uvmexp.reserve_pagedaemon = 1;
334 	uvmexp.reserve_kernel = 5;
335 
336 	/*
337 	 * done!
338 	 */
339 
340 }
341 
342 /*
343  * uvm_setpagesize: set the page size
344  *
345  * => sets page_shift and page_mask from uvmexp.pagesize.
346  * => XXXCDC: move global vars.
347  */
348 
349 void
350 uvm_setpagesize()
351 {
352 	if (uvmexp.pagesize == 0)
353 		uvmexp.pagesize = DEFAULT_PAGE_SIZE;
354 	uvmexp.pagemask = uvmexp.pagesize - 1;
355 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
356 		panic("uvm_setpagesize: page size not a power of two");
357 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
358 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
359 			break;
360 }
361 
362 /*
363  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
364  */
365 
366 vaddr_t
367 uvm_pageboot_alloc(size)
368 	vsize_t size;
369 {
370 #if defined(PMAP_STEAL_MEMORY)
371 	vaddr_t addr;
372 
373 	/*
374 	 * defer bootstrap allocation to MD code (it may want to allocate
375 	 * from a direct-mapped segment).  pmap_steal_memory should round
376 	 * off virtual_space_start/virtual_space_end.
377 	 */
378 
379 	addr = pmap_steal_memory(size, &virtual_space_start,
380 	    &virtual_space_end);
381 
382 	return(addr);
383 
384 #else /* !PMAP_STEAL_MEMORY */
385 
386 	static boolean_t initialized = FALSE;
387 	vaddr_t addr, vaddr;
388 	paddr_t paddr;
389 
390 	/* round to page size */
391 	size = round_page(size);
392 
393 	/*
394 	 * on first call to this function, initialize ourselves.
395 	 */
396 	if (initialized == FALSE) {
397 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
398 
399 		/* round it the way we like it */
400 		virtual_space_start = round_page(virtual_space_start);
401 		virtual_space_end = trunc_page(virtual_space_end);
402 
403 		initialized = TRUE;
404 	}
405 
406 	/*
407 	 * allocate virtual memory for this request
408 	 */
409 	if (virtual_space_start == virtual_space_end ||
410 	    (virtual_space_end - virtual_space_start) < size)
411 		panic("uvm_pageboot_alloc: out of virtual space");
412 
413 	addr = virtual_space_start;
414 
415 #ifdef PMAP_GROWKERNEL
416 	/*
417 	 * If the kernel pmap can't map the requested space,
418 	 * then allocate more resources for it.
419 	 */
420 	if (uvm_maxkaddr < (addr + size)) {
421 		uvm_maxkaddr = pmap_growkernel(addr + size);
422 		if (uvm_maxkaddr < (addr + size))
423 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
424 	}
425 #endif
426 
427 	virtual_space_start += size;
428 
429 	/*
430 	 * allocate and mapin physical pages to back new virtual pages
431 	 */
432 
433 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
434 	    vaddr += PAGE_SIZE) {
435 
436 		if (!uvm_page_physget(&paddr))
437 			panic("uvm_pageboot_alloc: out of memory");
438 
439 		/*
440 		 * Note this memory is no longer managed, so using
441 		 * pmap_kenter is safe.
442 		 */
443 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE);
444 	}
445 	return(addr);
446 #endif	/* PMAP_STEAL_MEMORY */
447 }
448 
449 #if !defined(PMAP_STEAL_MEMORY)
450 /*
451  * uvm_page_physget: "steal" one page from the vm_physmem structure.
452  *
453  * => attempt to allocate it off the end of a segment in which the "avail"
454  *    values match the start/end values.   if we can't do that, then we
455  *    will advance both values (making them equal, and removing some
456  *    vm_page structures from the non-avail area).
457  * => return false if out of memory.
458  */
459 
460 /* subroutine: try to allocate from memory chunks on the specified freelist */
461 static boolean_t uvm_page_physget_freelist __P((paddr_t *, int));
462 
463 static boolean_t
464 uvm_page_physget_freelist(paddrp, freelist)
465 	paddr_t *paddrp;
466 	int freelist;
467 {
468 	int lcv, x;
469 
470 	/* pass 1: try allocating from a matching end */
471 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
472 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
473 #else
474 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
475 #endif
476 	{
477 
478 		if (vm_physmem[lcv].pgs)
479 			panic("vm_page_physget: called _after_ bootstrap");
480 
481 		if (vm_physmem[lcv].free_list != freelist)
482 			continue;
483 
484 		/* try from front */
485 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start &&
486 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
487 			*paddrp = ptoa(vm_physmem[lcv].avail_start);
488 			vm_physmem[lcv].avail_start++;
489 			vm_physmem[lcv].start++;
490 			/* nothing left?   nuke it */
491 			if (vm_physmem[lcv].avail_start ==
492 			    vm_physmem[lcv].end) {
493 				if (vm_nphysseg == 1)
494 				    panic("vm_page_physget: out of memory!");
495 				vm_nphysseg--;
496 				for (x = lcv ; x < vm_nphysseg ; x++)
497 					/* structure copy */
498 					vm_physmem[x] = vm_physmem[x+1];
499 			}
500 			return (TRUE);
501 		}
502 
503 		/* try from rear */
504 		if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end &&
505 		    vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) {
506 			*paddrp = ptoa(vm_physmem[lcv].avail_end - 1);
507 			vm_physmem[lcv].avail_end--;
508 			vm_physmem[lcv].end--;
509 			/* nothing left?   nuke it */
510 			if (vm_physmem[lcv].avail_end ==
511 			    vm_physmem[lcv].start) {
512 				if (vm_nphysseg == 1)
513 				    panic("vm_page_physget: out of memory!");
514 				vm_nphysseg--;
515 				for (x = lcv ; x < vm_nphysseg ; x++)
516 					/* structure copy */
517 					vm_physmem[x] = vm_physmem[x+1];
518 			}
519 			return (TRUE);
520 		}
521 	}
522 
523 	/* pass2: forget about matching ends, just allocate something */
524 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
525 	for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--)
526 #else
527 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
528 #endif
529 	{
530 
531 		/* any room in this bank? */
532 		if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end)
533 			continue;  /* nope */
534 
535 		*paddrp = ptoa(vm_physmem[lcv].avail_start);
536 		vm_physmem[lcv].avail_start++;
537 		/* truncate! */
538 		vm_physmem[lcv].start = vm_physmem[lcv].avail_start;
539 
540 		/* nothing left?   nuke it */
541 		if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) {
542 			if (vm_nphysseg == 1)
543 				panic("vm_page_physget: out of memory!");
544 			vm_nphysseg--;
545 			for (x = lcv ; x < vm_nphysseg ; x++)
546 				/* structure copy */
547 				vm_physmem[x] = vm_physmem[x+1];
548 		}
549 		return (TRUE);
550 	}
551 
552 	return (FALSE);        /* whoops! */
553 }
554 
555 boolean_t
556 uvm_page_physget(paddrp)
557 	paddr_t *paddrp;
558 {
559 	int i;
560 
561 	/* try in the order of freelist preference */
562 	for (i = 0; i < VM_NFREELIST; i++)
563 		if (uvm_page_physget_freelist(paddrp, i) == TRUE)
564 			return (TRUE);
565 	return (FALSE);
566 }
567 #endif /* PMAP_STEAL_MEMORY */
568 
569 /*
570  * uvm_page_physload: load physical memory into VM system
571  *
572  * => all args are PFs
573  * => all pages in start/end get vm_page structures
574  * => areas marked by avail_start/avail_end get added to the free page pool
575  * => we are limited to VM_PHYSSEG_MAX physical memory segments
576  */
577 
578 void
579 uvm_page_physload(start, end, avail_start, avail_end, free_list)
580 	paddr_t start, end, avail_start, avail_end;
581 	int free_list;
582 {
583 	int preload, lcv;
584 	psize_t npages;
585 	struct vm_page *pgs;
586 	struct vm_physseg *ps;
587 
588 	if (uvmexp.pagesize == 0)
589 		panic("vm_page_physload: page size not set!");
590 
591 	if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
592 		panic("uvm_page_physload: bad free list %d\n", free_list);
593 
594 	if (start >= end)
595 		panic("uvm_page_physload: start >= end");
596 
597 	/*
598 	 * do we have room?
599 	 */
600 	if (vm_nphysseg == VM_PHYSSEG_MAX) {
601 		printf("vm_page_physload: unable to load physical memory "
602 		    "segment\n");
603 		printf("\t%d segments allocated, ignoring 0x%lx -> 0x%lx\n",
604 		    VM_PHYSSEG_MAX, start, end);
605 		return;
606 	}
607 
608 	/*
609 	 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been
610 	 * called yet, so malloc is not available).
611 	 */
612 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) {
613 		if (vm_physmem[lcv].pgs)
614 			break;
615 	}
616 	preload = (lcv == vm_nphysseg);
617 
618 	/*
619 	 * if VM is already running, attempt to malloc() vm_page structures
620 	 */
621 	if (!preload) {
622 #if defined(VM_PHYSSEG_NOADD)
623 		panic("vm_page_physload: tried to add RAM after vm_mem_init");
624 #else
625 		/* XXXCDC: need some sort of lockout for this case */
626 		paddr_t paddr;
627 		npages = end - start;  /* # of pages */
628 		MALLOC(pgs, struct vm_page *, sizeof(struct vm_page) * npages,
629 					 M_VMPAGE, M_NOWAIT);
630 		if (pgs == NULL) {
631 			printf("vm_page_physload: can not malloc vm_page "
632 			    "structs for segment\n");
633 			printf("\tignoring 0x%lx -> 0x%lx\n", start, end);
634 			return;
635 		}
636 		/* zero data, init phys_addr and free_list, and free pages */
637 		memset(pgs, 0, sizeof(struct vm_page) * npages);
638 		for (lcv = 0, paddr = ptoa(start) ;
639 				 lcv < npages ; lcv++, paddr += PAGE_SIZE) {
640 			pgs[lcv].phys_addr = paddr;
641 			pgs[lcv].free_list = free_list;
642 			if (atop(paddr) >= avail_start &&
643 			    atop(paddr) <= avail_end)
644 				uvm_pagefree(&pgs[lcv]);
645 		}
646 		/* XXXCDC: incomplete: need to update uvmexp.free, what else? */
647 		/* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */
648 #endif
649 	} else {
650 
651 		/* gcc complains if these don't get init'd */
652 		pgs = NULL;
653 		npages = 0;
654 
655 	}
656 
657 	/*
658 	 * now insert us in the proper place in vm_physmem[]
659 	 */
660 
661 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
662 
663 	/* random: put it at the end (easy!) */
664 	ps = &vm_physmem[vm_nphysseg];
665 
666 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
667 
668 	{
669 		int x;
670 		/* sort by address for binary search */
671 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
672 			if (start < vm_physmem[lcv].start)
673 				break;
674 		ps = &vm_physmem[lcv];
675 		/* move back other entries, if necessary ... */
676 		for (x = vm_nphysseg ; x > lcv ; x--)
677 			/* structure copy */
678 			vm_physmem[x] = vm_physmem[x - 1];
679 	}
680 
681 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
682 
683 	{
684 		int x;
685 		/* sort by largest segment first */
686 		for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
687 			if ((end - start) >
688 			    (vm_physmem[lcv].end - vm_physmem[lcv].start))
689 				break;
690 		ps = &vm_physmem[lcv];
691 		/* move back other entries, if necessary ... */
692 		for (x = vm_nphysseg ; x > lcv ; x--)
693 			/* structure copy */
694 			vm_physmem[x] = vm_physmem[x - 1];
695 	}
696 
697 #else
698 
699 	panic("vm_page_physload: unknown physseg strategy selected!");
700 
701 #endif
702 
703 	ps->start = start;
704 	ps->end = end;
705 	ps->avail_start = avail_start;
706 	ps->avail_end = avail_end;
707 	if (preload) {
708 		ps->pgs = NULL;
709 	} else {
710 		ps->pgs = pgs;
711 		ps->lastpg = pgs + npages - 1;
712 	}
713 	ps->free_list = free_list;
714 	vm_nphysseg++;
715 
716 	/*
717 	 * done!
718 	 */
719 
720 	if (!preload)
721 		uvm_page_rehash();
722 
723 	return;
724 }
725 
726 /*
727  * uvm_page_rehash: reallocate hash table based on number of free pages.
728  */
729 
730 void
731 uvm_page_rehash()
732 {
733 	int freepages, lcv, bucketcount, s, oldcount;
734 	struct pglist *newbuckets, *oldbuckets;
735 	struct vm_page *pg;
736 	size_t newsize, oldsize;
737 
738 	/*
739 	 * compute number of pages that can go in the free pool
740 	 */
741 
742 	freepages = 0;
743 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
744 		freepages +=
745 		    (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start);
746 
747 	/*
748 	 * compute number of buckets needed for this number of pages
749 	 */
750 
751 	bucketcount = 1;
752 	while (bucketcount < freepages)
753 		bucketcount = bucketcount * 2;
754 
755 	/*
756 	 * compute the size of the current table and new table.
757 	 */
758 
759 	oldbuckets = uvm.page_hash;
760 	oldcount = uvm.page_nhash;
761 	oldsize = round_page(sizeof(struct pglist) * oldcount);
762 	newsize = round_page(sizeof(struct pglist) * bucketcount);
763 
764 	/*
765 	 * allocate the new buckets
766 	 */
767 
768 	newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize);
769 	if (newbuckets == NULL) {
770 		printf("uvm_page_physrehash: WARNING: could not grow page "
771 		    "hash table\n");
772 		return;
773 	}
774 	for (lcv = 0 ; lcv < bucketcount ; lcv++)
775 		TAILQ_INIT(&newbuckets[lcv]);
776 
777 	/*
778 	 * now replace the old buckets with the new ones and rehash everything
779 	 */
780 
781 	s = splimp();
782 	simple_lock(&uvm.hashlock);
783 	uvm.page_hash = newbuckets;
784 	uvm.page_nhash = bucketcount;
785 	uvm.page_hashmask = bucketcount - 1;  /* power of 2 */
786 
787 	/* ... and rehash */
788 	for (lcv = 0 ; lcv < oldcount ; lcv++) {
789 		while ((pg = oldbuckets[lcv].tqh_first) != NULL) {
790 			TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq);
791 			TAILQ_INSERT_TAIL(
792 			  &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)],
793 			  pg, hashq);
794 		}
795 	}
796 	simple_unlock(&uvm.hashlock);
797 	splx(s);
798 
799 	/*
800 	 * free old bucket array if is not the boot-time table
801 	 */
802 
803 	if (oldbuckets != &uvm_bootbucket)
804 		uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize);
805 
806 	/*
807 	 * done
808 	 */
809 	return;
810 }
811 
812 
813 #if 1 /* XXXCDC: TMP TMP TMP DEBUG DEBUG DEBUG */
814 
815 void uvm_page_physdump __P((void)); /* SHUT UP GCC */
816 
817 /* call from DDB */
818 void
819 uvm_page_physdump()
820 {
821 	int lcv;
822 
823 	printf("rehash: physical memory config [segs=%d of %d]:\n",
824 				 vm_nphysseg, VM_PHYSSEG_MAX);
825 	for (lcv = 0 ; lcv < vm_nphysseg ; lcv++)
826 		printf("0x%lx->0x%lx [0x%lx->0x%lx]\n", vm_physmem[lcv].start,
827 		    vm_physmem[lcv].end, vm_physmem[lcv].avail_start,
828 		    vm_physmem[lcv].avail_end);
829 	printf("STRATEGY = ");
830 	switch (VM_PHYSSEG_STRAT) {
831 	case VM_PSTRAT_RANDOM: printf("RANDOM\n"); break;
832 	case VM_PSTRAT_BSEARCH: printf("BSEARCH\n"); break;
833 	case VM_PSTRAT_BIGFIRST: printf("BIGFIRST\n"); break;
834 	default: printf("<<UNKNOWN>>!!!!\n");
835 	}
836 	printf("number of buckets = %d\n", uvm.page_nhash);
837 }
838 #endif
839 
840 /*
841  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
842  *
843  * => return null if no pages free
844  * => wake up pagedaemon if number of free pages drops below low water mark
845  * => if obj != NULL, obj must be locked (to put in hash)
846  * => if anon != NULL, anon must be locked (to put in anon)
847  * => only one of obj or anon can be non-null
848  * => caller must activate/deactivate page if it is not wired.
849  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
850  */
851 
852 struct vm_page *
853 uvm_pagealloc_strat(obj, off, anon, flags, strat, free_list)
854 	struct uvm_object *obj;
855 	vaddr_t off;
856 	int flags;
857 	struct vm_anon *anon;
858 	int strat, free_list;
859 {
860 	int lcv, s;
861 	struct vm_page *pg;
862 	struct pglist *freeq;
863 	boolean_t use_reserve;
864 
865 #ifdef DIAGNOSTIC
866 	/* sanity check */
867 	if (obj && anon)
868 		panic("uvm_pagealloc: obj and anon != NULL");
869 #endif
870 
871 	s = uvm_lock_fpageq();		/* lock free page queue */
872 
873 	/*
874 	 * check to see if we need to generate some free pages waking
875 	 * the pagedaemon.
876 	 */
877 
878 	if (uvmexp.free < uvmexp.freemin || (uvmexp.free < uvmexp.freetarg &&
879 	    uvmexp.inactive < uvmexp.inactarg))
880 		wakeup(&uvm.pagedaemon);
881 
882 	/*
883 	 * fail if any of these conditions is true:
884 	 * [1]  there really are no free pages, or
885 	 * [2]  only kernel "reserved" pages remain and
886 	 *        the page isn't being allocated to a kernel object.
887 	 * [3]  only pagedaemon "reserved" pages remain and
888 	 *        the requestor isn't the pagedaemon.
889 	 */
890 
891 	use_reserve = (flags & UVM_PGA_USERESERVE) ||
892 		(obj && UVM_OBJ_IS_KERN_OBJECT(obj));
893 	if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) ||
894 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
895 	     !(use_reserve && curproc == uvm.pagedaemon_proc)))
896 		goto fail;
897 
898  again:
899 	switch (strat) {
900 	case UVM_PGA_STRAT_NORMAL:
901 		/* Check all freelists in descending priority order. */
902 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
903 			freeq = &uvm.page_free[lcv];
904 			if ((pg = freeq->tqh_first) != NULL)
905 				goto gotit;
906 		}
907 
908 		/* No pages free! */
909 		goto fail;
910 
911 	case UVM_PGA_STRAT_ONLY:
912 	case UVM_PGA_STRAT_FALLBACK:
913 		/* Attempt to allocate from the specified free list. */
914 #ifdef DIAGNOSTIC
915 		if (free_list >= VM_NFREELIST || free_list < 0)
916 			panic("uvm_pagealloc_strat: bad free list %d",
917 			    free_list);
918 #endif
919 		freeq = &uvm.page_free[free_list];
920 		if ((pg = freeq->tqh_first) != NULL)
921 			goto gotit;
922 
923 		/* Fall back, if possible. */
924 		if (strat == UVM_PGA_STRAT_FALLBACK) {
925 			strat = UVM_PGA_STRAT_NORMAL;
926 			goto again;
927 		}
928 
929 		/* No pages free! */
930 		goto fail;
931 
932 	default:
933 		panic("uvm_pagealloc_strat: bad strat %d", strat);
934 		/* NOTREACHED */
935 	}
936 
937  gotit:
938 	TAILQ_REMOVE(freeq, pg, pageq);
939 	uvmexp.free--;
940 
941 	uvm_unlock_fpageq(s);		/* unlock free page queue */
942 
943 	pg->offset = off;
944 	pg->uobject = obj;
945 	pg->uanon = anon;
946 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
947 	pg->version++;
948 	pg->wire_count = 0;
949 	pg->loan_count = 0;
950 	if (anon) {
951 		anon->u.an_page = pg;
952 		pg->pqflags = PQ_ANON;
953 	} else {
954 		if (obj)
955 			uvm_pageinsert(pg);
956 		pg->pqflags = 0;
957 	}
958 #if defined(UVM_PAGE_TRKOWN)
959 	pg->owner_tag = NULL;
960 #endif
961 	UVM_PAGE_OWN(pg, "new alloc");
962 
963 	return(pg);
964 
965  fail:
966 	uvm_unlock_fpageq(s);
967 	return (NULL);
968 }
969 
970 /*
971  * uvm_pagerealloc: reallocate a page from one object to another
972  *
973  * => both objects must be locked
974  */
975 
976 void
977 uvm_pagerealloc(pg, newobj, newoff)
978 	struct vm_page *pg;
979 	struct uvm_object *newobj;
980 	vaddr_t newoff;
981 {
982 	/*
983 	 * remove it from the old object
984 	 */
985 
986 	if (pg->uobject) {
987 		uvm_pageremove(pg);
988 	}
989 
990 	/*
991 	 * put it in the new object
992 	 */
993 
994 	if (newobj) {
995 		pg->uobject = newobj;
996 		pg->offset = newoff;
997 		pg->version++;
998 		uvm_pageinsert(pg);
999 	}
1000 
1001 	return;
1002 }
1003 
1004 
1005 /*
1006  * uvm_pagefree: free page
1007  *
1008  * => erase page's identity (i.e. remove from hash/object)
1009  * => put page on free list
1010  * => caller must lock owning object (either anon or uvm_object)
1011  * => caller must lock page queues
1012  * => assumes all valid mappings of pg are gone
1013  */
1014 
1015 void uvm_pagefree(pg)
1016 
1017 struct vm_page *pg;
1018 
1019 {
1020 	int s;
1021 	int saved_loan_count = pg->loan_count;
1022 
1023 	/*
1024 	 * if the page was an object page (and thus "TABLED"), remove it
1025 	 * from the object.
1026 	 */
1027 
1028 	if (pg->flags & PG_TABLED) {
1029 
1030 		/*
1031 		 * if the object page is on loan we are going to drop ownership.
1032 		 * it is possible that an anon will take over as owner for this
1033 		 * page later on.   the anon will want a !PG_CLEAN page so that
1034 		 * it knows it needs to allocate swap if it wants to page the
1035 		 * page out.
1036 		 */
1037 
1038 		if (saved_loan_count)
1039 			pg->flags &= ~PG_CLEAN;	/* in case an anon takes over */
1040 
1041 		uvm_pageremove(pg);
1042 
1043 		/*
1044 		 * if our page was on loan, then we just lost control over it
1045 		 * (in fact, if it was loaned to an anon, the anon may have
1046 		 * already taken over ownership of the page by now and thus
1047 		 * changed the loan_count [e.g. in uvmfault_anonget()]) we just
1048 		 * return (when the last loan is dropped, then the page can be
1049 		 * freed by whatever was holding the last loan).
1050 		 */
1051 		if (saved_loan_count)
1052 			return;
1053 
1054 	} else if (saved_loan_count && (pg->pqflags & PQ_ANON)) {
1055 
1056 		/*
1057 		 * if our page is owned by an anon and is loaned out to the
1058 		 * kernel then we just want to drop ownership and return.
1059 		 * the kernel must free the page when all its loans clear ...
1060 		 * note that the kernel can't change the loan status of our
1061 		 * page as long as we are holding PQ lock.
1062 		 */
1063 		pg->pqflags &= ~PQ_ANON;
1064 		pg->uanon = NULL;
1065 		return;
1066 	}
1067 
1068 #ifdef DIAGNOSTIC
1069 	if (saved_loan_count) {
1070 		printf("uvm_pagefree: warning: freeing page with a loan "
1071 		    "count of %d\n", saved_loan_count);
1072 		panic("uvm_pagefree: loan count");
1073 	}
1074 #endif
1075 
1076 
1077 	/*
1078 	 * now remove the page from the queues
1079 	 */
1080 
1081 	if (pg->pqflags & PQ_ACTIVE) {
1082 		TAILQ_REMOVE(&uvm.page_active, pg, pageq);
1083 		pg->pqflags &= ~PQ_ACTIVE;
1084 		uvmexp.active--;
1085 	}
1086 	if (pg->pqflags & PQ_INACTIVE) {
1087 		if (pg->pqflags & PQ_SWAPBACKED)
1088 			TAILQ_REMOVE(&uvm.page_inactive_swp, pg, pageq);
1089 		else
1090 			TAILQ_REMOVE(&uvm.page_inactive_obj, pg, pageq);
1091 		pg->pqflags &= ~PQ_INACTIVE;
1092 		uvmexp.inactive--;
1093 	}
1094 
1095 	/*
1096 	 * if the page was wired, unwire it now.
1097 	 */
1098 	if (pg->wire_count)
1099 	{
1100 		pg->wire_count = 0;
1101 		uvmexp.wired--;
1102 	}
1103 
1104 	/*
1105 	 * and put on free queue
1106 	 */
1107 
1108 	s = uvm_lock_fpageq();
1109 	TAILQ_INSERT_TAIL(&uvm.page_free[uvm_page_lookup_freelist(pg)],
1110 	    pg, pageq);
1111 	pg->pqflags = PQ_FREE;
1112 #ifdef DEBUG
1113 	pg->uobject = (void *)0xdeadbeef;
1114 	pg->offset = 0xdeadbeef;
1115 	pg->uanon = (void *)0xdeadbeef;
1116 #endif
1117 	uvmexp.free++;
1118 	uvm_unlock_fpageq(s);
1119 }
1120 
1121 #if defined(UVM_PAGE_TRKOWN)
1122 /*
1123  * uvm_page_own: set or release page ownership
1124  *
1125  * => this is a debugging function that keeps track of who sets PG_BUSY
1126  *	and where they do it.   it can be used to track down problems
1127  *	such a process setting "PG_BUSY" and never releasing it.
1128  * => page's object [if any] must be locked
1129  * => if "tag" is NULL then we are releasing page ownership
1130  */
1131 void
1132 uvm_page_own(pg, tag)
1133 	struct vm_page *pg;
1134 	char *tag;
1135 {
1136 	/* gain ownership? */
1137 	if (tag) {
1138 		if (pg->owner_tag) {
1139 			printf("uvm_page_own: page %p already owned "
1140 			    "by proc %d [%s]\n", pg,
1141 			     pg->owner, pg->owner_tag);
1142 			panic("uvm_page_own");
1143 		}
1144 		pg->owner = (curproc) ? curproc->p_pid :  (pid_t) -1;
1145 		pg->owner_tag = tag;
1146 		return;
1147 	}
1148 
1149 	/* drop ownership */
1150 	if (pg->owner_tag == NULL) {
1151 		printf("uvm_page_own: dropping ownership of an non-owned "
1152 		    "page (%p)\n", pg);
1153 		panic("uvm_page_own");
1154 	}
1155 	pg->owner_tag = NULL;
1156 	return;
1157 }
1158 #endif
1159