xref: /netbsd-src/sys/uvm/uvm_page.c (revision 7330f729ccf0bd976a06f95fad452fe774fc7fd1)
1 /*	$NetBSD: uvm_page.c,v 1.200 2019/09/20 11:09:43 maxv Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_page.c   8.3 (Berkeley) 3/21/94
37  * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_page.c: page ops.
66  */
67 
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.200 2019/09/20 11:09:43 maxv Exp $");
70 
71 #include "opt_ddb.h"
72 #include "opt_uvm.h"
73 #include "opt_uvmhist.h"
74 #include "opt_readahead.h"
75 
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/sched.h>
79 #include <sys/kernel.h>
80 #include <sys/vnode.h>
81 #include <sys/proc.h>
82 #include <sys/atomic.h>
83 #include <sys/cpu.h>
84 #include <sys/extent.h>
85 
86 #include <uvm/uvm.h>
87 #include <uvm/uvm_ddb.h>
88 #include <uvm/uvm_pdpolicy.h>
89 
90 /*
91  * Some supported CPUs in a given architecture don't support all
92  * of the things necessary to do idle page zero'ing efficiently.
93  * We therefore provide a way to enable it from machdep code here.
94  */
95 bool vm_page_zero_enable = false;
96 
97 /*
98  * number of pages per-CPU to reserve for the kernel.
99  */
100 #ifndef	UVM_RESERVED_PAGES_PER_CPU
101 #define	UVM_RESERVED_PAGES_PER_CPU	5
102 #endif
103 int vm_page_reserve_kernel = UVM_RESERVED_PAGES_PER_CPU;
104 
105 /*
106  * physical memory size;
107  */
108 psize_t physmem;
109 
110 /*
111  * local variables
112  */
113 
114 /*
115  * these variables record the values returned by vm_page_bootstrap,
116  * for debugging purposes.  The implementation of uvm_pageboot_alloc
117  * and pmap_startup here also uses them internally.
118  */
119 
120 static vaddr_t      virtual_space_start;
121 static vaddr_t      virtual_space_end;
122 
123 /*
124  * we allocate an initial number of page colors in uvm_page_init(),
125  * and remember them.  We may re-color pages as cache sizes are
126  * discovered during the autoconfiguration phase.  But we can never
127  * free the initial set of buckets, since they are allocated using
128  * uvm_pageboot_alloc().
129  */
130 
131 static size_t recolored_pages_memsize /* = 0 */;
132 
133 #ifdef DEBUG
134 vaddr_t uvm_zerocheckkva;
135 #endif /* DEBUG */
136 
137 /*
138  * These functions are reserved for uvm(9) internal use and are not
139  * exported in the header file uvm_physseg.h
140  *
141  * Thus they are redefined here.
142  */
143 void uvm_physseg_init_seg(uvm_physseg_t, struct vm_page *);
144 void uvm_physseg_seg_chomp_slab(uvm_physseg_t, struct vm_page *, size_t);
145 
146 /* returns a pgs array */
147 struct vm_page *uvm_physseg_seg_alloc_from_slab(uvm_physseg_t, size_t);
148 
149 /*
150  * local prototypes
151  */
152 
153 static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
154 static void uvm_pageremove(struct uvm_object *, struct vm_page *);
155 
156 /*
157  * per-object tree of pages
158  */
159 
160 static signed int
161 uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
162 {
163 	const struct vm_page *pg1 = n1;
164 	const struct vm_page *pg2 = n2;
165 	const voff_t a = pg1->offset;
166 	const voff_t b = pg2->offset;
167 
168 	if (a < b)
169 		return -1;
170 	if (a > b)
171 		return 1;
172 	return 0;
173 }
174 
175 static signed int
176 uvm_page_compare_key(void *ctx, const void *n, const void *key)
177 {
178 	const struct vm_page *pg = n;
179 	const voff_t a = pg->offset;
180 	const voff_t b = *(const voff_t *)key;
181 
182 	if (a < b)
183 		return -1;
184 	if (a > b)
185 		return 1;
186 	return 0;
187 }
188 
189 const rb_tree_ops_t uvm_page_tree_ops = {
190 	.rbto_compare_nodes = uvm_page_compare_nodes,
191 	.rbto_compare_key = uvm_page_compare_key,
192 	.rbto_node_offset = offsetof(struct vm_page, rb_node),
193 	.rbto_context = NULL
194 };
195 
196 /*
197  * inline functions
198  */
199 
200 /*
201  * uvm_pageinsert: insert a page in the object.
202  *
203  * => caller must lock object
204  * => caller must lock page queues
205  * => call should have already set pg's object and offset pointers
206  *    and bumped the version counter
207  */
208 
209 static inline void
210 uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
211     struct vm_page *where)
212 {
213 
214 	KASSERT(uobj == pg->uobject);
215 	KASSERT(mutex_owned(uobj->vmobjlock));
216 	KASSERT((pg->flags & PG_TABLED) == 0);
217 	KASSERT(where == NULL || (where->flags & PG_TABLED));
218 	KASSERT(where == NULL || (where->uobject == uobj));
219 
220 	if (UVM_OBJ_IS_VNODE(uobj)) {
221 		if (uobj->uo_npages == 0) {
222 			struct vnode *vp = (struct vnode *)uobj;
223 
224 			vholdl(vp);
225 		}
226 		if (UVM_OBJ_IS_VTEXT(uobj)) {
227 			atomic_inc_uint(&uvmexp.execpages);
228 		} else {
229 			atomic_inc_uint(&uvmexp.filepages);
230 		}
231 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
232 		atomic_inc_uint(&uvmexp.anonpages);
233 	}
234 
235 	if (where)
236 		TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
237 	else
238 		TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
239 	pg->flags |= PG_TABLED;
240 	uobj->uo_npages++;
241 }
242 
243 
244 static inline void
245 uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
246 {
247 	struct vm_page *ret __diagused;
248 
249 	KASSERT(uobj == pg->uobject);
250 	ret = rb_tree_insert_node(&uobj->rb_tree, pg);
251 	KASSERT(ret == pg);
252 }
253 
254 static inline void
255 uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
256 {
257 
258 	KDASSERT(uobj != NULL);
259 	uvm_pageinsert_tree(uobj, pg);
260 	uvm_pageinsert_list(uobj, pg, NULL);
261 }
262 
263 /*
264  * uvm_page_remove: remove page from object.
265  *
266  * => caller must lock object
267  * => caller must lock page queues
268  */
269 
270 static inline void
271 uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
272 {
273 
274 	KASSERT(uobj == pg->uobject);
275 	KASSERT(mutex_owned(uobj->vmobjlock));
276 	KASSERT(pg->flags & PG_TABLED);
277 
278 	if (UVM_OBJ_IS_VNODE(uobj)) {
279 		if (uobj->uo_npages == 1) {
280 			struct vnode *vp = (struct vnode *)uobj;
281 
282 			holdrelel(vp);
283 		}
284 		if (UVM_OBJ_IS_VTEXT(uobj)) {
285 			atomic_dec_uint(&uvmexp.execpages);
286 		} else {
287 			atomic_dec_uint(&uvmexp.filepages);
288 		}
289 	} else if (UVM_OBJ_IS_AOBJ(uobj)) {
290 		atomic_dec_uint(&uvmexp.anonpages);
291 	}
292 
293 	/* object should be locked */
294 	uobj->uo_npages--;
295 	TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
296 	pg->flags &= ~PG_TABLED;
297 	pg->uobject = NULL;
298 }
299 
300 static inline void
301 uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
302 {
303 
304 	KASSERT(uobj == pg->uobject);
305 	rb_tree_remove_node(&uobj->rb_tree, pg);
306 }
307 
308 static inline void
309 uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
310 {
311 
312 	KDASSERT(uobj != NULL);
313 	uvm_pageremove_tree(uobj, pg);
314 	uvm_pageremove_list(uobj, pg);
315 }
316 
317 static void
318 uvm_page_init_buckets(struct pgfreelist *pgfl)
319 {
320 	int color, i;
321 
322 	for (color = 0; color < uvmexp.ncolors; color++) {
323 		for (i = 0; i < PGFL_NQUEUES; i++) {
324 			LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
325 		}
326 	}
327 }
328 
329 /*
330  * uvm_page_init: init the page system.   called from uvm_init().
331  *
332  * => we return the range of kernel virtual memory in kvm_startp/kvm_endp
333  */
334 
335 void
336 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
337 {
338 	static struct uvm_cpu boot_cpu;
339 	psize_t freepages, pagecount, bucketcount, n;
340 	struct pgflbucket *bucketarray, *cpuarray;
341 	struct vm_page *pagearray;
342 	uvm_physseg_t bank;
343 	int lcv;
344 
345 	KASSERT(ncpu <= 1);
346 	CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
347 
348 	/*
349 	 * init the page queues and page queue locks, except the free
350 	 * list; we allocate that later (with the initial vm_page
351 	 * structures).
352 	 */
353 
354 	uvm.cpus[0] = &boot_cpu;
355 	curcpu()->ci_data.cpu_uvm = &boot_cpu;
356 	uvmpdpol_init();
357 	mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
358 	mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
359 
360 	/*
361 	 * allocate vm_page structures.
362 	 */
363 
364 	/*
365 	 * sanity check:
366 	 * before calling this function the MD code is expected to register
367 	 * some free RAM with the uvm_page_physload() function.   our job
368 	 * now is to allocate vm_page structures for this memory.
369 	 */
370 
371 	if (uvm_physseg_get_last() == UVM_PHYSSEG_TYPE_INVALID)
372 		panic("uvm_page_bootstrap: no memory pre-allocated");
373 
374 	/*
375 	 * first calculate the number of free pages...
376 	 *
377 	 * note that we use start/end rather than avail_start/avail_end.
378 	 * this allows us to allocate extra vm_page structures in case we
379 	 * want to return some memory to the pool after booting.
380 	 */
381 
382 	freepages = 0;
383 
384 	for (bank = uvm_physseg_get_first();
385 	     uvm_physseg_valid_p(bank) ;
386 	     bank = uvm_physseg_get_next(bank)) {
387 		freepages += (uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank));
388 	}
389 
390 	/*
391 	 * Let MD code initialize the number of colors, or default
392 	 * to 1 color if MD code doesn't care.
393 	 */
394 	if (uvmexp.ncolors == 0)
395 		uvmexp.ncolors = 1;
396 	uvmexp.colormask = uvmexp.ncolors - 1;
397 	KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
398 
399 	/*
400 	 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can
401 	 * use.   for each page of memory we use we need a vm_page structure.
402 	 * thus, the total number of pages we can use is the total size of
403 	 * the memory divided by the PAGE_SIZE plus the size of the vm_page
404 	 * structure.   we add one to freepages as a fudge factor to avoid
405 	 * truncation errors (since we can only allocate in terms of whole
406 	 * pages).
407 	 */
408 
409 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
410 	pagecount = ((freepages + 1) << PAGE_SHIFT) /
411 	    (PAGE_SIZE + sizeof(struct vm_page));
412 
413 	bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
414 	    sizeof(struct pgflbucket) * 2) + (pagecount *
415 	    sizeof(struct vm_page)));
416 	cpuarray = bucketarray + bucketcount;
417 	pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
418 
419 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
420 		uvm.page_free[lcv].pgfl_buckets =
421 		    (bucketarray + (lcv * uvmexp.ncolors));
422 		uvm_page_init_buckets(&uvm.page_free[lcv]);
423 		uvm.cpus[0]->page_free[lcv].pgfl_buckets =
424 		    (cpuarray + (lcv * uvmexp.ncolors));
425 		uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
426 	}
427 	memset(pagearray, 0, pagecount * sizeof(struct vm_page));
428 
429 	/*
430 	 * init the vm_page structures and put them in the correct place.
431 	 */
432 	/* First init the extent */
433 
434 	for (bank = uvm_physseg_get_first(),
435 		 uvm_physseg_seg_chomp_slab(bank, pagearray, pagecount);
436 	     uvm_physseg_valid_p(bank);
437 	     bank = uvm_physseg_get_next(bank)) {
438 
439 		n = uvm_physseg_get_end(bank) - uvm_physseg_get_start(bank);
440 		uvm_physseg_seg_alloc_from_slab(bank, n);
441 		uvm_physseg_init_seg(bank, pagearray);
442 
443 		/* set up page array pointers */
444 		pagearray += n;
445 		pagecount -= n;
446 	}
447 
448 	/*
449 	 * pass up the values of virtual_space_start and
450 	 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
451 	 * layers of the VM.
452 	 */
453 
454 	*kvm_startp = round_page(virtual_space_start);
455 	*kvm_endp = trunc_page(virtual_space_end);
456 #ifdef DEBUG
457 	/*
458 	 * steal kva for uvm_pagezerocheck().
459 	 */
460 	uvm_zerocheckkva = *kvm_startp;
461 	*kvm_startp += PAGE_SIZE;
462 #endif /* DEBUG */
463 
464 	/*
465 	 * init various thresholds.
466 	 */
467 
468 	uvmexp.reserve_pagedaemon = 1;
469 	uvmexp.reserve_kernel = vm_page_reserve_kernel;
470 
471 	/*
472 	 * determine if we should zero pages in the idle loop.
473 	 */
474 
475 	uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
476 
477 	/*
478 	 * done!
479 	 */
480 
481 	uvm.page_init_done = true;
482 }
483 
484 /*
485  * uvm_setpagesize: set the page size
486  *
487  * => sets page_shift and page_mask from uvmexp.pagesize.
488  */
489 
490 void
491 uvm_setpagesize(void)
492 {
493 
494 	/*
495 	 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
496 	 * to be a constant (indicated by being a non-zero value).
497 	 */
498 	if (uvmexp.pagesize == 0) {
499 		if (PAGE_SIZE == 0)
500 			panic("uvm_setpagesize: uvmexp.pagesize not set");
501 		uvmexp.pagesize = PAGE_SIZE;
502 	}
503 	uvmexp.pagemask = uvmexp.pagesize - 1;
504 	if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
505 		panic("uvm_setpagesize: page size %u (%#x) not a power of two",
506 		    uvmexp.pagesize, uvmexp.pagesize);
507 	for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
508 		if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
509 			break;
510 }
511 
512 /*
513  * uvm_pageboot_alloc: steal memory from physmem for bootstrapping
514  */
515 
516 vaddr_t
517 uvm_pageboot_alloc(vsize_t size)
518 {
519 	static bool initialized = false;
520 	vaddr_t addr;
521 #if !defined(PMAP_STEAL_MEMORY)
522 	vaddr_t vaddr;
523 	paddr_t paddr;
524 #endif
525 
526 	/*
527 	 * on first call to this function, initialize ourselves.
528 	 */
529 	if (initialized == false) {
530 		pmap_virtual_space(&virtual_space_start, &virtual_space_end);
531 
532 		/* round it the way we like it */
533 		virtual_space_start = round_page(virtual_space_start);
534 		virtual_space_end = trunc_page(virtual_space_end);
535 
536 		initialized = true;
537 	}
538 
539 	/* round to page size */
540 	size = round_page(size);
541 	uvmexp.bootpages += atop(size);
542 
543 #if defined(PMAP_STEAL_MEMORY)
544 
545 	/*
546 	 * defer bootstrap allocation to MD code (it may want to allocate
547 	 * from a direct-mapped segment).  pmap_steal_memory should adjust
548 	 * virtual_space_start/virtual_space_end if necessary.
549 	 */
550 
551 	addr = pmap_steal_memory(size, &virtual_space_start,
552 	    &virtual_space_end);
553 
554 	return(addr);
555 
556 #else /* !PMAP_STEAL_MEMORY */
557 
558 	/*
559 	 * allocate virtual memory for this request
560 	 */
561 	if (virtual_space_start == virtual_space_end ||
562 	    (virtual_space_end - virtual_space_start) < size)
563 		panic("uvm_pageboot_alloc: out of virtual space");
564 
565 	addr = virtual_space_start;
566 
567 #ifdef PMAP_GROWKERNEL
568 	/*
569 	 * If the kernel pmap can't map the requested space,
570 	 * then allocate more resources for it.
571 	 */
572 	if (uvm_maxkaddr < (addr + size)) {
573 		uvm_maxkaddr = pmap_growkernel(addr + size);
574 		if (uvm_maxkaddr < (addr + size))
575 			panic("uvm_pageboot_alloc: pmap_growkernel() failed");
576 	}
577 #endif
578 
579 	virtual_space_start += size;
580 
581 	/*
582 	 * allocate and mapin physical pages to back new virtual pages
583 	 */
584 
585 	for (vaddr = round_page(addr) ; vaddr < addr + size ;
586 	    vaddr += PAGE_SIZE) {
587 
588 		if (!uvm_page_physget(&paddr))
589 			panic("uvm_pageboot_alloc: out of memory");
590 
591 		/*
592 		 * Note this memory is no longer managed, so using
593 		 * pmap_kenter is safe.
594 		 */
595 		pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
596 	}
597 	pmap_update(pmap_kernel());
598 	return(addr);
599 #endif	/* PMAP_STEAL_MEMORY */
600 }
601 
602 #if !defined(PMAP_STEAL_MEMORY)
603 /*
604  * uvm_page_physget: "steal" one page from the vm_physmem structure.
605  *
606  * => attempt to allocate it off the end of a segment in which the "avail"
607  *    values match the start/end values.   if we can't do that, then we
608  *    will advance both values (making them equal, and removing some
609  *    vm_page structures from the non-avail area).
610  * => return false if out of memory.
611  */
612 
613 /* subroutine: try to allocate from memory chunks on the specified freelist */
614 static bool uvm_page_physget_freelist(paddr_t *, int);
615 
616 static bool
617 uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
618 {
619 	uvm_physseg_t lcv;
620 
621 	/* pass 1: try allocating from a matching end */
622 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
623 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
624 #else
625 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
626 #endif
627 	{
628 		if (uvm.page_init_done == true)
629 			panic("uvm_page_physget: called _after_ bootstrap");
630 
631 		/* Try to match at front or back on unused segment */
632 		if (uvm_page_physunload(lcv, freelist, paddrp))
633 			return true;
634 	}
635 
636 	/* pass2: forget about matching ends, just allocate something */
637 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
638 	for (lcv = uvm_physseg_get_last(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_prev(lcv))
639 #else
640 	for (lcv = uvm_physseg_get_first(); uvm_physseg_valid_p(lcv); lcv = uvm_physseg_get_next(lcv))
641 #endif
642 	{
643 		/* Try the front regardless. */
644 		if (uvm_page_physunload_force(lcv, freelist, paddrp))
645 			return true;
646 	}
647 	return false;
648 }
649 
650 bool
651 uvm_page_physget(paddr_t *paddrp)
652 {
653 	int i;
654 
655 	/* try in the order of freelist preference */
656 	for (i = 0; i < VM_NFREELIST; i++)
657 		if (uvm_page_physget_freelist(paddrp, i) == true)
658 			return (true);
659 	return (false);
660 }
661 #endif /* PMAP_STEAL_MEMORY */
662 
663 /*
664  * PHYS_TO_VM_PAGE: find vm_page for a PA.   used by MI code to get vm_pages
665  * back from an I/O mapping (ugh!).   used in some MD code as well.
666  */
667 struct vm_page *
668 uvm_phys_to_vm_page(paddr_t pa)
669 {
670 	paddr_t pf = atop(pa);
671 	paddr_t	off;
672 	uvm_physseg_t	upm;
673 
674 	upm = uvm_physseg_find(pf, &off);
675 	if (upm != UVM_PHYSSEG_TYPE_INVALID)
676 		return uvm_physseg_get_pg(upm, off);
677 	return(NULL);
678 }
679 
680 paddr_t
681 uvm_vm_page_to_phys(const struct vm_page *pg)
682 {
683 
684 	return pg->phys_addr;
685 }
686 
687 /*
688  * uvm_page_recolor: Recolor the pages if the new bucket count is
689  * larger than the old one.
690  */
691 
692 void
693 uvm_page_recolor(int newncolors)
694 {
695 	struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
696 	struct pgfreelist gpgfl, pgfl;
697 	struct vm_page *pg;
698 	vsize_t bucketcount;
699 	size_t bucketmemsize, oldbucketmemsize;
700 	int color, i, ocolors;
701 	int lcv;
702 	struct uvm_cpu *ucpu;
703 
704 	KASSERT(((newncolors - 1) & newncolors) == 0);
705 
706 	if (newncolors <= uvmexp.ncolors)
707 		return;
708 
709 	if (uvm.page_init_done == false) {
710 		uvmexp.ncolors = newncolors;
711 		return;
712 	}
713 
714 	bucketcount = newncolors * VM_NFREELIST;
715 	bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
716 	bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
717 	cpuarray = bucketarray + bucketcount;
718 
719 	mutex_spin_enter(&uvm_fpageqlock);
720 
721 	/* Make sure we should still do this. */
722 	if (newncolors <= uvmexp.ncolors) {
723 		mutex_spin_exit(&uvm_fpageqlock);
724 		kmem_free(bucketarray, bucketmemsize);
725 		return;
726 	}
727 
728 	oldbucketarray = uvm.page_free[0].pgfl_buckets;
729 	ocolors = uvmexp.ncolors;
730 
731 	uvmexp.ncolors = newncolors;
732 	uvmexp.colormask = uvmexp.ncolors - 1;
733 
734 	ucpu = curcpu()->ci_data.cpu_uvm;
735 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
736 		gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
737 		pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
738 		uvm_page_init_buckets(&gpgfl);
739 		uvm_page_init_buckets(&pgfl);
740 		for (color = 0; color < ocolors; color++) {
741 			for (i = 0; i < PGFL_NQUEUES; i++) {
742 				while ((pg = LIST_FIRST(&uvm.page_free[
743 				    lcv].pgfl_buckets[color].pgfl_queues[i]))
744 				    != NULL) {
745 					LIST_REMOVE(pg, pageq.list); /* global */
746 					LIST_REMOVE(pg, listq.list); /* cpu */
747 					LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
748 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
749 					    i], pg, pageq.list);
750 					LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
751 					    VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
752 					    i], pg, listq.list);
753 				}
754 			}
755 		}
756 		uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
757 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
758 	}
759 
760 	oldbucketmemsize = recolored_pages_memsize;
761 
762 	recolored_pages_memsize = bucketmemsize;
763 	mutex_spin_exit(&uvm_fpageqlock);
764 
765 	if (oldbucketmemsize) {
766 		kmem_free(oldbucketarray, oldbucketmemsize);
767 	}
768 
769 	/*
770 	 * this calls uvm_km_alloc() which may want to hold
771 	 * uvm_fpageqlock.
772 	 */
773 	uvm_pager_realloc_emerg();
774 }
775 
776 /*
777  * uvm_cpu_attach: initialize per-CPU data structures.
778  */
779 
780 void
781 uvm_cpu_attach(struct cpu_info *ci)
782 {
783 	struct pgflbucket *bucketarray;
784 	struct pgfreelist pgfl;
785 	struct uvm_cpu *ucpu;
786 	vsize_t bucketcount;
787 	int lcv;
788 
789 	if (CPU_IS_PRIMARY(ci)) {
790 		/* Already done in uvm_page_init(). */
791 		goto attachrnd;
792 	}
793 
794 	/* Add more reserve pages for this CPU. */
795 	uvmexp.reserve_kernel += vm_page_reserve_kernel;
796 
797 	/* Configure this CPU's free lists. */
798 	bucketcount = uvmexp.ncolors * VM_NFREELIST;
799 	bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
800 	    KM_SLEEP);
801 	ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
802 	uvm.cpus[cpu_index(ci)] = ucpu;
803 	ci->ci_data.cpu_uvm = ucpu;
804 	for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
805 		pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
806 		uvm_page_init_buckets(&pgfl);
807 		ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
808 	}
809 
810 attachrnd:
811 	/*
812 	 * Attach RNG source for this CPU's VM events
813 	 */
814         rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
815 			  ci->ci_data.cpu_name, RND_TYPE_VM,
816 			  RND_FLAG_COLLECT_TIME|RND_FLAG_COLLECT_VALUE|
817 			  RND_FLAG_ESTIMATE_VALUE);
818 
819 }
820 
821 /*
822  * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
823  */
824 
825 static struct vm_page *
826 uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
827     int *trycolorp)
828 {
829 	struct pgflist *freeq;
830 	struct vm_page *pg;
831 	int color, trycolor = *trycolorp;
832 	struct pgfreelist *gpgfl, *pgfl;
833 
834 	KASSERT(mutex_owned(&uvm_fpageqlock));
835 
836 	color = trycolor;
837 	pgfl = &ucpu->page_free[flist];
838 	gpgfl = &uvm.page_free[flist];
839 	do {
840 		/* cpu, try1 */
841 		if ((pg = LIST_FIRST((freeq =
842 		    &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
843 			KASSERT(pg->pqflags & PQ_FREE);
844 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
845 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
846 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
847 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
848 		    	uvmexp.cpuhit++;
849 			goto gotit;
850 		}
851 		/* global, try1 */
852 		if ((pg = LIST_FIRST((freeq =
853 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
854 			KASSERT(pg->pqflags & PQ_FREE);
855 			KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
856 			KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
857 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
858 			VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
859 		    	uvmexp.cpumiss++;
860 			goto gotit;
861 		}
862 		/* cpu, try2 */
863 		if ((pg = LIST_FIRST((freeq =
864 		    &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
865 			KASSERT(pg->pqflags & PQ_FREE);
866 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
867 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
868 			KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
869 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
870 		    	uvmexp.cpuhit++;
871 			goto gotit;
872 		}
873 		/* global, try2 */
874 		if ((pg = LIST_FIRST((freeq =
875 		    &gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
876 			KASSERT(pg->pqflags & PQ_FREE);
877 			KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
878 			KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
879 			KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
880 			VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
881 		    	uvmexp.cpumiss++;
882 			goto gotit;
883 		}
884 		color = (color + 1) & uvmexp.colormask;
885 	} while (color != trycolor);
886 
887 	return (NULL);
888 
889  gotit:
890 	LIST_REMOVE(pg, pageq.list);	/* global list */
891 	LIST_REMOVE(pg, listq.list);	/* per-cpu list */
892 	uvmexp.free--;
893 
894 	/* update zero'd page count */
895 	if (pg->flags & PG_ZERO)
896 		uvmexp.zeropages--;
897 
898 	if (color == trycolor)
899 		uvmexp.colorhit++;
900 	else {
901 		uvmexp.colormiss++;
902 		*trycolorp = color;
903 	}
904 
905 	return (pg);
906 }
907 
908 /*
909  * uvm_pagealloc_strat: allocate vm_page from a particular free list.
910  *
911  * => return null if no pages free
912  * => wake up pagedaemon if number of free pages drops below low water mark
913  * => if obj != NULL, obj must be locked (to put in obj's tree)
914  * => if anon != NULL, anon must be locked (to put in anon)
915  * => only one of obj or anon can be non-null
916  * => caller must activate/deactivate page if it is not wired.
917  * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
918  * => policy decision: it is more important to pull a page off of the
919  *	appropriate priority free list than it is to get a zero'd or
920  *	unknown contents page.  This is because we live with the
921  *	consequences of a bad free list decision for the entire
922  *	lifetime of the page, e.g. if the page comes from memory that
923  *	is slower to access.
924  */
925 
926 struct vm_page *
927 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
928     int flags, int strat, int free_list)
929 {
930 	int try1, try2, zeroit = 0, color;
931 	int lcv;
932 	struct uvm_cpu *ucpu;
933 	struct vm_page *pg;
934 	lwp_t *l;
935 
936 	KASSERT(obj == NULL || anon == NULL);
937 	KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
938 	KASSERT(off == trunc_page(off));
939 	KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
940 	KASSERT(anon == NULL || anon->an_lock == NULL ||
941 	    mutex_owned(anon->an_lock));
942 
943 	mutex_spin_enter(&uvm_fpageqlock);
944 
945 	/*
946 	 * This implements a global round-robin page coloring
947 	 * algorithm.
948 	 */
949 
950 	ucpu = curcpu()->ci_data.cpu_uvm;
951 	if (flags & UVM_FLAG_COLORMATCH) {
952 		color = atop(off) & uvmexp.colormask;
953 	} else {
954 		color = ucpu->page_free_nextcolor;
955 	}
956 
957 	/*
958 	 * check to see if we need to generate some free pages waking
959 	 * the pagedaemon.
960 	 */
961 
962 	uvm_kick_pdaemon();
963 
964 	/*
965 	 * fail if any of these conditions is true:
966 	 * [1]  there really are no free pages, or
967 	 * [2]  only kernel "reserved" pages remain and
968 	 *        reserved pages have not been requested.
969 	 * [3]  only pagedaemon "reserved" pages remain and
970 	 *        the requestor isn't the pagedaemon.
971 	 * we make kernel reserve pages available if called by a
972 	 * kernel thread or a realtime thread.
973 	 */
974 	l = curlwp;
975 	if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
976 		flags |= UVM_PGA_USERESERVE;
977 	}
978 	if ((uvmexp.free <= uvmexp.reserve_kernel &&
979 	    (flags & UVM_PGA_USERESERVE) == 0) ||
980 	    (uvmexp.free <= uvmexp.reserve_pagedaemon &&
981 	     curlwp != uvm.pagedaemon_lwp))
982 		goto fail;
983 
984 #if PGFL_NQUEUES != 2
985 #error uvm_pagealloc_strat needs to be updated
986 #endif
987 
988 	/*
989 	 * If we want a zero'd page, try the ZEROS queue first, otherwise
990 	 * we try the UNKNOWN queue first.
991 	 */
992 	if (flags & UVM_PGA_ZERO) {
993 		try1 = PGFL_ZEROS;
994 		try2 = PGFL_UNKNOWN;
995 	} else {
996 		try1 = PGFL_UNKNOWN;
997 		try2 = PGFL_ZEROS;
998 	}
999 
1000  again:
1001 	switch (strat) {
1002 	case UVM_PGA_STRAT_NORMAL:
1003 		/* Check freelists: descending priority (ascending id) order */
1004 		for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
1005 			pg = uvm_pagealloc_pgfl(ucpu, lcv,
1006 			    try1, try2, &color);
1007 			if (pg != NULL)
1008 				goto gotit;
1009 		}
1010 
1011 		/* No pages free! */
1012 		goto fail;
1013 
1014 	case UVM_PGA_STRAT_ONLY:
1015 	case UVM_PGA_STRAT_FALLBACK:
1016 		/* Attempt to allocate from the specified free list. */
1017 		KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
1018 		pg = uvm_pagealloc_pgfl(ucpu, free_list,
1019 		    try1, try2, &color);
1020 		if (pg != NULL)
1021 			goto gotit;
1022 
1023 		/* Fall back, if possible. */
1024 		if (strat == UVM_PGA_STRAT_FALLBACK) {
1025 			strat = UVM_PGA_STRAT_NORMAL;
1026 			goto again;
1027 		}
1028 
1029 		/* No pages free! */
1030 		goto fail;
1031 
1032 	default:
1033 		panic("uvm_pagealloc_strat: bad strat %d", strat);
1034 		/* NOTREACHED */
1035 	}
1036 
1037  gotit:
1038 	/*
1039 	 * We now know which color we actually allocated from; set
1040 	 * the next color accordingly.
1041 	 */
1042 
1043 	ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
1044 
1045 	/*
1046 	 * update allocation statistics and remember if we have to
1047 	 * zero the page
1048 	 */
1049 
1050 	if (flags & UVM_PGA_ZERO) {
1051 		if (pg->flags & PG_ZERO) {
1052 			uvmexp.pga_zerohit++;
1053 			zeroit = 0;
1054 		} else {
1055 			uvmexp.pga_zeromiss++;
1056 			zeroit = 1;
1057 		}
1058 		if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1059 			ucpu->page_idle_zero = vm_page_zero_enable;
1060 		}
1061 	}
1062 	KASSERT(pg->pqflags == PQ_FREE);
1063 
1064 	pg->offset = off;
1065 	pg->uobject = obj;
1066 	pg->uanon = anon;
1067 	pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
1068 	if (anon) {
1069 		anon->an_page = pg;
1070 		pg->pqflags = PQ_ANON;
1071 		atomic_inc_uint(&uvmexp.anonpages);
1072 	} else {
1073 		if (obj) {
1074 			uvm_pageinsert(obj, pg);
1075 		}
1076 		pg->pqflags = 0;
1077 	}
1078 	mutex_spin_exit(&uvm_fpageqlock);
1079 
1080 #if defined(UVM_PAGE_TRKOWN)
1081 	pg->owner_tag = NULL;
1082 #endif
1083 	UVM_PAGE_OWN(pg, "new alloc");
1084 
1085 	if (flags & UVM_PGA_ZERO) {
1086 		/*
1087 		 * A zero'd page is not clean.  If we got a page not already
1088 		 * zero'd, then we have to zero it ourselves.
1089 		 */
1090 		pg->flags &= ~PG_CLEAN;
1091 		if (zeroit)
1092 			pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1093 	}
1094 
1095 	return(pg);
1096 
1097  fail:
1098 	mutex_spin_exit(&uvm_fpageqlock);
1099 	return (NULL);
1100 }
1101 
1102 /*
1103  * uvm_pagereplace: replace a page with another
1104  *
1105  * => object must be locked
1106  */
1107 
1108 void
1109 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
1110 {
1111 	struct uvm_object *uobj = oldpg->uobject;
1112 
1113 	KASSERT((oldpg->flags & PG_TABLED) != 0);
1114 	KASSERT(uobj != NULL);
1115 	KASSERT((newpg->flags & PG_TABLED) == 0);
1116 	KASSERT(newpg->uobject == NULL);
1117 	KASSERT(mutex_owned(uobj->vmobjlock));
1118 
1119 	newpg->uobject = uobj;
1120 	newpg->offset = oldpg->offset;
1121 
1122 	uvm_pageremove_tree(uobj, oldpg);
1123 	uvm_pageinsert_tree(uobj, newpg);
1124 	uvm_pageinsert_list(uobj, newpg, oldpg);
1125 	uvm_pageremove_list(uobj, oldpg);
1126 }
1127 
1128 /*
1129  * uvm_pagerealloc: reallocate a page from one object to another
1130  *
1131  * => both objects must be locked
1132  */
1133 
1134 void
1135 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
1136 {
1137 	/*
1138 	 * remove it from the old object
1139 	 */
1140 
1141 	if (pg->uobject) {
1142 		uvm_pageremove(pg->uobject, pg);
1143 	}
1144 
1145 	/*
1146 	 * put it in the new object
1147 	 */
1148 
1149 	if (newobj) {
1150 		pg->uobject = newobj;
1151 		pg->offset = newoff;
1152 		uvm_pageinsert(newobj, pg);
1153 	}
1154 }
1155 
1156 #ifdef DEBUG
1157 /*
1158  * check if page is zero-filled
1159  *
1160  *  - called with free page queue lock held.
1161  */
1162 void
1163 uvm_pagezerocheck(struct vm_page *pg)
1164 {
1165 	int *p, *ep;
1166 
1167 	KASSERT(uvm_zerocheckkva != 0);
1168 	KASSERT(mutex_owned(&uvm_fpageqlock));
1169 
1170 	/*
1171 	 * XXX assuming pmap_kenter_pa and pmap_kremove never call
1172 	 * uvm page allocator.
1173 	 *
1174 	 * it might be better to have "CPU-local temporary map" pmap interface.
1175 	 */
1176 	pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
1177 	p = (int *)uvm_zerocheckkva;
1178 	ep = (int *)((char *)p + PAGE_SIZE);
1179 	pmap_update(pmap_kernel());
1180 	while (p < ep) {
1181 		if (*p != 0)
1182 			panic("PG_ZERO page isn't zero-filled");
1183 		p++;
1184 	}
1185 	pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
1186 	/*
1187 	 * pmap_update() is not necessary here because no one except us
1188 	 * uses this VA.
1189 	 */
1190 }
1191 #endif /* DEBUG */
1192 
1193 /*
1194  * uvm_pagefree: free page
1195  *
1196  * => erase page's identity (i.e. remove from object)
1197  * => put page on free list
1198  * => caller must lock owning object (either anon or uvm_object)
1199  * => caller must lock page queues
1200  * => assumes all valid mappings of pg are gone
1201  */
1202 
1203 void
1204 uvm_pagefree(struct vm_page *pg)
1205 {
1206 	struct pgflist *pgfl;
1207 	struct uvm_cpu *ucpu;
1208 	int index, color, queue;
1209 	bool iszero;
1210 
1211 #ifdef DEBUG
1212 	if (pg->uobject == (void *)0xdeadbeef &&
1213 	    pg->uanon == (void *)0xdeadbeef) {
1214 		panic("uvm_pagefree: freeing free page %p", pg);
1215 	}
1216 #endif /* DEBUG */
1217 
1218 	KASSERT((pg->flags & PG_PAGEOUT) == 0);
1219 	KASSERT(!(pg->pqflags & PQ_FREE));
1220 	//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
1221 	KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
1222 	KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
1223 		mutex_owned(pg->uanon->an_lock));
1224 
1225 	/*
1226 	 * if the page is loaned, resolve the loan instead of freeing.
1227 	 */
1228 
1229 	if (pg->loan_count) {
1230 		KASSERT(pg->wire_count == 0);
1231 
1232 		/*
1233 		 * if the page is owned by an anon then we just want to
1234 		 * drop anon ownership.  the kernel will free the page when
1235 		 * it is done with it.  if the page is owned by an object,
1236 		 * remove it from the object and mark it dirty for the benefit
1237 		 * of possible anon owners.
1238 		 *
1239 		 * regardless of previous ownership, wakeup any waiters,
1240 		 * unbusy the page, and we're done.
1241 		 */
1242 
1243 		if (pg->uobject != NULL) {
1244 			uvm_pageremove(pg->uobject, pg);
1245 			pg->flags &= ~PG_CLEAN;
1246 		} else if (pg->uanon != NULL) {
1247 			if ((pg->pqflags & PQ_ANON) == 0) {
1248 				pg->loan_count--;
1249 			} else {
1250 				pg->pqflags &= ~PQ_ANON;
1251 				atomic_dec_uint(&uvmexp.anonpages);
1252 			}
1253 			pg->uanon->an_page = NULL;
1254 			pg->uanon = NULL;
1255 		}
1256 		if (pg->flags & PG_WANTED) {
1257 			wakeup(pg);
1258 		}
1259 		pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
1260 #ifdef UVM_PAGE_TRKOWN
1261 		pg->owner_tag = NULL;
1262 #endif
1263 		if (pg->loan_count) {
1264 			KASSERT(pg->uobject == NULL);
1265 			if (pg->uanon == NULL) {
1266 				KASSERT(mutex_owned(&uvm_pageqlock));
1267 				uvm_pagedequeue(pg);
1268 			}
1269 			return;
1270 		}
1271 	}
1272 
1273 	/*
1274 	 * remove page from its object or anon.
1275 	 */
1276 
1277 	if (pg->uobject != NULL) {
1278 		uvm_pageremove(pg->uobject, pg);
1279 	} else if (pg->uanon != NULL) {
1280 		pg->uanon->an_page = NULL;
1281 		atomic_dec_uint(&uvmexp.anonpages);
1282 	}
1283 
1284 	/*
1285 	 * now remove the page from the queues.
1286 	 */
1287 	if (uvmpdpol_pageisqueued_p(pg)) {
1288 		KASSERT(mutex_owned(&uvm_pageqlock));
1289 		uvm_pagedequeue(pg);
1290 	}
1291 
1292 	/*
1293 	 * if the page was wired, unwire it now.
1294 	 */
1295 
1296 	if (pg->wire_count) {
1297 		pg->wire_count = 0;
1298 		uvmexp.wired--;
1299 	}
1300 
1301 	/*
1302 	 * and put on free queue
1303 	 */
1304 
1305 	iszero = (pg->flags & PG_ZERO);
1306 	index = uvm_page_lookup_freelist(pg);
1307 	color = VM_PGCOLOR_BUCKET(pg);
1308 	queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
1309 
1310 #ifdef DEBUG
1311 	pg->uobject = (void *)0xdeadbeef;
1312 	pg->uanon = (void *)0xdeadbeef;
1313 #endif
1314 
1315 	mutex_spin_enter(&uvm_fpageqlock);
1316 	pg->pqflags = PQ_FREE;
1317 
1318 #ifdef DEBUG
1319 	if (iszero)
1320 		uvm_pagezerocheck(pg);
1321 #endif /* DEBUG */
1322 
1323 
1324 	/* global list */
1325 	pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1326 	LIST_INSERT_HEAD(pgfl, pg, pageq.list);
1327 	uvmexp.free++;
1328 	if (iszero) {
1329 		uvmexp.zeropages++;
1330 	}
1331 
1332 	/* per-cpu list */
1333 	ucpu = curcpu()->ci_data.cpu_uvm;
1334 	pg->offset = (uintptr_t)ucpu;
1335 	pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
1336 	LIST_INSERT_HEAD(pgfl, pg, listq.list);
1337 	ucpu->pages[queue]++;
1338 	if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
1339 		ucpu->page_idle_zero = vm_page_zero_enable;
1340 	}
1341 
1342 	mutex_spin_exit(&uvm_fpageqlock);
1343 }
1344 
1345 /*
1346  * uvm_page_unbusy: unbusy an array of pages.
1347  *
1348  * => pages must either all belong to the same object, or all belong to anons.
1349  * => if pages are object-owned, object must be locked.
1350  * => if pages are anon-owned, anons must be locked.
1351  * => caller must lock page queues if pages may be released.
1352  * => caller must make sure that anon-owned pages are not PG_RELEASED.
1353  */
1354 
1355 void
1356 uvm_page_unbusy(struct vm_page **pgs, int npgs)
1357 {
1358 	struct vm_page *pg;
1359 	int i;
1360 	UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
1361 
1362 	for (i = 0; i < npgs; i++) {
1363 		pg = pgs[i];
1364 		if (pg == NULL || pg == PGO_DONTCARE) {
1365 			continue;
1366 		}
1367 
1368 		KASSERT(uvm_page_locked_p(pg));
1369 		KASSERT(pg->flags & PG_BUSY);
1370 		KASSERT((pg->flags & PG_PAGEOUT) == 0);
1371 		if (pg->flags & PG_WANTED) {
1372 			wakeup(pg);
1373 		}
1374 		if (pg->flags & PG_RELEASED) {
1375 			UVMHIST_LOG(ubchist, "releasing pg %#jx",
1376 			    (uintptr_t)pg, 0, 0, 0);
1377 			KASSERT(pg->uobject != NULL ||
1378 			    (pg->uanon != NULL && pg->uanon->an_ref > 0));
1379 			pg->flags &= ~PG_RELEASED;
1380 			uvm_pagefree(pg);
1381 		} else {
1382 			UVMHIST_LOG(ubchist, "unbusying pg %#jx",
1383 			    (uintptr_t)pg, 0, 0, 0);
1384 			KASSERT((pg->flags & PG_FAKE) == 0);
1385 			pg->flags &= ~(PG_WANTED|PG_BUSY);
1386 			UVM_PAGE_OWN(pg, NULL);
1387 		}
1388 	}
1389 }
1390 
1391 #if defined(UVM_PAGE_TRKOWN)
1392 /*
1393  * uvm_page_own: set or release page ownership
1394  *
1395  * => this is a debugging function that keeps track of who sets PG_BUSY
1396  *	and where they do it.   it can be used to track down problems
1397  *	such a process setting "PG_BUSY" and never releasing it.
1398  * => page's object [if any] must be locked
1399  * => if "tag" is NULL then we are releasing page ownership
1400  */
1401 void
1402 uvm_page_own(struct vm_page *pg, const char *tag)
1403 {
1404 
1405 	KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
1406 	KASSERT((pg->flags & PG_WANTED) == 0);
1407 	KASSERT(uvm_page_locked_p(pg));
1408 
1409 	/* gain ownership? */
1410 	if (tag) {
1411 		KASSERT((pg->flags & PG_BUSY) != 0);
1412 		if (pg->owner_tag) {
1413 			printf("uvm_page_own: page %p already owned "
1414 			    "by proc %d [%s]\n", pg,
1415 			    pg->owner, pg->owner_tag);
1416 			panic("uvm_page_own");
1417 		}
1418 		pg->owner = curproc->p_pid;
1419 		pg->lowner = curlwp->l_lid;
1420 		pg->owner_tag = tag;
1421 		return;
1422 	}
1423 
1424 	/* drop ownership */
1425 	KASSERT((pg->flags & PG_BUSY) == 0);
1426 	if (pg->owner_tag == NULL) {
1427 		printf("uvm_page_own: dropping ownership of an non-owned "
1428 		    "page (%p)\n", pg);
1429 		panic("uvm_page_own");
1430 	}
1431 	if (!uvmpdpol_pageisqueued_p(pg)) {
1432 		KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
1433 		    pg->wire_count > 0);
1434 	} else {
1435 		KASSERT(pg->wire_count == 0);
1436 	}
1437 	pg->owner_tag = NULL;
1438 }
1439 #endif
1440 
1441 /*
1442  * uvm_pageidlezero: zero free pages while the system is idle.
1443  *
1444  * => try to complete one color bucket at a time, to reduce our impact
1445  *	on the CPU cache.
1446  * => we loop until we either reach the target or there is a lwp ready
1447  *      to run, or MD code detects a reason to break early.
1448  */
1449 void
1450 uvm_pageidlezero(void)
1451 {
1452 	struct vm_page *pg;
1453 	struct pgfreelist *pgfl, *gpgfl;
1454 	struct uvm_cpu *ucpu;
1455 	int free_list, firstbucket, nextbucket;
1456 	bool lcont = false;
1457 
1458 	ucpu = curcpu()->ci_data.cpu_uvm;
1459 	if (!ucpu->page_idle_zero ||
1460 	    ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1461 	    	ucpu->page_idle_zero = false;
1462 		return;
1463 	}
1464 	if (!mutex_tryenter(&uvm_fpageqlock)) {
1465 		/* Contention: let other CPUs to use the lock. */
1466 		return;
1467 	}
1468 	firstbucket = ucpu->page_free_nextcolor;
1469 	nextbucket = firstbucket;
1470 	do {
1471 		for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
1472 			if (sched_curcpu_runnable_p()) {
1473 				goto quit;
1474 			}
1475 			pgfl = &ucpu->page_free[free_list];
1476 			gpgfl = &uvm.page_free[free_list];
1477 			while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
1478 			    nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
1479 				if (lcont || sched_curcpu_runnable_p()) {
1480 					goto quit;
1481 				}
1482 				LIST_REMOVE(pg, pageq.list); /* global list */
1483 				LIST_REMOVE(pg, listq.list); /* per-cpu list */
1484 				ucpu->pages[PGFL_UNKNOWN]--;
1485 				uvmexp.free--;
1486 				KASSERT(pg->pqflags == PQ_FREE);
1487 				pg->pqflags = 0;
1488 				mutex_spin_exit(&uvm_fpageqlock);
1489 #ifdef PMAP_PAGEIDLEZERO
1490 				if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
1491 
1492 					/*
1493 					 * The machine-dependent code detected
1494 					 * some reason for us to abort zeroing
1495 					 * pages, probably because there is a
1496 					 * process now ready to run.
1497 					 */
1498 
1499 					mutex_spin_enter(&uvm_fpageqlock);
1500 					pg->pqflags = PQ_FREE;
1501 					LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1502 					    nextbucket].pgfl_queues[
1503 					    PGFL_UNKNOWN], pg, pageq.list);
1504 					LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1505 					    nextbucket].pgfl_queues[
1506 					    PGFL_UNKNOWN], pg, listq.list);
1507 					ucpu->pages[PGFL_UNKNOWN]++;
1508 					uvmexp.free++;
1509 					uvmexp.zeroaborts++;
1510 					goto quit;
1511 				}
1512 #else
1513 				pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1514 #endif /* PMAP_PAGEIDLEZERO */
1515 				pg->flags |= PG_ZERO;
1516 
1517 				if (!mutex_tryenter(&uvm_fpageqlock)) {
1518 					lcont = true;
1519 					mutex_spin_enter(&uvm_fpageqlock);
1520 				} else {
1521 					lcont = false;
1522 				}
1523 				pg->pqflags = PQ_FREE;
1524 				LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
1525 				    nextbucket].pgfl_queues[PGFL_ZEROS],
1526 				    pg, pageq.list);
1527 				LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
1528 				    nextbucket].pgfl_queues[PGFL_ZEROS],
1529 				    pg, listq.list);
1530 				ucpu->pages[PGFL_ZEROS]++;
1531 				uvmexp.free++;
1532 				uvmexp.zeropages++;
1533 			}
1534 		}
1535 		if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
1536 			break;
1537 		}
1538 		nextbucket = (nextbucket + 1) & uvmexp.colormask;
1539 	} while (nextbucket != firstbucket);
1540 	ucpu->page_idle_zero = false;
1541  quit:
1542 	mutex_spin_exit(&uvm_fpageqlock);
1543 }
1544 
1545 /*
1546  * uvm_pagelookup: look up a page
1547  *
1548  * => caller should lock object to keep someone from pulling the page
1549  *	out from under it
1550  */
1551 
1552 struct vm_page *
1553 uvm_pagelookup(struct uvm_object *obj, voff_t off)
1554 {
1555 	struct vm_page *pg;
1556 
1557 	KASSERT(mutex_owned(obj->vmobjlock));
1558 
1559 	pg = rb_tree_find_node(&obj->rb_tree, &off);
1560 
1561 	KASSERT(pg == NULL || obj->uo_npages != 0);
1562 	KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
1563 		(pg->flags & PG_BUSY) != 0);
1564 	return pg;
1565 }
1566 
1567 /*
1568  * uvm_pagewire: wire the page, thus removing it from the daemon's grasp
1569  *
1570  * => caller must lock page queues
1571  */
1572 
1573 void
1574 uvm_pagewire(struct vm_page *pg)
1575 {
1576 	KASSERT(mutex_owned(&uvm_pageqlock));
1577 #if defined(READAHEAD_STATS)
1578 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
1579 		uvm_ra_hit.ev_count++;
1580 		pg->pqflags &= ~PQ_READAHEAD;
1581 	}
1582 #endif /* defined(READAHEAD_STATS) */
1583 	if (pg->wire_count == 0) {
1584 		uvm_pagedequeue(pg);
1585 		uvmexp.wired++;
1586 	}
1587 	pg->wire_count++;
1588 	KASSERT(pg->wire_count > 0);	/* detect wraparound */
1589 }
1590 
1591 /*
1592  * uvm_pageunwire: unwire the page.
1593  *
1594  * => activate if wire count goes to zero.
1595  * => caller must lock page queues
1596  */
1597 
1598 void
1599 uvm_pageunwire(struct vm_page *pg)
1600 {
1601 	KASSERT(mutex_owned(&uvm_pageqlock));
1602 	KASSERT(pg->wire_count != 0);
1603 	pg->wire_count--;
1604 	if (pg->wire_count == 0) {
1605 		uvm_pageactivate(pg);
1606 		KASSERT(uvmexp.wired != 0);
1607 		uvmexp.wired--;
1608 	}
1609 }
1610 
1611 /*
1612  * uvm_pagedeactivate: deactivate page
1613  *
1614  * => caller must lock page queues
1615  * => caller must check to make sure page is not wired
1616  * => object that page belongs to must be locked (so we can adjust pg->flags)
1617  * => caller must clear the reference on the page before calling
1618  */
1619 
1620 void
1621 uvm_pagedeactivate(struct vm_page *pg)
1622 {
1623 
1624 	KASSERT(mutex_owned(&uvm_pageqlock));
1625 	KASSERT(uvm_page_locked_p(pg));
1626 	KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
1627 	uvmpdpol_pagedeactivate(pg);
1628 }
1629 
1630 /*
1631  * uvm_pageactivate: activate page
1632  *
1633  * => caller must lock page queues
1634  */
1635 
1636 void
1637 uvm_pageactivate(struct vm_page *pg)
1638 {
1639 
1640 	KASSERT(mutex_owned(&uvm_pageqlock));
1641 	KASSERT(uvm_page_locked_p(pg));
1642 #if defined(READAHEAD_STATS)
1643 	if ((pg->pqflags & PQ_READAHEAD) != 0) {
1644 		uvm_ra_hit.ev_count++;
1645 		pg->pqflags &= ~PQ_READAHEAD;
1646 	}
1647 #endif /* defined(READAHEAD_STATS) */
1648 	if (pg->wire_count != 0) {
1649 		return;
1650 	}
1651 	uvmpdpol_pageactivate(pg);
1652 }
1653 
1654 /*
1655  * uvm_pagedequeue: remove a page from any paging queue
1656  */
1657 
1658 void
1659 uvm_pagedequeue(struct vm_page *pg)
1660 {
1661 
1662 	if (uvmpdpol_pageisqueued_p(pg)) {
1663 		KASSERT(mutex_owned(&uvm_pageqlock));
1664 	}
1665 
1666 	uvmpdpol_pagedequeue(pg);
1667 }
1668 
1669 /*
1670  * uvm_pageenqueue: add a page to a paging queue without activating.
1671  * used where a page is not really demanded (yet).  eg. read-ahead
1672  */
1673 
1674 void
1675 uvm_pageenqueue(struct vm_page *pg)
1676 {
1677 
1678 	KASSERT(mutex_owned(&uvm_pageqlock));
1679 	if (pg->wire_count != 0) {
1680 		return;
1681 	}
1682 	uvmpdpol_pageenqueue(pg);
1683 }
1684 
1685 /*
1686  * uvm_pagezero: zero fill a page
1687  *
1688  * => if page is part of an object then the object should be locked
1689  *	to protect pg->flags.
1690  */
1691 
1692 void
1693 uvm_pagezero(struct vm_page *pg)
1694 {
1695 	pg->flags &= ~PG_CLEAN;
1696 	pmap_zero_page(VM_PAGE_TO_PHYS(pg));
1697 }
1698 
1699 /*
1700  * uvm_pagecopy: copy a page
1701  *
1702  * => if page is part of an object then the object should be locked
1703  *	to protect pg->flags.
1704  */
1705 
1706 void
1707 uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
1708 {
1709 
1710 	dst->flags &= ~PG_CLEAN;
1711 	pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
1712 }
1713 
1714 /*
1715  * uvm_pageismanaged: test it see that a page (specified by PA) is managed.
1716  */
1717 
1718 bool
1719 uvm_pageismanaged(paddr_t pa)
1720 {
1721 
1722 	return (uvm_physseg_find(atop(pa), NULL) != UVM_PHYSSEG_TYPE_INVALID);
1723 }
1724 
1725 /*
1726  * uvm_page_lookup_freelist: look up the free list for the specified page
1727  */
1728 
1729 int
1730 uvm_page_lookup_freelist(struct vm_page *pg)
1731 {
1732 	uvm_physseg_t upm;
1733 
1734 	upm = uvm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
1735 	KASSERT(upm != UVM_PHYSSEG_TYPE_INVALID);
1736 	return uvm_physseg_get_free_list(upm);
1737 }
1738 
1739 /*
1740  * uvm_page_locked_p: return true if object associated with page is
1741  * locked.  this is a weak check for runtime assertions only.
1742  */
1743 
1744 bool
1745 uvm_page_locked_p(struct vm_page *pg)
1746 {
1747 
1748 	if (pg->uobject != NULL) {
1749 		return mutex_owned(pg->uobject->vmobjlock);
1750 	}
1751 	if (pg->uanon != NULL) {
1752 		return mutex_owned(pg->uanon->an_lock);
1753 	}
1754 	return true;
1755 }
1756 
1757 #ifdef PMAP_DIRECT
1758 /*
1759  * Call pmap to translate physical address into a virtual and to run a callback
1760  * for it. Used to avoid actually mapping the pages, pmap most likely uses direct map
1761  * or equivalent.
1762  */
1763 int
1764 uvm_direct_process(struct vm_page **pgs, u_int npages, voff_t off, vsize_t len,
1765             int (*process)(void *, size_t, void *), void *arg)
1766 {
1767 	int error = 0;
1768 	paddr_t pa;
1769 	size_t todo;
1770 	voff_t pgoff = (off & PAGE_MASK);
1771 	struct vm_page *pg;
1772 
1773 	KASSERT(npages > 0 && len > 0);
1774 
1775 	for (int i = 0; i < npages; i++) {
1776 		pg = pgs[i];
1777 
1778 		KASSERT(len > 0);
1779 
1780 		/*
1781 		 * Caller is responsible for ensuring all the pages are
1782 		 * available.
1783 		 */
1784 		KASSERT(pg != NULL && pg != PGO_DONTCARE);
1785 
1786 		pa = VM_PAGE_TO_PHYS(pg);
1787 		todo = MIN(len, PAGE_SIZE - pgoff);
1788 
1789 		error = pmap_direct_process(pa, pgoff, todo, process, arg);
1790 		if (error)
1791 			break;
1792 
1793 		pgoff = 0;
1794 		len -= todo;
1795 	}
1796 
1797 	KASSERTMSG(error != 0 || len == 0, "len %lu != 0 for non-error", len);
1798 	return error;
1799 }
1800 #endif /* PMAP_DIRECT */
1801 
1802 #if defined(DDB) || defined(DEBUGPRINT)
1803 
1804 /*
1805  * uvm_page_printit: actually print the page
1806  */
1807 
1808 static const char page_flagbits[] = UVM_PGFLAGBITS;
1809 static const char page_pqflagbits[] = UVM_PQFLAGBITS;
1810 
1811 void
1812 uvm_page_printit(struct vm_page *pg, bool full,
1813     void (*pr)(const char *, ...))
1814 {
1815 	struct vm_page *tpg;
1816 	struct uvm_object *uobj;
1817 	struct pgflist *pgl;
1818 	char pgbuf[128];
1819 	char pqbuf[128];
1820 
1821 	(*pr)("PAGE %p:\n", pg);
1822 	snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
1823 	snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
1824 	(*pr)("  flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
1825 	    pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
1826 	(*pr)("  uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
1827 	    pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
1828 #if defined(UVM_PAGE_TRKOWN)
1829 	if (pg->flags & PG_BUSY)
1830 		(*pr)("  owning process = %d, tag=%s\n",
1831 		    pg->owner, pg->owner_tag);
1832 	else
1833 		(*pr)("  page not busy, no owner\n");
1834 #else
1835 	(*pr)("  [page ownership tracking disabled]\n");
1836 #endif
1837 
1838 	if (!full)
1839 		return;
1840 
1841 	/* cross-verify object/anon */
1842 	if ((pg->pqflags & PQ_FREE) == 0) {
1843 		if (pg->pqflags & PQ_ANON) {
1844 			if (pg->uanon == NULL || pg->uanon->an_page != pg)
1845 			    (*pr)("  >>> ANON DOES NOT POINT HERE <<< (%p)\n",
1846 				(pg->uanon) ? pg->uanon->an_page : NULL);
1847 			else
1848 				(*pr)("  anon backpointer is OK\n");
1849 		} else {
1850 			uobj = pg->uobject;
1851 			if (uobj) {
1852 				(*pr)("  checking object list\n");
1853 				TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
1854 					if (tpg == pg) {
1855 						break;
1856 					}
1857 				}
1858 				if (tpg)
1859 					(*pr)("  page found on object list\n");
1860 				else
1861 			(*pr)("  >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
1862 			}
1863 		}
1864 	}
1865 
1866 	/* cross-verify page queue */
1867 	if (pg->pqflags & PQ_FREE) {
1868 		int fl = uvm_page_lookup_freelist(pg);
1869 		int color = VM_PGCOLOR_BUCKET(pg);
1870 		pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
1871 		    ((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
1872 	} else {
1873 		pgl = NULL;
1874 	}
1875 
1876 	if (pgl) {
1877 		(*pr)("  checking pageq list\n");
1878 		LIST_FOREACH(tpg, pgl, pageq.list) {
1879 			if (tpg == pg) {
1880 				break;
1881 			}
1882 		}
1883 		if (tpg)
1884 			(*pr)("  page found on pageq list\n");
1885 		else
1886 			(*pr)("  >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
1887 	}
1888 }
1889 
1890 /*
1891  * uvm_pages_printthem - print a summary of all managed pages
1892  */
1893 
1894 void
1895 uvm_page_printall(void (*pr)(const char *, ...))
1896 {
1897 	uvm_physseg_t i;
1898 	paddr_t pfn;
1899 	struct vm_page *pg;
1900 
1901 	(*pr)("%18s %4s %4s %18s %18s"
1902 #ifdef UVM_PAGE_TRKOWN
1903 	    " OWNER"
1904 #endif
1905 	    "\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
1906 	for (i = uvm_physseg_get_first();
1907 	     uvm_physseg_valid_p(i);
1908 	     i = uvm_physseg_get_next(i)) {
1909 		for (pfn = uvm_physseg_get_start(i);
1910 		     pfn < uvm_physseg_get_end(i);
1911 		     pfn++) {
1912 			pg = PHYS_TO_VM_PAGE(ptoa(pfn));
1913 
1914 			(*pr)("%18p %04x %04x %18p %18p",
1915 			    pg, pg->flags, pg->pqflags, pg->uobject,
1916 			    pg->uanon);
1917 #ifdef UVM_PAGE_TRKOWN
1918 			if (pg->flags & PG_BUSY)
1919 				(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
1920 #endif
1921 			(*pr)("\n");
1922 		}
1923 	}
1924 }
1925 
1926 #endif /* DDB || DEBUGPRINT */
1927