1 /* $NetBSD: uvm_page.c,v 1.128 2008/01/13 16:46:47 yamt Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * Copyright (c) 1991, 1993, The Regents of the University of California. 6 * 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * The Mach Operating System project at Carnegie-Mellon University. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by Charles D. Cranor, 23 * Washington University, the University of California, Berkeley and 24 * its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vm_page.c 8.3 (Berkeley) 3/21/94 42 * from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Permission to use, copy, modify and distribute this software and 49 * its documentation is hereby granted, provided that both the copyright 50 * notice and this permission notice appear in all copies of the 51 * software, derivative works or modified versions, and any portions 52 * thereof, and that both notices appear in supporting documentation. 53 * 54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 57 * 58 * Carnegie Mellon requests users of this software to return to 59 * 60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 61 * School of Computer Science 62 * Carnegie Mellon University 63 * Pittsburgh PA 15213-3890 64 * 65 * any improvements or extensions that they make and grant Carnegie the 66 * rights to redistribute these changes. 67 */ 68 69 /* 70 * uvm_page.c: page ops. 71 */ 72 73 #include <sys/cdefs.h> 74 __KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.128 2008/01/13 16:46:47 yamt Exp $"); 75 76 #include "opt_uvmhist.h" 77 #include "opt_readahead.h" 78 79 #include <sys/param.h> 80 #include <sys/systm.h> 81 #include <sys/malloc.h> 82 #include <sys/sched.h> 83 #include <sys/kernel.h> 84 #include <sys/vnode.h> 85 #include <sys/proc.h> 86 #include <sys/atomic.h> 87 88 #include <uvm/uvm.h> 89 #include <uvm/uvm_pdpolicy.h> 90 91 /* 92 * global vars... XXXCDC: move to uvm. structure. 93 */ 94 95 /* 96 * physical memory config is stored in vm_physmem. 97 */ 98 99 struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */ 100 int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */ 101 102 /* 103 * Some supported CPUs in a given architecture don't support all 104 * of the things necessary to do idle page zero'ing efficiently. 105 * We therefore provide a way to disable it from machdep code here. 106 */ 107 /* 108 * XXX disabled until we can find a way to do this without causing 109 * problems for either CPU caches or DMA latency. 110 */ 111 bool vm_page_zero_enable = false; 112 113 /* 114 * local variables 115 */ 116 117 /* 118 * these variables record the values returned by vm_page_bootstrap, 119 * for debugging purposes. The implementation of uvm_pageboot_alloc 120 * and pmap_startup here also uses them internally. 121 */ 122 123 static vaddr_t virtual_space_start; 124 static vaddr_t virtual_space_end; 125 126 /* 127 * we use a hash table with only one bucket during bootup. we will 128 * later rehash (resize) the hash table once the allocator is ready. 129 * we static allocate the one bootstrap bucket below... 130 */ 131 132 static struct pglist uvm_bootbucket; 133 134 /* 135 * we allocate an initial number of page colors in uvm_page_init(), 136 * and remember them. We may re-color pages as cache sizes are 137 * discovered during the autoconfiguration phase. But we can never 138 * free the initial set of buckets, since they are allocated using 139 * uvm_pageboot_alloc(). 140 */ 141 142 static bool have_recolored_pages /* = false */; 143 144 MALLOC_DEFINE(M_VMPAGE, "VM page", "VM page"); 145 146 #ifdef DEBUG 147 vaddr_t uvm_zerocheckkva; 148 #endif /* DEBUG */ 149 150 /* 151 * locks on the hash table. allocated in 32 byte chunks to try 152 * and reduce cache traffic between CPUs. 153 */ 154 155 #define UVM_HASHLOCK_CNT 32 156 #define uvm_hashlock(hash) \ 157 (&uvm_hashlocks[(hash) & (UVM_HASHLOCK_CNT - 1)].lock) 158 159 static union { 160 kmutex_t lock; 161 uint8_t pad[32]; 162 } uvm_hashlocks[UVM_HASHLOCK_CNT] __aligned(32); 163 164 /* 165 * local prototypes 166 */ 167 168 static void uvm_pageinsert(struct vm_page *); 169 static void uvm_pageinsert_after(struct vm_page *, struct vm_page *); 170 static void uvm_pageremove(struct vm_page *); 171 172 /* 173 * inline functions 174 */ 175 176 /* 177 * uvm_pageinsert: insert a page in the object and the hash table 178 * uvm_pageinsert_after: insert a page into the specified place in listq 179 * 180 * => caller must lock object 181 * => caller must lock page queues 182 * => call should have already set pg's object and offset pointers 183 * and bumped the version counter 184 */ 185 186 inline static void 187 uvm_pageinsert_after(struct vm_page *pg, struct vm_page *where) 188 { 189 struct pglist *buck; 190 struct uvm_object *uobj = pg->uobject; 191 kmutex_t *lock; 192 u_int hash; 193 194 KASSERT(mutex_owned(&uobj->vmobjlock)); 195 KASSERT((pg->flags & PG_TABLED) == 0); 196 KASSERT(where == NULL || (where->flags & PG_TABLED)); 197 KASSERT(where == NULL || (where->uobject == uobj)); 198 199 hash = uvm_pagehash(uobj, pg->offset); 200 buck = &uvm.page_hash[hash]; 201 lock = uvm_hashlock(hash); 202 mutex_spin_enter(lock); 203 TAILQ_INSERT_TAIL(buck, pg, hashq); 204 mutex_spin_exit(lock); 205 206 if (UVM_OBJ_IS_VNODE(uobj)) { 207 if (uobj->uo_npages == 0) { 208 struct vnode *vp = (struct vnode *)uobj; 209 210 vholdl(vp); 211 } 212 if (UVM_OBJ_IS_VTEXT(uobj)) { 213 atomic_inc_uint(&uvmexp.execpages); 214 } else { 215 atomic_inc_uint(&uvmexp.filepages); 216 } 217 } else if (UVM_OBJ_IS_AOBJ(uobj)) { 218 atomic_inc_uint(&uvmexp.anonpages); 219 } 220 221 if (where) 222 TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq); 223 else 224 TAILQ_INSERT_TAIL(&uobj->memq, pg, listq); 225 pg->flags |= PG_TABLED; 226 uobj->uo_npages++; 227 } 228 229 inline static void 230 uvm_pageinsert(struct vm_page *pg) 231 { 232 233 uvm_pageinsert_after(pg, NULL); 234 } 235 236 /* 237 * uvm_page_remove: remove page from object and hash 238 * 239 * => caller must lock object 240 * => caller must lock page queues 241 */ 242 243 static inline void 244 uvm_pageremove(struct vm_page *pg) 245 { 246 struct pglist *buck; 247 struct uvm_object *uobj = pg->uobject; 248 kmutex_t *lock; 249 u_int hash; 250 251 KASSERT(mutex_owned(&uobj->vmobjlock)); 252 KASSERT(pg->flags & PG_TABLED); 253 254 hash = uvm_pagehash(uobj, pg->offset); 255 buck = &uvm.page_hash[hash]; 256 lock = uvm_hashlock(hash); 257 mutex_spin_enter(lock); 258 TAILQ_REMOVE(buck, pg, hashq); 259 mutex_spin_exit(lock); 260 261 if (UVM_OBJ_IS_VNODE(uobj)) { 262 if (uobj->uo_npages == 1) { 263 struct vnode *vp = (struct vnode *)uobj; 264 265 holdrelel(vp); 266 } 267 if (UVM_OBJ_IS_VTEXT(uobj)) { 268 atomic_dec_uint(&uvmexp.execpages); 269 } else { 270 atomic_dec_uint(&uvmexp.filepages); 271 } 272 } else if (UVM_OBJ_IS_AOBJ(uobj)) { 273 atomic_dec_uint(&uvmexp.anonpages); 274 } 275 276 /* object should be locked */ 277 uobj->uo_npages--; 278 TAILQ_REMOVE(&uobj->memq, pg, listq); 279 pg->flags &= ~PG_TABLED; 280 pg->uobject = NULL; 281 } 282 283 static void 284 uvm_page_init_buckets(struct pgfreelist *pgfl) 285 { 286 int color, i; 287 288 for (color = 0; color < uvmexp.ncolors; color++) { 289 for (i = 0; i < PGFL_NQUEUES; i++) { 290 TAILQ_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]); 291 } 292 } 293 } 294 295 /* 296 * uvm_page_init: init the page system. called from uvm_init(). 297 * 298 * => we return the range of kernel virtual memory in kvm_startp/kvm_endp 299 */ 300 301 void 302 uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp) 303 { 304 vsize_t freepages, pagecount, bucketcount, n; 305 struct pgflbucket *bucketarray; 306 struct vm_page *pagearray; 307 int lcv; 308 u_int i; 309 paddr_t paddr; 310 311 /* 312 * init the page queues and page queue locks, except the free 313 * list; we allocate that later (with the initial vm_page 314 * structures). 315 */ 316 317 uvmpdpol_init(); 318 mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE); 319 mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM); 320 321 /* 322 * init the <obj,offset> => <page> hash table. for now 323 * we just have one bucket (the bootstrap bucket). later on we 324 * will allocate new buckets as we dynamically resize the hash table. 325 */ 326 327 uvm.page_nhash = 1; /* 1 bucket */ 328 uvm.page_hashmask = 0; /* mask for hash function */ 329 uvm.page_hash = &uvm_bootbucket; /* install bootstrap bucket */ 330 TAILQ_INIT(uvm.page_hash); /* init hash table */ 331 332 /* 333 * init hashtable locks. these must be spinlocks, as they are 334 * called from sites in the pmap modules where we cannot block. 335 * if taking multiple locks, the order is: low numbered first, 336 * high numbered second. 337 */ 338 339 for (i = 0; i < UVM_HASHLOCK_CNT; i++) 340 mutex_init(&uvm_hashlocks[i].lock, MUTEX_SPIN, IPL_VM); 341 342 /* 343 * allocate vm_page structures. 344 */ 345 346 /* 347 * sanity check: 348 * before calling this function the MD code is expected to register 349 * some free RAM with the uvm_page_physload() function. our job 350 * now is to allocate vm_page structures for this memory. 351 */ 352 353 if (vm_nphysseg == 0) 354 panic("uvm_page_bootstrap: no memory pre-allocated"); 355 356 /* 357 * first calculate the number of free pages... 358 * 359 * note that we use start/end rather than avail_start/avail_end. 360 * this allows us to allocate extra vm_page structures in case we 361 * want to return some memory to the pool after booting. 362 */ 363 364 freepages = 0; 365 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 366 freepages += (vm_physmem[lcv].end - vm_physmem[lcv].start); 367 368 /* 369 * Let MD code initialize the number of colors, or default 370 * to 1 color if MD code doesn't care. 371 */ 372 if (uvmexp.ncolors == 0) 373 uvmexp.ncolors = 1; 374 uvmexp.colormask = uvmexp.ncolors - 1; 375 376 /* 377 * we now know we have (PAGE_SIZE * freepages) bytes of memory we can 378 * use. for each page of memory we use we need a vm_page structure. 379 * thus, the total number of pages we can use is the total size of 380 * the memory divided by the PAGE_SIZE plus the size of the vm_page 381 * structure. we add one to freepages as a fudge factor to avoid 382 * truncation errors (since we can only allocate in terms of whole 383 * pages). 384 */ 385 386 bucketcount = uvmexp.ncolors * VM_NFREELIST; 387 pagecount = ((freepages + 1) << PAGE_SHIFT) / 388 (PAGE_SIZE + sizeof(struct vm_page)); 389 390 bucketarray = (void *)uvm_pageboot_alloc((bucketcount * 391 sizeof(struct pgflbucket)) + (pagecount * 392 sizeof(struct vm_page))); 393 pagearray = (struct vm_page *)(bucketarray + bucketcount); 394 395 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 396 uvm.page_free[lcv].pgfl_buckets = 397 (bucketarray + (lcv * uvmexp.ncolors)); 398 uvm_page_init_buckets(&uvm.page_free[lcv]); 399 } 400 memset(pagearray, 0, pagecount * sizeof(struct vm_page)); 401 402 /* 403 * init the vm_page structures and put them in the correct place. 404 */ 405 406 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) { 407 n = vm_physmem[lcv].end - vm_physmem[lcv].start; 408 409 /* set up page array pointers */ 410 vm_physmem[lcv].pgs = pagearray; 411 pagearray += n; 412 pagecount -= n; 413 vm_physmem[lcv].lastpg = vm_physmem[lcv].pgs + (n - 1); 414 415 /* init and free vm_pages (we've already zeroed them) */ 416 paddr = ptoa(vm_physmem[lcv].start); 417 for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) { 418 vm_physmem[lcv].pgs[i].phys_addr = paddr; 419 #ifdef __HAVE_VM_PAGE_MD 420 VM_MDPAGE_INIT(&vm_physmem[lcv].pgs[i]); 421 #endif 422 if (atop(paddr) >= vm_physmem[lcv].avail_start && 423 atop(paddr) <= vm_physmem[lcv].avail_end) { 424 uvmexp.npages++; 425 /* add page to free pool */ 426 uvm_pagefree(&vm_physmem[lcv].pgs[i]); 427 } 428 } 429 } 430 431 /* 432 * pass up the values of virtual_space_start and 433 * virtual_space_end (obtained by uvm_pageboot_alloc) to the upper 434 * layers of the VM. 435 */ 436 437 *kvm_startp = round_page(virtual_space_start); 438 *kvm_endp = trunc_page(virtual_space_end); 439 #ifdef DEBUG 440 /* 441 * steal kva for uvm_pagezerocheck(). 442 */ 443 uvm_zerocheckkva = *kvm_startp; 444 *kvm_startp += PAGE_SIZE; 445 #endif /* DEBUG */ 446 447 /* 448 * init various thresholds. 449 */ 450 451 uvmexp.reserve_pagedaemon = 1; 452 uvmexp.reserve_kernel = 5; 453 454 /* 455 * determine if we should zero pages in the idle loop. 456 */ 457 458 uvm.page_idle_zero = vm_page_zero_enable; 459 460 /* 461 * done! 462 */ 463 464 uvm.page_init_done = true; 465 } 466 467 /* 468 * uvm_setpagesize: set the page size 469 * 470 * => sets page_shift and page_mask from uvmexp.pagesize. 471 */ 472 473 void 474 uvm_setpagesize(void) 475 { 476 477 /* 478 * If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE 479 * to be a constant (indicated by being a non-zero value). 480 */ 481 if (uvmexp.pagesize == 0) { 482 if (PAGE_SIZE == 0) 483 panic("uvm_setpagesize: uvmexp.pagesize not set"); 484 uvmexp.pagesize = PAGE_SIZE; 485 } 486 uvmexp.pagemask = uvmexp.pagesize - 1; 487 if ((uvmexp.pagemask & uvmexp.pagesize) != 0) 488 panic("uvm_setpagesize: page size not a power of two"); 489 for (uvmexp.pageshift = 0; ; uvmexp.pageshift++) 490 if ((1 << uvmexp.pageshift) == uvmexp.pagesize) 491 break; 492 } 493 494 /* 495 * uvm_pageboot_alloc: steal memory from physmem for bootstrapping 496 */ 497 498 vaddr_t 499 uvm_pageboot_alloc(vsize_t size) 500 { 501 static bool initialized = false; 502 vaddr_t addr; 503 #if !defined(PMAP_STEAL_MEMORY) 504 vaddr_t vaddr; 505 paddr_t paddr; 506 #endif 507 508 /* 509 * on first call to this function, initialize ourselves. 510 */ 511 if (initialized == false) { 512 pmap_virtual_space(&virtual_space_start, &virtual_space_end); 513 514 /* round it the way we like it */ 515 virtual_space_start = round_page(virtual_space_start); 516 virtual_space_end = trunc_page(virtual_space_end); 517 518 initialized = true; 519 } 520 521 /* round to page size */ 522 size = round_page(size); 523 524 #if defined(PMAP_STEAL_MEMORY) 525 526 /* 527 * defer bootstrap allocation to MD code (it may want to allocate 528 * from a direct-mapped segment). pmap_steal_memory should adjust 529 * virtual_space_start/virtual_space_end if necessary. 530 */ 531 532 addr = pmap_steal_memory(size, &virtual_space_start, 533 &virtual_space_end); 534 535 return(addr); 536 537 #else /* !PMAP_STEAL_MEMORY */ 538 539 /* 540 * allocate virtual memory for this request 541 */ 542 if (virtual_space_start == virtual_space_end || 543 (virtual_space_end - virtual_space_start) < size) 544 panic("uvm_pageboot_alloc: out of virtual space"); 545 546 addr = virtual_space_start; 547 548 #ifdef PMAP_GROWKERNEL 549 /* 550 * If the kernel pmap can't map the requested space, 551 * then allocate more resources for it. 552 */ 553 if (uvm_maxkaddr < (addr + size)) { 554 uvm_maxkaddr = pmap_growkernel(addr + size); 555 if (uvm_maxkaddr < (addr + size)) 556 panic("uvm_pageboot_alloc: pmap_growkernel() failed"); 557 } 558 #endif 559 560 virtual_space_start += size; 561 562 /* 563 * allocate and mapin physical pages to back new virtual pages 564 */ 565 566 for (vaddr = round_page(addr) ; vaddr < addr + size ; 567 vaddr += PAGE_SIZE) { 568 569 if (!uvm_page_physget(&paddr)) 570 panic("uvm_pageboot_alloc: out of memory"); 571 572 /* 573 * Note this memory is no longer managed, so using 574 * pmap_kenter is safe. 575 */ 576 pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE); 577 } 578 pmap_update(pmap_kernel()); 579 return(addr); 580 #endif /* PMAP_STEAL_MEMORY */ 581 } 582 583 #if !defined(PMAP_STEAL_MEMORY) 584 /* 585 * uvm_page_physget: "steal" one page from the vm_physmem structure. 586 * 587 * => attempt to allocate it off the end of a segment in which the "avail" 588 * values match the start/end values. if we can't do that, then we 589 * will advance both values (making them equal, and removing some 590 * vm_page structures from the non-avail area). 591 * => return false if out of memory. 592 */ 593 594 /* subroutine: try to allocate from memory chunks on the specified freelist */ 595 static bool uvm_page_physget_freelist(paddr_t *, int); 596 597 static bool 598 uvm_page_physget_freelist(paddr_t *paddrp, int freelist) 599 { 600 int lcv, x; 601 602 /* pass 1: try allocating from a matching end */ 603 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 604 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--) 605 #else 606 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 607 #endif 608 { 609 610 if (uvm.page_init_done == true) 611 panic("uvm_page_physget: called _after_ bootstrap"); 612 613 if (vm_physmem[lcv].free_list != freelist) 614 continue; 615 616 /* try from front */ 617 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].start && 618 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) { 619 *paddrp = ptoa(vm_physmem[lcv].avail_start); 620 vm_physmem[lcv].avail_start++; 621 vm_physmem[lcv].start++; 622 /* nothing left? nuke it */ 623 if (vm_physmem[lcv].avail_start == 624 vm_physmem[lcv].end) { 625 if (vm_nphysseg == 1) 626 panic("uvm_page_physget: out of memory!"); 627 vm_nphysseg--; 628 for (x = lcv ; x < vm_nphysseg ; x++) 629 /* structure copy */ 630 vm_physmem[x] = vm_physmem[x+1]; 631 } 632 return (true); 633 } 634 635 /* try from rear */ 636 if (vm_physmem[lcv].avail_end == vm_physmem[lcv].end && 637 vm_physmem[lcv].avail_start < vm_physmem[lcv].avail_end) { 638 *paddrp = ptoa(vm_physmem[lcv].avail_end - 1); 639 vm_physmem[lcv].avail_end--; 640 vm_physmem[lcv].end--; 641 /* nothing left? nuke it */ 642 if (vm_physmem[lcv].avail_end == 643 vm_physmem[lcv].start) { 644 if (vm_nphysseg == 1) 645 panic("uvm_page_physget: out of memory!"); 646 vm_nphysseg--; 647 for (x = lcv ; x < vm_nphysseg ; x++) 648 /* structure copy */ 649 vm_physmem[x] = vm_physmem[x+1]; 650 } 651 return (true); 652 } 653 } 654 655 /* pass2: forget about matching ends, just allocate something */ 656 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 657 for (lcv = vm_nphysseg - 1 ; lcv >= 0 ; lcv--) 658 #else 659 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 660 #endif 661 { 662 663 /* any room in this bank? */ 664 if (vm_physmem[lcv].avail_start >= vm_physmem[lcv].avail_end) 665 continue; /* nope */ 666 667 *paddrp = ptoa(vm_physmem[lcv].avail_start); 668 vm_physmem[lcv].avail_start++; 669 /* truncate! */ 670 vm_physmem[lcv].start = vm_physmem[lcv].avail_start; 671 672 /* nothing left? nuke it */ 673 if (vm_physmem[lcv].avail_start == vm_physmem[lcv].end) { 674 if (vm_nphysseg == 1) 675 panic("uvm_page_physget: out of memory!"); 676 vm_nphysseg--; 677 for (x = lcv ; x < vm_nphysseg ; x++) 678 /* structure copy */ 679 vm_physmem[x] = vm_physmem[x+1]; 680 } 681 return (true); 682 } 683 684 return (false); /* whoops! */ 685 } 686 687 bool 688 uvm_page_physget(paddr_t *paddrp) 689 { 690 int i; 691 692 /* try in the order of freelist preference */ 693 for (i = 0; i < VM_NFREELIST; i++) 694 if (uvm_page_physget_freelist(paddrp, i) == true) 695 return (true); 696 return (false); 697 } 698 #endif /* PMAP_STEAL_MEMORY */ 699 700 /* 701 * uvm_page_physload: load physical memory into VM system 702 * 703 * => all args are PFs 704 * => all pages in start/end get vm_page structures 705 * => areas marked by avail_start/avail_end get added to the free page pool 706 * => we are limited to VM_PHYSSEG_MAX physical memory segments 707 */ 708 709 void 710 uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start, 711 paddr_t avail_end, int free_list) 712 { 713 int preload, lcv; 714 psize_t npages; 715 struct vm_page *pgs; 716 struct vm_physseg *ps; 717 718 if (uvmexp.pagesize == 0) 719 panic("uvm_page_physload: page size not set!"); 720 if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT) 721 panic("uvm_page_physload: bad free list %d", free_list); 722 if (start >= end) 723 panic("uvm_page_physload: start >= end"); 724 725 /* 726 * do we have room? 727 */ 728 729 if (vm_nphysseg == VM_PHYSSEG_MAX) { 730 printf("uvm_page_physload: unable to load physical memory " 731 "segment\n"); 732 printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n", 733 VM_PHYSSEG_MAX, (long long)start, (long long)end); 734 printf("\tincrease VM_PHYSSEG_MAX\n"); 735 return; 736 } 737 738 /* 739 * check to see if this is a "preload" (i.e. uvm_mem_init hasn't been 740 * called yet, so malloc is not available). 741 */ 742 743 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) { 744 if (vm_physmem[lcv].pgs) 745 break; 746 } 747 preload = (lcv == vm_nphysseg); 748 749 /* 750 * if VM is already running, attempt to malloc() vm_page structures 751 */ 752 753 if (!preload) { 754 #if defined(VM_PHYSSEG_NOADD) 755 panic("uvm_page_physload: tried to add RAM after vm_mem_init"); 756 #else 757 /* XXXCDC: need some sort of lockout for this case */ 758 paddr_t paddr; 759 npages = end - start; /* # of pages */ 760 pgs = malloc(sizeof(struct vm_page) * npages, 761 M_VMPAGE, M_NOWAIT); 762 if (pgs == NULL) { 763 printf("uvm_page_physload: can not malloc vm_page " 764 "structs for segment\n"); 765 printf("\tignoring 0x%lx -> 0x%lx\n", start, end); 766 return; 767 } 768 /* zero data, init phys_addr and free_list, and free pages */ 769 memset(pgs, 0, sizeof(struct vm_page) * npages); 770 for (lcv = 0, paddr = ptoa(start) ; 771 lcv < npages ; lcv++, paddr += PAGE_SIZE) { 772 pgs[lcv].phys_addr = paddr; 773 pgs[lcv].free_list = free_list; 774 if (atop(paddr) >= avail_start && 775 atop(paddr) <= avail_end) 776 uvm_pagefree(&pgs[lcv]); 777 } 778 /* XXXCDC: incomplete: need to update uvmexp.free, what else? */ 779 /* XXXCDC: need hook to tell pmap to rebuild pv_list, etc... */ 780 #endif 781 } else { 782 pgs = NULL; 783 npages = 0; 784 } 785 786 /* 787 * now insert us in the proper place in vm_physmem[] 788 */ 789 790 #if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM) 791 /* random: put it at the end (easy!) */ 792 ps = &vm_physmem[vm_nphysseg]; 793 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH) 794 { 795 int x; 796 /* sort by address for binary search */ 797 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 798 if (start < vm_physmem[lcv].start) 799 break; 800 ps = &vm_physmem[lcv]; 801 /* move back other entries, if necessary ... */ 802 for (x = vm_nphysseg ; x > lcv ; x--) 803 /* structure copy */ 804 vm_physmem[x] = vm_physmem[x - 1]; 805 } 806 #elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST) 807 { 808 int x; 809 /* sort by largest segment first */ 810 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 811 if ((end - start) > 812 (vm_physmem[lcv].end - vm_physmem[lcv].start)) 813 break; 814 ps = &vm_physmem[lcv]; 815 /* move back other entries, if necessary ... */ 816 for (x = vm_nphysseg ; x > lcv ; x--) 817 /* structure copy */ 818 vm_physmem[x] = vm_physmem[x - 1]; 819 } 820 #else 821 panic("uvm_page_physload: unknown physseg strategy selected!"); 822 #endif 823 824 ps->start = start; 825 ps->end = end; 826 ps->avail_start = avail_start; 827 ps->avail_end = avail_end; 828 if (preload) { 829 ps->pgs = NULL; 830 } else { 831 ps->pgs = pgs; 832 ps->lastpg = pgs + npages - 1; 833 } 834 ps->free_list = free_list; 835 vm_nphysseg++; 836 837 if (!preload) { 838 uvm_page_rehash(); 839 uvmpdpol_reinit(); 840 } 841 } 842 843 /* 844 * uvm_page_rehash: reallocate hash table based on number of free pages. 845 */ 846 847 void 848 uvm_page_rehash(void) 849 { 850 int freepages, lcv, bucketcount, oldcount, i; 851 struct pglist *newbuckets, *oldbuckets; 852 struct vm_page *pg; 853 size_t newsize, oldsize; 854 855 /* 856 * compute number of pages that can go in the free pool 857 */ 858 859 freepages = 0; 860 for (lcv = 0 ; lcv < vm_nphysseg ; lcv++) 861 freepages += 862 (vm_physmem[lcv].avail_end - vm_physmem[lcv].avail_start); 863 864 /* 865 * compute number of buckets needed for this number of pages 866 */ 867 868 bucketcount = 1; 869 while (bucketcount < freepages) 870 bucketcount = bucketcount * 2; 871 872 /* 873 * compute the size of the current table and new table. 874 */ 875 876 oldbuckets = uvm.page_hash; 877 oldcount = uvm.page_nhash; 878 oldsize = round_page(sizeof(struct pglist) * oldcount); 879 newsize = round_page(sizeof(struct pglist) * bucketcount); 880 881 /* 882 * allocate the new buckets 883 */ 884 885 newbuckets = (struct pglist *) uvm_km_alloc(kernel_map, newsize, 886 0, UVM_KMF_WIRED); 887 if (newbuckets == NULL) { 888 printf("uvm_page_physrehash: WARNING: could not grow page " 889 "hash table\n"); 890 return; 891 } 892 for (lcv = 0 ; lcv < bucketcount ; lcv++) 893 TAILQ_INIT(&newbuckets[lcv]); 894 895 /* 896 * now replace the old buckets with the new ones and rehash everything 897 */ 898 899 for (i = 0; i < UVM_HASHLOCK_CNT; i++) 900 mutex_spin_enter(&uvm_hashlocks[i].lock); 901 902 uvm.page_hash = newbuckets; 903 uvm.page_nhash = bucketcount; 904 uvm.page_hashmask = bucketcount - 1; /* power of 2 */ 905 906 /* ... and rehash */ 907 for (lcv = 0 ; lcv < oldcount ; lcv++) { 908 while ((pg = oldbuckets[lcv].tqh_first) != NULL) { 909 TAILQ_REMOVE(&oldbuckets[lcv], pg, hashq); 910 TAILQ_INSERT_TAIL( 911 &uvm.page_hash[uvm_pagehash(pg->uobject, pg->offset)], 912 pg, hashq); 913 } 914 } 915 916 for (i = 0; i < UVM_HASHLOCK_CNT; i++) 917 mutex_spin_exit(&uvm_hashlocks[i].lock); 918 919 /* 920 * free old bucket array if is not the boot-time table 921 */ 922 923 if (oldbuckets != &uvm_bootbucket) 924 uvm_km_free(kernel_map, (vaddr_t) oldbuckets, oldsize, 925 UVM_KMF_WIRED); 926 } 927 928 /* 929 * uvm_page_recolor: Recolor the pages if the new bucket count is 930 * larger than the old one. 931 */ 932 933 void 934 uvm_page_recolor(int newncolors) 935 { 936 struct pgflbucket *bucketarray, *oldbucketarray; 937 struct pgfreelist pgfl; 938 struct vm_page *pg; 939 vsize_t bucketcount; 940 int lcv, color, i, ocolors; 941 942 if (newncolors <= uvmexp.ncolors) 943 return; 944 945 if (uvm.page_init_done == false) { 946 uvmexp.ncolors = newncolors; 947 return; 948 } 949 950 bucketcount = newncolors * VM_NFREELIST; 951 bucketarray = malloc(bucketcount * sizeof(struct pgflbucket), 952 M_VMPAGE, M_NOWAIT); 953 if (bucketarray == NULL) { 954 printf("WARNING: unable to allocate %ld page color buckets\n", 955 (long) bucketcount); 956 return; 957 } 958 959 mutex_spin_enter(&uvm_fpageqlock); 960 961 /* Make sure we should still do this. */ 962 if (newncolors <= uvmexp.ncolors) { 963 mutex_spin_exit(&uvm_fpageqlock); 964 free(bucketarray, M_VMPAGE); 965 return; 966 } 967 968 oldbucketarray = uvm.page_free[0].pgfl_buckets; 969 ocolors = uvmexp.ncolors; 970 971 uvmexp.ncolors = newncolors; 972 uvmexp.colormask = uvmexp.ncolors - 1; 973 974 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 975 pgfl.pgfl_buckets = (bucketarray + (lcv * newncolors)); 976 uvm_page_init_buckets(&pgfl); 977 for (color = 0; color < ocolors; color++) { 978 for (i = 0; i < PGFL_NQUEUES; i++) { 979 while ((pg = TAILQ_FIRST(&uvm.page_free[ 980 lcv].pgfl_buckets[color].pgfl_queues[i])) 981 != NULL) { 982 TAILQ_REMOVE(&uvm.page_free[ 983 lcv].pgfl_buckets[ 984 color].pgfl_queues[i], pg, pageq); 985 TAILQ_INSERT_TAIL(&pgfl.pgfl_buckets[ 986 VM_PGCOLOR_BUCKET(pg)].pgfl_queues[ 987 i], pg, pageq); 988 } 989 } 990 } 991 uvm.page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets; 992 } 993 994 if (have_recolored_pages) { 995 mutex_spin_exit(&uvm_fpageqlock); 996 free(oldbucketarray, M_VMPAGE); 997 return; 998 } 999 1000 have_recolored_pages = true; 1001 mutex_spin_exit(&uvm_fpageqlock); 1002 } 1003 1004 /* 1005 * uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat 1006 */ 1007 1008 static struct vm_page * 1009 uvm_pagealloc_pgfl(struct pgfreelist *pgfl, int try1, int try2, 1010 int *trycolorp) 1011 { 1012 struct pglist *freeq; 1013 struct vm_page *pg; 1014 int color, trycolor = *trycolorp; 1015 1016 color = trycolor; 1017 do { 1018 if ((pg = TAILQ_FIRST((freeq = 1019 &pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) 1020 goto gotit; 1021 if ((pg = TAILQ_FIRST((freeq = 1022 &pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) 1023 goto gotit; 1024 color = (color + 1) & uvmexp.colormask; 1025 } while (color != trycolor); 1026 1027 return (NULL); 1028 1029 gotit: 1030 TAILQ_REMOVE(freeq, pg, pageq); 1031 uvmexp.free--; 1032 1033 /* update zero'd page count */ 1034 if (pg->flags & PG_ZERO) 1035 uvmexp.zeropages--; 1036 1037 if (color == trycolor) 1038 uvmexp.colorhit++; 1039 else { 1040 uvmexp.colormiss++; 1041 *trycolorp = color; 1042 } 1043 1044 return (pg); 1045 } 1046 1047 /* 1048 * uvm_pagealloc_strat: allocate vm_page from a particular free list. 1049 * 1050 * => return null if no pages free 1051 * => wake up pagedaemon if number of free pages drops below low water mark 1052 * => if obj != NULL, obj must be locked (to put in hash) 1053 * => if anon != NULL, anon must be locked (to put in anon) 1054 * => only one of obj or anon can be non-null 1055 * => caller must activate/deactivate page if it is not wired. 1056 * => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL. 1057 * => policy decision: it is more important to pull a page off of the 1058 * appropriate priority free list than it is to get a zero'd or 1059 * unknown contents page. This is because we live with the 1060 * consequences of a bad free list decision for the entire 1061 * lifetime of the page, e.g. if the page comes from memory that 1062 * is slower to access. 1063 */ 1064 1065 struct vm_page * 1066 uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon, 1067 int flags, int strat, int free_list) 1068 { 1069 int lcv, try1, try2, zeroit = 0, color; 1070 struct vm_page *pg; 1071 bool use_reserve; 1072 1073 KASSERT(obj == NULL || anon == NULL); 1074 KASSERT(anon == NULL || off == 0); 1075 KASSERT(off == trunc_page(off)); 1076 KASSERT(obj == NULL || mutex_owned(&obj->vmobjlock)); 1077 KASSERT(anon == NULL || mutex_owned(&anon->an_lock)); 1078 1079 mutex_spin_enter(&uvm_fpageqlock); 1080 1081 /* 1082 * This implements a global round-robin page coloring 1083 * algorithm. 1084 * 1085 * XXXJRT: Should we make the `nextcolor' per-CPU? 1086 * XXXJRT: What about virtually-indexed caches? 1087 */ 1088 1089 color = uvm.page_free_nextcolor; 1090 1091 /* 1092 * check to see if we need to generate some free pages waking 1093 * the pagedaemon. 1094 */ 1095 1096 uvm_kick_pdaemon(); 1097 1098 /* 1099 * fail if any of these conditions is true: 1100 * [1] there really are no free pages, or 1101 * [2] only kernel "reserved" pages remain and 1102 * the page isn't being allocated to a kernel object. 1103 * [3] only pagedaemon "reserved" pages remain and 1104 * the requestor isn't the pagedaemon. 1105 */ 1106 1107 use_reserve = (flags & UVM_PGA_USERESERVE) || 1108 (obj && UVM_OBJ_IS_KERN_OBJECT(obj)); 1109 if ((uvmexp.free <= uvmexp.reserve_kernel && !use_reserve) || 1110 (uvmexp.free <= uvmexp.reserve_pagedaemon && 1111 !(use_reserve && curlwp == uvm.pagedaemon_lwp))) 1112 goto fail; 1113 1114 #if PGFL_NQUEUES != 2 1115 #error uvm_pagealloc_strat needs to be updated 1116 #endif 1117 1118 /* 1119 * If we want a zero'd page, try the ZEROS queue first, otherwise 1120 * we try the UNKNOWN queue first. 1121 */ 1122 if (flags & UVM_PGA_ZERO) { 1123 try1 = PGFL_ZEROS; 1124 try2 = PGFL_UNKNOWN; 1125 } else { 1126 try1 = PGFL_UNKNOWN; 1127 try2 = PGFL_ZEROS; 1128 } 1129 1130 again: 1131 switch (strat) { 1132 case UVM_PGA_STRAT_NORMAL: 1133 /* Check all freelists in descending priority order. */ 1134 for (lcv = 0; lcv < VM_NFREELIST; lcv++) { 1135 pg = uvm_pagealloc_pgfl(&uvm.page_free[lcv], 1136 try1, try2, &color); 1137 if (pg != NULL) 1138 goto gotit; 1139 } 1140 1141 /* No pages free! */ 1142 goto fail; 1143 1144 case UVM_PGA_STRAT_ONLY: 1145 case UVM_PGA_STRAT_FALLBACK: 1146 /* Attempt to allocate from the specified free list. */ 1147 KASSERT(free_list >= 0 && free_list < VM_NFREELIST); 1148 pg = uvm_pagealloc_pgfl(&uvm.page_free[free_list], 1149 try1, try2, &color); 1150 if (pg != NULL) 1151 goto gotit; 1152 1153 /* Fall back, if possible. */ 1154 if (strat == UVM_PGA_STRAT_FALLBACK) { 1155 strat = UVM_PGA_STRAT_NORMAL; 1156 goto again; 1157 } 1158 1159 /* No pages free! */ 1160 goto fail; 1161 1162 default: 1163 panic("uvm_pagealloc_strat: bad strat %d", strat); 1164 /* NOTREACHED */ 1165 } 1166 1167 gotit: 1168 /* 1169 * We now know which color we actually allocated from; set 1170 * the next color accordingly. 1171 */ 1172 1173 uvm.page_free_nextcolor = (color + 1) & uvmexp.colormask; 1174 1175 /* 1176 * update allocation statistics and remember if we have to 1177 * zero the page 1178 */ 1179 1180 if (flags & UVM_PGA_ZERO) { 1181 if (pg->flags & PG_ZERO) { 1182 uvmexp.pga_zerohit++; 1183 zeroit = 0; 1184 } else { 1185 uvmexp.pga_zeromiss++; 1186 zeroit = 1; 1187 } 1188 } 1189 mutex_spin_exit(&uvm_fpageqlock); 1190 1191 pg->offset = off; 1192 pg->uobject = obj; 1193 pg->uanon = anon; 1194 pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE; 1195 if (anon) { 1196 anon->an_page = pg; 1197 pg->pqflags = PQ_ANON; 1198 atomic_inc_uint(&uvmexp.anonpages); 1199 } else { 1200 if (obj) { 1201 uvm_pageinsert(pg); 1202 } 1203 pg->pqflags = 0; 1204 } 1205 #if defined(UVM_PAGE_TRKOWN) 1206 pg->owner_tag = NULL; 1207 #endif 1208 UVM_PAGE_OWN(pg, "new alloc"); 1209 1210 if (flags & UVM_PGA_ZERO) { 1211 /* 1212 * A zero'd page is not clean. If we got a page not already 1213 * zero'd, then we have to zero it ourselves. 1214 */ 1215 pg->flags &= ~PG_CLEAN; 1216 if (zeroit) 1217 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1218 } 1219 1220 return(pg); 1221 1222 fail: 1223 mutex_spin_exit(&uvm_fpageqlock); 1224 return (NULL); 1225 } 1226 1227 /* 1228 * uvm_pagereplace: replace a page with another 1229 * 1230 * => object must be locked 1231 */ 1232 1233 void 1234 uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg) 1235 { 1236 1237 KASSERT((oldpg->flags & PG_TABLED) != 0); 1238 KASSERT(oldpg->uobject != NULL); 1239 KASSERT((newpg->flags & PG_TABLED) == 0); 1240 KASSERT(newpg->uobject == NULL); 1241 KASSERT(mutex_owned(&oldpg->uobject->vmobjlock)); 1242 1243 newpg->uobject = oldpg->uobject; 1244 newpg->offset = oldpg->offset; 1245 1246 uvm_pageinsert_after(newpg, oldpg); 1247 uvm_pageremove(oldpg); 1248 } 1249 1250 /* 1251 * uvm_pagerealloc: reallocate a page from one object to another 1252 * 1253 * => both objects must be locked 1254 */ 1255 1256 void 1257 uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff) 1258 { 1259 /* 1260 * remove it from the old object 1261 */ 1262 1263 if (pg->uobject) { 1264 uvm_pageremove(pg); 1265 } 1266 1267 /* 1268 * put it in the new object 1269 */ 1270 1271 if (newobj) { 1272 pg->uobject = newobj; 1273 pg->offset = newoff; 1274 uvm_pageinsert(pg); 1275 } 1276 } 1277 1278 #ifdef DEBUG 1279 /* 1280 * check if page is zero-filled 1281 * 1282 * - called with free page queue lock held. 1283 */ 1284 void 1285 uvm_pagezerocheck(struct vm_page *pg) 1286 { 1287 int *p, *ep; 1288 1289 KASSERT(uvm_zerocheckkva != 0); 1290 KASSERT(mutex_owned(&uvm_fpageqlock)); 1291 1292 /* 1293 * XXX assuming pmap_kenter_pa and pmap_kremove never call 1294 * uvm page allocator. 1295 * 1296 * it might be better to have "CPU-local temporary map" pmap interface. 1297 */ 1298 pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ); 1299 p = (int *)uvm_zerocheckkva; 1300 ep = (int *)((char *)p + PAGE_SIZE); 1301 pmap_update(pmap_kernel()); 1302 while (p < ep) { 1303 if (*p != 0) 1304 panic("PG_ZERO page isn't zero-filled"); 1305 p++; 1306 } 1307 pmap_kremove(uvm_zerocheckkva, PAGE_SIZE); 1308 } 1309 #endif /* DEBUG */ 1310 1311 /* 1312 * uvm_pagefree: free page 1313 * 1314 * => erase page's identity (i.e. remove from hash/object) 1315 * => put page on free list 1316 * => caller must lock owning object (either anon or uvm_object) 1317 * => caller must lock page queues 1318 * => assumes all valid mappings of pg are gone 1319 */ 1320 1321 void 1322 uvm_pagefree(struct vm_page *pg) 1323 { 1324 struct pglist *pgfl; 1325 bool iszero; 1326 1327 #ifdef DEBUG 1328 if (pg->uobject == (void *)0xdeadbeef && 1329 pg->uanon == (void *)0xdeadbeef) { 1330 panic("uvm_pagefree: freeing free page %p", pg); 1331 } 1332 #endif /* DEBUG */ 1333 1334 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1335 KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg)); 1336 KASSERT(pg->uobject == NULL || mutex_owned(&pg->uobject->vmobjlock)); 1337 KASSERT(pg->uobject != NULL || pg->uanon == NULL || 1338 mutex_owned(&pg->uanon->an_lock)); 1339 1340 /* 1341 * if the page is loaned, resolve the loan instead of freeing. 1342 */ 1343 1344 if (pg->loan_count) { 1345 KASSERT(pg->wire_count == 0); 1346 1347 /* 1348 * if the page is owned by an anon then we just want to 1349 * drop anon ownership. the kernel will free the page when 1350 * it is done with it. if the page is owned by an object, 1351 * remove it from the object and mark it dirty for the benefit 1352 * of possible anon owners. 1353 * 1354 * regardless of previous ownership, wakeup any waiters, 1355 * unbusy the page, and we're done. 1356 */ 1357 1358 if (pg->uobject != NULL) { 1359 uvm_pageremove(pg); 1360 pg->flags &= ~PG_CLEAN; 1361 } else if (pg->uanon != NULL) { 1362 if ((pg->pqflags & PQ_ANON) == 0) { 1363 pg->loan_count--; 1364 } else { 1365 pg->pqflags &= ~PQ_ANON; 1366 atomic_dec_uint(&uvmexp.anonpages); 1367 } 1368 pg->uanon->an_page = NULL; 1369 pg->uanon = NULL; 1370 } 1371 if (pg->flags & PG_WANTED) { 1372 wakeup(pg); 1373 } 1374 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1); 1375 #ifdef UVM_PAGE_TRKOWN 1376 pg->owner_tag = NULL; 1377 #endif 1378 if (pg->loan_count) { 1379 KASSERT(pg->uobject == NULL); 1380 if (pg->uanon == NULL) { 1381 uvm_pagedequeue(pg); 1382 } 1383 return; 1384 } 1385 } 1386 1387 /* 1388 * remove page from its object or anon. 1389 */ 1390 1391 if (pg->uobject != NULL) { 1392 uvm_pageremove(pg); 1393 } else if (pg->uanon != NULL) { 1394 pg->uanon->an_page = NULL; 1395 atomic_dec_uint(&uvmexp.anonpages); 1396 } 1397 1398 /* 1399 * now remove the page from the queues. 1400 */ 1401 1402 uvm_pagedequeue(pg); 1403 1404 /* 1405 * if the page was wired, unwire it now. 1406 */ 1407 1408 if (pg->wire_count) { 1409 pg->wire_count = 0; 1410 uvmexp.wired--; 1411 } 1412 1413 /* 1414 * and put on free queue 1415 */ 1416 1417 iszero = (pg->flags & PG_ZERO); 1418 pgfl = &uvm.page_free[uvm_page_lookup_freelist(pg)]. 1419 pgfl_buckets[VM_PGCOLOR_BUCKET(pg)]. 1420 pgfl_queues[iszero ? PGFL_ZEROS : PGFL_UNKNOWN]; 1421 1422 pg->pqflags = PQ_FREE; 1423 #ifdef DEBUG 1424 pg->uobject = (void *)0xdeadbeef; 1425 pg->offset = 0xdeadbeef; 1426 pg->uanon = (void *)0xdeadbeef; 1427 #endif 1428 1429 mutex_spin_enter(&uvm_fpageqlock); 1430 1431 #ifdef DEBUG 1432 if (iszero) 1433 uvm_pagezerocheck(pg); 1434 #endif /* DEBUG */ 1435 1436 TAILQ_INSERT_HEAD(pgfl, pg, pageq); 1437 uvmexp.free++; 1438 if (iszero) 1439 uvmexp.zeropages++; 1440 1441 if (uvmexp.zeropages < UVM_PAGEZERO_TARGET) 1442 uvm.page_idle_zero = vm_page_zero_enable; 1443 1444 mutex_spin_exit(&uvm_fpageqlock); 1445 } 1446 1447 /* 1448 * uvm_page_unbusy: unbusy an array of pages. 1449 * 1450 * => pages must either all belong to the same object, or all belong to anons. 1451 * => if pages are object-owned, object must be locked. 1452 * => if pages are anon-owned, anons must be locked. 1453 * => caller must lock page queues if pages may be released. 1454 * => caller must make sure that anon-owned pages are not PG_RELEASED. 1455 */ 1456 1457 void 1458 uvm_page_unbusy(struct vm_page **pgs, int npgs) 1459 { 1460 struct vm_page *pg; 1461 int i; 1462 UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist); 1463 1464 for (i = 0; i < npgs; i++) { 1465 pg = pgs[i]; 1466 if (pg == NULL || pg == PGO_DONTCARE) { 1467 continue; 1468 } 1469 1470 KASSERT(pg->uobject == NULL || 1471 mutex_owned(&pg->uobject->vmobjlock)); 1472 KASSERT(pg->uobject != NULL || 1473 (pg->uanon != NULL && mutex_owned(&pg->uanon->an_lock))); 1474 1475 KASSERT(pg->flags & PG_BUSY); 1476 KASSERT((pg->flags & PG_PAGEOUT) == 0); 1477 if (pg->flags & PG_WANTED) { 1478 wakeup(pg); 1479 } 1480 if (pg->flags & PG_RELEASED) { 1481 UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0); 1482 KASSERT(pg->uobject != NULL || 1483 (pg->uanon != NULL && pg->uanon->an_ref > 0)); 1484 pg->flags &= ~PG_RELEASED; 1485 uvm_pagefree(pg); 1486 } else { 1487 UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0); 1488 pg->flags &= ~(PG_WANTED|PG_BUSY); 1489 UVM_PAGE_OWN(pg, NULL); 1490 } 1491 } 1492 } 1493 1494 #if defined(UVM_PAGE_TRKOWN) 1495 /* 1496 * uvm_page_own: set or release page ownership 1497 * 1498 * => this is a debugging function that keeps track of who sets PG_BUSY 1499 * and where they do it. it can be used to track down problems 1500 * such a process setting "PG_BUSY" and never releasing it. 1501 * => page's object [if any] must be locked 1502 * => if "tag" is NULL then we are releasing page ownership 1503 */ 1504 void 1505 uvm_page_own(struct vm_page *pg, const char *tag) 1506 { 1507 struct uvm_object *uobj; 1508 struct vm_anon *anon; 1509 1510 KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0); 1511 1512 uobj = pg->uobject; 1513 anon = pg->uanon; 1514 if (uobj != NULL) { 1515 KASSERT(mutex_owned(&uobj->vmobjlock)); 1516 } else if (anon != NULL) { 1517 KASSERT(mutex_owned(&anon->an_lock)); 1518 } 1519 1520 KASSERT((pg->flags & PG_WANTED) == 0); 1521 1522 /* gain ownership? */ 1523 if (tag) { 1524 KASSERT((pg->flags & PG_BUSY) != 0); 1525 if (pg->owner_tag) { 1526 printf("uvm_page_own: page %p already owned " 1527 "by proc %d [%s]\n", pg, 1528 pg->owner, pg->owner_tag); 1529 panic("uvm_page_own"); 1530 } 1531 pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1; 1532 pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1; 1533 pg->owner_tag = tag; 1534 return; 1535 } 1536 1537 /* drop ownership */ 1538 KASSERT((pg->flags & PG_BUSY) == 0); 1539 if (pg->owner_tag == NULL) { 1540 printf("uvm_page_own: dropping ownership of an non-owned " 1541 "page (%p)\n", pg); 1542 panic("uvm_page_own"); 1543 } 1544 if (!uvmpdpol_pageisqueued_p(pg)) { 1545 KASSERT((pg->uanon == NULL && pg->uobject == NULL) || 1546 pg->wire_count > 0); 1547 } else { 1548 KASSERT(pg->wire_count == 0); 1549 } 1550 pg->owner_tag = NULL; 1551 } 1552 #endif 1553 1554 /* 1555 * uvm_pageidlezero: zero free pages while the system is idle. 1556 * 1557 * => try to complete one color bucket at a time, to reduce our impact 1558 * on the CPU cache. 1559 * => we loop until we either reach the target or there is a lwp ready to run. 1560 */ 1561 void 1562 uvm_pageidlezero(void) 1563 { 1564 struct vm_page *pg; 1565 struct pgfreelist *pgfl; 1566 int free_list, firstbucket; 1567 static int nextbucket; 1568 1569 mutex_spin_enter(&uvm_fpageqlock); 1570 firstbucket = nextbucket; 1571 do { 1572 if (sched_curcpu_runnable_p()) { 1573 goto quit; 1574 } 1575 if (uvmexp.zeropages >= UVM_PAGEZERO_TARGET) { 1576 uvm.page_idle_zero = false; 1577 goto quit; 1578 } 1579 for (free_list = 0; free_list < VM_NFREELIST; free_list++) { 1580 pgfl = &uvm.page_free[free_list]; 1581 while ((pg = TAILQ_FIRST(&pgfl->pgfl_buckets[ 1582 nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) { 1583 if (sched_curcpu_runnable_p()) 1584 goto quit; 1585 1586 TAILQ_REMOVE(&pgfl->pgfl_buckets[ 1587 nextbucket].pgfl_queues[PGFL_UNKNOWN], 1588 pg, pageq); 1589 uvmexp.free--; 1590 mutex_spin_exit(&uvm_fpageqlock); 1591 #ifdef PMAP_PAGEIDLEZERO 1592 if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) { 1593 1594 /* 1595 * The machine-dependent code detected 1596 * some reason for us to abort zeroing 1597 * pages, probably because there is a 1598 * process now ready to run. 1599 */ 1600 1601 mutex_spin_enter(&uvm_fpageqlock); 1602 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[ 1603 nextbucket].pgfl_queues[ 1604 PGFL_UNKNOWN], pg, pageq); 1605 uvmexp.free++; 1606 uvmexp.zeroaborts++; 1607 goto quit; 1608 } 1609 #else 1610 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1611 #endif /* PMAP_PAGEIDLEZERO */ 1612 pg->flags |= PG_ZERO; 1613 1614 mutex_spin_enter(&uvm_fpageqlock); 1615 TAILQ_INSERT_HEAD(&pgfl->pgfl_buckets[ 1616 nextbucket].pgfl_queues[PGFL_ZEROS], 1617 pg, pageq); 1618 uvmexp.free++; 1619 uvmexp.zeropages++; 1620 } 1621 } 1622 nextbucket = (nextbucket + 1) & uvmexp.colormask; 1623 } while (nextbucket != firstbucket); 1624 quit: 1625 mutex_spin_exit(&uvm_fpageqlock); 1626 } 1627 1628 /* 1629 * uvm_pagelookup: look up a page 1630 * 1631 * => caller should lock object to keep someone from pulling the page 1632 * out from under it 1633 */ 1634 1635 struct vm_page * 1636 uvm_pagelookup(struct uvm_object *obj, voff_t off) 1637 { 1638 struct vm_page *pg; 1639 struct pglist *buck; 1640 kmutex_t *lock; 1641 u_int hash; 1642 1643 KASSERT(mutex_owned(&obj->vmobjlock)); 1644 1645 hash = uvm_pagehash(obj, off); 1646 buck = &uvm.page_hash[hash]; 1647 lock = uvm_hashlock(hash); 1648 mutex_spin_enter(lock); 1649 TAILQ_FOREACH(pg, buck, hashq) { 1650 if (pg->uobject == obj && pg->offset == off) { 1651 break; 1652 } 1653 } 1654 mutex_spin_exit(lock); 1655 KASSERT(pg == NULL || obj->uo_npages != 0); 1656 KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 || 1657 (pg->flags & PG_BUSY) != 0); 1658 return(pg); 1659 } 1660 1661 /* 1662 * uvm_pagewire: wire the page, thus removing it from the daemon's grasp 1663 * 1664 * => caller must lock page queues 1665 */ 1666 1667 void 1668 uvm_pagewire(struct vm_page *pg) 1669 { 1670 KASSERT(mutex_owned(&uvm_pageqlock)); 1671 #if defined(READAHEAD_STATS) 1672 if ((pg->pqflags & PQ_READAHEAD) != 0) { 1673 uvm_ra_hit.ev_count++; 1674 pg->pqflags &= ~PQ_READAHEAD; 1675 } 1676 #endif /* defined(READAHEAD_STATS) */ 1677 if (pg->wire_count == 0) { 1678 uvm_pagedequeue(pg); 1679 uvmexp.wired++; 1680 } 1681 pg->wire_count++; 1682 } 1683 1684 /* 1685 * uvm_pageunwire: unwire the page. 1686 * 1687 * => activate if wire count goes to zero. 1688 * => caller must lock page queues 1689 */ 1690 1691 void 1692 uvm_pageunwire(struct vm_page *pg) 1693 { 1694 KASSERT(mutex_owned(&uvm_pageqlock)); 1695 pg->wire_count--; 1696 if (pg->wire_count == 0) { 1697 uvm_pageactivate(pg); 1698 uvmexp.wired--; 1699 } 1700 } 1701 1702 /* 1703 * uvm_pagedeactivate: deactivate page 1704 * 1705 * => caller must lock page queues 1706 * => caller must check to make sure page is not wired 1707 * => object that page belongs to must be locked (so we can adjust pg->flags) 1708 * => caller must clear the reference on the page before calling 1709 */ 1710 1711 void 1712 uvm_pagedeactivate(struct vm_page *pg) 1713 { 1714 1715 KASSERT(mutex_owned(&uvm_pageqlock)); 1716 KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg)); 1717 uvmpdpol_pagedeactivate(pg); 1718 } 1719 1720 /* 1721 * uvm_pageactivate: activate page 1722 * 1723 * => caller must lock page queues 1724 */ 1725 1726 void 1727 uvm_pageactivate(struct vm_page *pg) 1728 { 1729 1730 KASSERT(mutex_owned(&uvm_pageqlock)); 1731 #if defined(READAHEAD_STATS) 1732 if ((pg->pqflags & PQ_READAHEAD) != 0) { 1733 uvm_ra_hit.ev_count++; 1734 pg->pqflags &= ~PQ_READAHEAD; 1735 } 1736 #endif /* defined(READAHEAD_STATS) */ 1737 if (pg->wire_count != 0) { 1738 return; 1739 } 1740 uvmpdpol_pageactivate(pg); 1741 } 1742 1743 /* 1744 * uvm_pagedequeue: remove a page from any paging queue 1745 */ 1746 1747 void 1748 uvm_pagedequeue(struct vm_page *pg) 1749 { 1750 1751 if (uvmpdpol_pageisqueued_p(pg)) { 1752 KASSERT(mutex_owned(&uvm_pageqlock)); 1753 } 1754 1755 uvmpdpol_pagedequeue(pg); 1756 } 1757 1758 /* 1759 * uvm_pageenqueue: add a page to a paging queue without activating. 1760 * used where a page is not really demanded (yet). eg. read-ahead 1761 */ 1762 1763 void 1764 uvm_pageenqueue(struct vm_page *pg) 1765 { 1766 1767 KASSERT(mutex_owned(&uvm_pageqlock)); 1768 if (pg->wire_count != 0) { 1769 return; 1770 } 1771 uvmpdpol_pageenqueue(pg); 1772 } 1773 1774 /* 1775 * uvm_pagezero: zero fill a page 1776 * 1777 * => if page is part of an object then the object should be locked 1778 * to protect pg->flags. 1779 */ 1780 1781 void 1782 uvm_pagezero(struct vm_page *pg) 1783 { 1784 pg->flags &= ~PG_CLEAN; 1785 pmap_zero_page(VM_PAGE_TO_PHYS(pg)); 1786 } 1787 1788 /* 1789 * uvm_pagecopy: copy a page 1790 * 1791 * => if page is part of an object then the object should be locked 1792 * to protect pg->flags. 1793 */ 1794 1795 void 1796 uvm_pagecopy(struct vm_page *src, struct vm_page *dst) 1797 { 1798 1799 dst->flags &= ~PG_CLEAN; 1800 pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst)); 1801 } 1802 1803 /* 1804 * uvm_page_lookup_freelist: look up the free list for the specified page 1805 */ 1806 1807 int 1808 uvm_page_lookup_freelist(struct vm_page *pg) 1809 { 1810 int lcv; 1811 1812 lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL); 1813 KASSERT(lcv != -1); 1814 return (vm_physmem[lcv].free_list); 1815 } 1816