xref: /netbsd-src/sys/uvm/uvm_km.c (revision fad4c9f71477ae11cea2ee75ec82151ac770a534)
1 /*	$NetBSD: uvm_km.c,v 1.88 2006/05/25 14:27:28 yamt Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_km.c: handle kernel memory allocation and management
71  */
72 
73 /*
74  * overview of kernel memory management:
75  *
76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79  *
80  * the kernel_map has several "submaps."   submaps can only appear in
81  * the kernel_map (user processes can't use them).   submaps "take over"
82  * the management of a sub-range of the kernel's address space.  submaps
83  * are typically allocated at boot time and are never released.   kernel
84  * virtual address space that is mapped by a submap is locked by the
85  * submap's lock -- not the kernel_map's lock.
86  *
87  * thus, the useful feature of submaps is that they allow us to break
88  * up the locking and protection of the kernel address space into smaller
89  * chunks.
90  *
91  * the vm system has several standard kernel submaps, including:
92  *   kmem_map => contains only wired kernel memory for the kernel
93  *		malloc.   *** access to kmem_map must be protected
94  *		by splvm() because we are allowed to call malloc()
95  *		at interrupt time ***
96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
97  *   pager_map => used to map "buf" structures into kernel space
98  *   exec_map => used during exec to handle exec args
99  *   etc...
100  *
101  * the kernel allocates its private memory out of special uvm_objects whose
102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103  * are "special" and never die).   all kernel objects should be thought of
104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105  * object is equal to the size of kernel virtual address space (i.e. the
106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107  *
108  * note that just because a kernel object spans the entire kernel virutal
109  * address space doesn't mean that it has to be mapped into the entire space.
110  * large chunks of a kernel object's space go unused either because
111  * that area of kernel VM is unmapped, or there is some other type of
112  * object mapped into that range (e.g. a vnode).    for submap's kernel
113  * objects, the only part of the object that can ever be populated is the
114  * offsets that are managed by the submap.
115  *
116  * note that the "offset" in a kernel object is always the kernel virtual
117  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118  * example:
119  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122  *   then that means that the page at offset 0x235000 in kernel_object is
123  *   mapped at 0xf8235000.
124  *
125  * kernel object have one other special property: when the kernel virtual
126  * memory mapping them is unmapped, the backing memory in the object is
127  * freed right away.   this is done with the uvm_km_pgremove() function.
128  * this has to be done because there is no backing store for kernel pages
129  * and no need to save them after they are no longer referenced.
130  */
131 
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.88 2006/05/25 14:27:28 yamt Exp $");
134 
135 #include "opt_uvmhist.h"
136 
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142 
143 #include <uvm/uvm.h>
144 
145 /*
146  * global data structures
147  */
148 
149 struct vm_map *kernel_map = NULL;
150 
151 /*
152  * local data structues
153  */
154 
155 static struct vm_map_kernel	kernel_map_store;
156 static struct vm_map_entry	kernel_first_mapent_store;
157 
158 #if !defined(PMAP_MAP_POOLPAGE)
159 
160 /*
161  * kva cache
162  *
163  * XXX maybe it's better to do this at the uvm_map layer.
164  */
165 
166 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
167 
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171 
172 /* XXX */
173 #define	KM_VACACHE_POOL_TO_MAP(pp) \
174 	((struct vm_map *)((char *)(pp) - \
175 	    offsetof(struct vm_map_kernel, vmk_vacache)))
176 
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 	vaddr_t va;
181 	size_t size;
182 	struct vm_map *map;
183 	size = pp->pr_alloc->pa_pagesz;
184 
185 	map = KM_VACACHE_POOL_TO_MAP(pp);
186 
187 	va = vm_map_min(map); /* hint */
188 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
192 	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
193 		return NULL;
194 
195 	return (void *)va;
196 }
197 
198 static void
199 km_vacache_free(struct pool *pp, void *v)
200 {
201 	vaddr_t va = (vaddr_t)v;
202 	size_t size = pp->pr_alloc->pa_pagesz;
203 	struct vm_map *map;
204 
205 	map = KM_VACACHE_POOL_TO_MAP(pp);
206 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
207 }
208 
209 /*
210  * km_vacache_init: initialize kva cache.
211  */
212 
213 static void
214 km_vacache_init(struct vm_map *map, const char *name, size_t size)
215 {
216 	struct vm_map_kernel *vmk;
217 	struct pool *pp;
218 	struct pool_allocator *pa;
219 
220 	KASSERT(VM_MAP_IS_KERNEL(map));
221 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
222 
223 	vmk = vm_map_to_kernel(map);
224 	pp = &vmk->vmk_vacache;
225 	pa = &vmk->vmk_vacache_allocator;
226 	memset(pa, 0, sizeof(*pa));
227 	pa->pa_alloc = km_vacache_alloc;
228 	pa->pa_free = km_vacache_free;
229 	pa->pa_pagesz = (unsigned int)size;
230 	pa->pa_backingmap = map;
231 	pa->pa_backingmapptr = NULL;
232 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa);
233 }
234 
235 void
236 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
237 {
238 
239 	map->flags |= VM_MAP_VACACHE;
240 	if (size == 0)
241 		size = KM_VACACHE_SIZE;
242 	km_vacache_init(map, name, size);
243 }
244 
245 #else /* !defined(PMAP_MAP_POOLPAGE) */
246 
247 void
248 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
249 {
250 
251 	/* nothing */
252 }
253 
254 #endif /* !defined(PMAP_MAP_POOLPAGE) */
255 
256 void
257 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
258 {
259 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
260 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
261 	int s = 0xdeadbeaf; /* XXX: gcc */
262 
263 	if (intrsafe) {
264 		s = splvm();
265 	}
266 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
267 	if (intrsafe) {
268 		splx(s);
269 	}
270 }
271 
272 /*
273  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
274  * KVM already allocated for text, data, bss, and static data structures).
275  *
276  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
277  *    we assume that [vmin -> start] has already been allocated and that
278  *    "end" is the end.
279  */
280 
281 void
282 uvm_km_init(vaddr_t start, vaddr_t end)
283 {
284 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
285 
286 	/*
287 	 * next, init kernel memory objects.
288 	 */
289 
290 	/* kernel_object: for pageable anonymous kernel memory */
291 	uao_init();
292 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
293 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
294 
295 	/*
296 	 * init the map and reserve any space that might already
297 	 * have been allocated kernel space before installing.
298 	 */
299 
300 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
301 	kernel_map_store.vmk_map.pmap = pmap_kernel();
302 	if (start != base) {
303 		int error;
304 		struct uvm_map_args args;
305 
306 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
307 		    base, start - base,
308 		    NULL, UVM_UNKNOWN_OFFSET, 0,
309 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
310 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
311 		if (!error) {
312 			kernel_first_mapent_store.flags =
313 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
314 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
315 			    &kernel_first_mapent_store);
316 		}
317 
318 		if (error)
319 			panic(
320 			    "uvm_km_init: could not reserve space for kernel");
321 	}
322 
323 	/*
324 	 * install!
325 	 */
326 
327 	kernel_map = &kernel_map_store.vmk_map;
328 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
329 }
330 
331 /*
332  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
333  * is allocated all references to that area of VM must go through it.  this
334  * allows the locking of VAs in kernel_map to be broken up into regions.
335  *
336  * => if `fixed' is true, *vmin specifies where the region described
337  *      by the submap must start
338  * => if submap is non NULL we use that as the submap, otherwise we
339  *	alloc a new map
340  */
341 
342 struct vm_map *
343 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
344     vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed,
345     struct vm_map_kernel *submap)
346 {
347 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
348 
349 	KASSERT(vm_map_pmap(map) == pmap_kernel());
350 
351 	size = round_page(size);	/* round up to pagesize */
352 	size += uvm_mapent_overhead(size, flags);
353 
354 	/*
355 	 * first allocate a blank spot in the parent map
356 	 */
357 
358 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
359 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
360 	    UVM_ADV_RANDOM, mapflags)) != 0) {
361 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
362 	}
363 
364 	/*
365 	 * set VM bounds (vmin is filled in by uvm_map)
366 	 */
367 
368 	*vmax = *vmin + size;
369 
370 	/*
371 	 * add references to pmap and create or init the submap
372 	 */
373 
374 	pmap_reference(vm_map_pmap(map));
375 	if (submap == NULL) {
376 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
377 		if (submap == NULL)
378 			panic("uvm_km_suballoc: unable to create submap");
379 	}
380 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
381 	submap->vmk_map.pmap = vm_map_pmap(map);
382 
383 	/*
384 	 * now let uvm_map_submap plug in it...
385 	 */
386 
387 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
388 		panic("uvm_km_suballoc: submap allocation failed");
389 
390 	return(&submap->vmk_map);
391 }
392 
393 /*
394  * uvm_km_pgremove: remove pages from a kernel uvm_object.
395  *
396  * => when you unmap a part of anonymous kernel memory you want to toss
397  *    the pages right away.    (this gets called from uvm_unmap_...).
398  */
399 
400 void
401 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
402 {
403 	struct uvm_object * const uobj = uvm.kernel_object;
404 	const voff_t start = startva - vm_map_min(kernel_map);
405 	const voff_t end = endva - vm_map_min(kernel_map);
406 	struct vm_page *pg;
407 	voff_t curoff, nextoff;
408 	int swpgonlydelta = 0;
409 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
410 
411 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
412 	KASSERT(startva < endva);
413 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
414 
415 	simple_lock(&uobj->vmobjlock);
416 
417 	for (curoff = start; curoff < end; curoff = nextoff) {
418 		nextoff = curoff + PAGE_SIZE;
419 		pg = uvm_pagelookup(uobj, curoff);
420 		if (pg != NULL && pg->flags & PG_BUSY) {
421 			pg->flags |= PG_WANTED;
422 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
423 				    "km_pgrm", 0);
424 			simple_lock(&uobj->vmobjlock);
425 			nextoff = curoff;
426 			continue;
427 		}
428 
429 		/*
430 		 * free the swap slot, then the page.
431 		 */
432 
433 		if (pg == NULL &&
434 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
435 			swpgonlydelta++;
436 		}
437 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
438 		if (pg != NULL) {
439 			uvm_lock_pageq();
440 			uvm_pagefree(pg);
441 			uvm_unlock_pageq();
442 		}
443 	}
444 	simple_unlock(&uobj->vmobjlock);
445 
446 	if (swpgonlydelta > 0) {
447 		simple_lock(&uvm.swap_data_lock);
448 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
449 		uvmexp.swpgonly -= swpgonlydelta;
450 		simple_unlock(&uvm.swap_data_lock);
451 	}
452 }
453 
454 
455 /*
456  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
457  *    regions.
458  *
459  * => when you unmap a part of anonymous kernel memory you want to toss
460  *    the pages right away.    (this is called from uvm_unmap_...).
461  * => none of the pages will ever be busy, and none of them will ever
462  *    be on the active or inactive queues (because they have no object).
463  */
464 
465 void
466 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
467 {
468 	struct vm_page *pg;
469 	paddr_t pa;
470 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
471 
472 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
473 	KASSERT(start < end);
474 	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
475 
476 	for (; start < end; start += PAGE_SIZE) {
477 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
478 			continue;
479 		}
480 		pg = PHYS_TO_VM_PAGE(pa);
481 		KASSERT(pg);
482 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
483 		uvm_pagefree(pg);
484 	}
485 }
486 
487 #if defined(DEBUG)
488 void
489 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe)
490 {
491 	vaddr_t va;
492 	paddr_t pa;
493 
494 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
495 	KDASSERT(start < end);
496 	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
497 
498 	for (va = start; va < end; va += PAGE_SIZE) {
499 		if (pmap_extract(pmap_kernel(), va, &pa)) {
500 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
501 			    (void *)va, (long long)pa);
502 		}
503 		if (!intrsafe) {
504 			const struct vm_page *pg;
505 
506 			simple_lock(&uvm.kernel_object->vmobjlock);
507 			pg = uvm_pagelookup(uvm.kernel_object,
508 			    va - vm_map_min(kernel_map));
509 			simple_unlock(&uvm.kernel_object->vmobjlock);
510 			if (pg) {
511 				panic("uvm_km_check_empty: "
512 				    "has page hashed at %p", (const void *)va);
513 			}
514 		}
515 	}
516 }
517 #endif /* defined(DEBUG) */
518 
519 /*
520  * uvm_km_alloc: allocate an area of kernel memory.
521  *
522  * => NOTE: we can return 0 even if we can wait if there is not enough
523  *	free VM space in the map... caller should be prepared to handle
524  *	this case.
525  * => we return KVA of memory allocated
526  */
527 
528 vaddr_t
529 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
530 {
531 	vaddr_t kva, loopva;
532 	vaddr_t offset;
533 	vsize_t loopsize;
534 	struct vm_page *pg;
535 	struct uvm_object *obj;
536 	int pgaflags;
537 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
538 
539 	KASSERT(vm_map_pmap(map) == pmap_kernel());
540 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
541 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
542 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
543 
544 	/*
545 	 * setup for call
546 	 */
547 
548 	kva = vm_map_min(map);	/* hint */
549 	size = round_page(size);
550 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL;
551 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
552 		    map, obj, size, flags);
553 
554 	/*
555 	 * allocate some virtual space
556 	 */
557 
558 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
559 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
560 	    UVM_ADV_RANDOM,
561 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
562 	    | UVM_FLAG_QUANTUM)) != 0)) {
563 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
564 		return(0);
565 	}
566 
567 	/*
568 	 * if all we wanted was VA, return now
569 	 */
570 
571 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
572 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
573 		return(kva);
574 	}
575 
576 	/*
577 	 * recover object offset from virtual address
578 	 */
579 
580 	offset = kva - vm_map_min(kernel_map);
581 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
582 
583 	/*
584 	 * now allocate and map in the memory... note that we are the only ones
585 	 * whom should ever get a handle on this area of VM.
586 	 */
587 
588 	loopva = kva;
589 	loopsize = size;
590 
591 	pgaflags = UVM_PGA_USERESERVE;
592 	if (flags & UVM_KMF_ZERO)
593 		pgaflags |= UVM_PGA_ZERO;
594 	while (loopsize) {
595 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
596 
597 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
598 
599 		/*
600 		 * out of memory?
601 		 */
602 
603 		if (__predict_false(pg == NULL)) {
604 			if ((flags & UVM_KMF_NOWAIT) ||
605 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
606 				/* free everything! */
607 				uvm_km_free(map, kva, size,
608 				    flags & UVM_KMF_TYPEMASK);
609 				return (0);
610 			} else {
611 				uvm_wait("km_getwait2");	/* sleep here */
612 				continue;
613 			}
614 		}
615 
616 		pg->flags &= ~PG_BUSY;	/* new page */
617 		UVM_PAGE_OWN(pg, NULL);
618 
619 		/*
620 		 * map it in
621 		 */
622 
623 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
624 		    VM_PROT_READ | VM_PROT_WRITE);
625 		loopva += PAGE_SIZE;
626 		offset += PAGE_SIZE;
627 		loopsize -= PAGE_SIZE;
628 	}
629 
630        	pmap_update(pmap_kernel());
631 
632 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
633 	return(kva);
634 }
635 
636 /*
637  * uvm_km_free: free an area of kernel memory
638  */
639 
640 void
641 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
642 {
643 
644 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
645 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
646 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
647 	KASSERT((addr & PAGE_MASK) == 0);
648 	KASSERT(vm_map_pmap(map) == pmap_kernel());
649 
650 	size = round_page(size);
651 
652 	if (flags & UVM_KMF_PAGEABLE) {
653 		uvm_km_pgremove(addr, addr + size);
654 		pmap_remove(pmap_kernel(), addr, addr + size);
655 	} else if (flags & UVM_KMF_WIRED) {
656 		uvm_km_pgremove_intrsafe(addr, addr + size);
657 		pmap_kremove(addr, size);
658 	}
659 
660 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
661 }
662 
663 /* Sanity; must specify both or none. */
664 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
665     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
666 #error Must specify MAP and UNMAP together.
667 #endif
668 
669 /*
670  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
671  *
672  * => if the pmap specifies an alternate mapping method, we use it.
673  */
674 
675 /* ARGSUSED */
676 vaddr_t
677 uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok)
678 {
679 #if defined(PMAP_MAP_POOLPAGE)
680 	return uvm_km_alloc_poolpage(map, waitok);
681 #else
682 	struct vm_page *pg;
683 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
684 	vaddr_t va;
685 	int s = 0xdeadbeaf; /* XXX: gcc */
686 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
687 
688 	if ((map->flags & VM_MAP_VACACHE) == 0)
689 		return uvm_km_alloc_poolpage(map, waitok);
690 
691 	if (intrsafe)
692 		s = splvm();
693 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
694 	if (intrsafe)
695 		splx(s);
696 	if (va == 0)
697 		return 0;
698 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
699 again:
700 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
701 	if (__predict_false(pg == NULL)) {
702 		if (waitok) {
703 			uvm_wait("plpg");
704 			goto again;
705 		} else {
706 			if (intrsafe)
707 				s = splvm();
708 			pool_put(pp, (void *)va);
709 			if (intrsafe)
710 				splx(s);
711 			return 0;
712 		}
713 	}
714 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
715 	pmap_update(pmap_kernel());
716 
717 	return va;
718 #endif /* PMAP_MAP_POOLPAGE */
719 }
720 
721 vaddr_t
722 uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok)
723 {
724 #if defined(PMAP_MAP_POOLPAGE)
725 	struct vm_page *pg;
726 	vaddr_t va;
727 
728  again:
729 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
730 	if (__predict_false(pg == NULL)) {
731 		if (waitok) {
732 			uvm_wait("plpg");
733 			goto again;
734 		} else
735 			return (0);
736 	}
737 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
738 	if (__predict_false(va == 0))
739 		uvm_pagefree(pg);
740 	return (va);
741 #else
742 	vaddr_t va;
743 	int s = 0xdeadbeaf; /* XXX: gcc */
744 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
745 
746 	if (intrsafe)
747 		s = splvm();
748 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
749 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
750 	if (intrsafe)
751 		splx(s);
752 	return (va);
753 #endif /* PMAP_MAP_POOLPAGE */
754 }
755 
756 /*
757  * uvm_km_free_poolpage: free a previously allocated pool page
758  *
759  * => if the pmap specifies an alternate unmapping method, we use it.
760  */
761 
762 /* ARGSUSED */
763 void
764 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
765 {
766 #if defined(PMAP_UNMAP_POOLPAGE)
767 	uvm_km_free_poolpage(map, addr);
768 #else
769 	struct pool *pp;
770 	int s = 0xdeadbeaf; /* XXX: gcc */
771 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
772 
773 	if ((map->flags & VM_MAP_VACACHE) == 0) {
774 		uvm_km_free_poolpage(map, addr);
775 		return;
776 	}
777 
778 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
779 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
780 	pmap_kremove(addr, PAGE_SIZE);
781 #if defined(DEBUG)
782 	pmap_update(pmap_kernel());
783 #endif
784 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
785 	pp = &vm_map_to_kernel(map)->vmk_vacache;
786 	if (intrsafe)
787 		s = splvm();
788 	pool_put(pp, (void *)addr);
789 	if (intrsafe)
790 		splx(s);
791 #endif
792 }
793 
794 /* ARGSUSED */
795 void
796 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
797 {
798 #if defined(PMAP_UNMAP_POOLPAGE)
799 	paddr_t pa;
800 
801 	pa = PMAP_UNMAP_POOLPAGE(addr);
802 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
803 #else
804 	int s = 0xdeadbeaf; /* XXX: gcc */
805 	const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
806 
807 	if (intrsafe)
808 		s = splvm();
809 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
810 	if (intrsafe)
811 		splx(s);
812 #endif /* PMAP_UNMAP_POOLPAGE */
813 }
814