xref: /netbsd-src/sys/uvm/uvm_km.c (revision daf6c4152fcddc27c445489775ed1f66ab4ea9a9)
1 /*	$NetBSD: uvm_km.c,v 1.108 2011/02/02 15:25:27 chuck Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_km.c: handle kernel memory allocation and management
66  */
67 
68 /*
69  * overview of kernel memory management:
70  *
71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74  *
75  * the kernel_map has several "submaps."   submaps can only appear in
76  * the kernel_map (user processes can't use them).   submaps "take over"
77  * the management of a sub-range of the kernel's address space.  submaps
78  * are typically allocated at boot time and are never released.   kernel
79  * virtual address space that is mapped by a submap is locked by the
80  * submap's lock -- not the kernel_map's lock.
81  *
82  * thus, the useful feature of submaps is that they allow us to break
83  * up the locking and protection of the kernel address space into smaller
84  * chunks.
85  *
86  * the vm system has several standard kernel submaps, including:
87  *   kmem_map => contains only wired kernel memory for the kernel
88  *		malloc.
89  *   pager_map => used to map "buf" structures into kernel space
90  *   exec_map => used during exec to handle exec args
91  *   etc...
92  *
93  * the kernel allocates its private memory out of special uvm_objects whose
94  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
95  * are "special" and never die).   all kernel objects should be thought of
96  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
97  * object is equal to the size of kernel virtual address space (i.e. the
98  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
99  *
100  * note that just because a kernel object spans the entire kernel virtual
101  * address space doesn't mean that it has to be mapped into the entire space.
102  * large chunks of a kernel object's space go unused either because
103  * that area of kernel VM is unmapped, or there is some other type of
104  * object mapped into that range (e.g. a vnode).    for submap's kernel
105  * objects, the only part of the object that can ever be populated is the
106  * offsets that are managed by the submap.
107  *
108  * note that the "offset" in a kernel object is always the kernel virtual
109  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
110  * example:
111  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
112  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
113  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
114  *   then that means that the page at offset 0x235000 in kernel_object is
115  *   mapped at 0xf8235000.
116  *
117  * kernel object have one other special property: when the kernel virtual
118  * memory mapping them is unmapped, the backing memory in the object is
119  * freed right away.   this is done with the uvm_km_pgremove() function.
120  * this has to be done because there is no backing store for kernel pages
121  * and no need to save them after they are no longer referenced.
122  */
123 
124 #include <sys/cdefs.h>
125 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.108 2011/02/02 15:25:27 chuck Exp $");
126 
127 #include "opt_uvmhist.h"
128 
129 #include <sys/param.h>
130 #include <sys/malloc.h>
131 #include <sys/systm.h>
132 #include <sys/proc.h>
133 #include <sys/pool.h>
134 
135 #include <uvm/uvm.h>
136 
137 /*
138  * global data structures
139  */
140 
141 struct vm_map *kernel_map = NULL;
142 
143 /*
144  * local data structues
145  */
146 
147 static struct vm_map_kernel	kernel_map_store;
148 static struct vm_map_entry	kernel_first_mapent_store;
149 
150 #if !defined(PMAP_MAP_POOLPAGE)
151 
152 /*
153  * kva cache
154  *
155  * XXX maybe it's better to do this at the uvm_map layer.
156  */
157 
158 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
159 
160 static void *km_vacache_alloc(struct pool *, int);
161 static void km_vacache_free(struct pool *, void *);
162 static void km_vacache_init(struct vm_map *, const char *, size_t);
163 
164 /* XXX */
165 #define	KM_VACACHE_POOL_TO_MAP(pp) \
166 	((struct vm_map *)((char *)(pp) - \
167 	    offsetof(struct vm_map_kernel, vmk_vacache)))
168 
169 static void *
170 km_vacache_alloc(struct pool *pp, int flags)
171 {
172 	vaddr_t va;
173 	size_t size;
174 	struct vm_map *map;
175 	size = pp->pr_alloc->pa_pagesz;
176 
177 	map = KM_VACACHE_POOL_TO_MAP(pp);
178 
179 	va = vm_map_min(map); /* hint */
180 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
181 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
182 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
183 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
184 	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
185 		return NULL;
186 
187 	return (void *)va;
188 }
189 
190 static void
191 km_vacache_free(struct pool *pp, void *v)
192 {
193 	vaddr_t va = (vaddr_t)v;
194 	size_t size = pp->pr_alloc->pa_pagesz;
195 	struct vm_map *map;
196 
197 	map = KM_VACACHE_POOL_TO_MAP(pp);
198 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
199 }
200 
201 /*
202  * km_vacache_init: initialize kva cache.
203  */
204 
205 static void
206 km_vacache_init(struct vm_map *map, const char *name, size_t size)
207 {
208 	struct vm_map_kernel *vmk;
209 	struct pool *pp;
210 	struct pool_allocator *pa;
211 	int ipl;
212 
213 	KASSERT(VM_MAP_IS_KERNEL(map));
214 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
215 
216 
217 	vmk = vm_map_to_kernel(map);
218 	pp = &vmk->vmk_vacache;
219 	pa = &vmk->vmk_vacache_allocator;
220 	memset(pa, 0, sizeof(*pa));
221 	pa->pa_alloc = km_vacache_alloc;
222 	pa->pa_free = km_vacache_free;
223 	pa->pa_pagesz = (unsigned int)size;
224 	pa->pa_backingmap = map;
225 	pa->pa_backingmapptr = NULL;
226 
227 	if ((map->flags & VM_MAP_INTRSAFE) != 0)
228 		ipl = IPL_VM;
229 	else
230 		ipl = IPL_NONE;
231 
232 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
233 	    ipl);
234 }
235 
236 void
237 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
238 {
239 
240 	map->flags |= VM_MAP_VACACHE;
241 	if (size == 0)
242 		size = KM_VACACHE_SIZE;
243 	km_vacache_init(map, name, size);
244 }
245 
246 #else /* !defined(PMAP_MAP_POOLPAGE) */
247 
248 void
249 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
250 {
251 
252 	/* nothing */
253 }
254 
255 #endif /* !defined(PMAP_MAP_POOLPAGE) */
256 
257 void
258 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
259 {
260 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
261 
262 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
263 }
264 
265 /*
266  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
267  * KVM already allocated for text, data, bss, and static data structures).
268  *
269  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
270  *    we assume that [vmin -> start] has already been allocated and that
271  *    "end" is the end.
272  */
273 
274 void
275 uvm_km_init(vaddr_t start, vaddr_t end)
276 {
277 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
278 
279 	/*
280 	 * next, init kernel memory objects.
281 	 */
282 
283 	/* kernel_object: for pageable anonymous kernel memory */
284 	uao_init();
285 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
286 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
287 
288 	/*
289 	 * init the map and reserve any space that might already
290 	 * have been allocated kernel space before installing.
291 	 */
292 
293 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
294 	kernel_map_store.vmk_map.pmap = pmap_kernel();
295 	if (start != base) {
296 		int error;
297 		struct uvm_map_args args;
298 
299 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
300 		    base, start - base,
301 		    NULL, UVM_UNKNOWN_OFFSET, 0,
302 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
303 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
304 		if (!error) {
305 			kernel_first_mapent_store.flags =
306 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
307 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
308 			    &kernel_first_mapent_store);
309 		}
310 
311 		if (error)
312 			panic(
313 			    "uvm_km_init: could not reserve space for kernel");
314 	}
315 
316 	/*
317 	 * install!
318 	 */
319 
320 	kernel_map = &kernel_map_store.vmk_map;
321 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
322 }
323 
324 /*
325  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
326  * is allocated all references to that area of VM must go through it.  this
327  * allows the locking of VAs in kernel_map to be broken up into regions.
328  *
329  * => if `fixed' is true, *vmin specifies where the region described
330  *      by the submap must start
331  * => if submap is non NULL we use that as the submap, otherwise we
332  *	alloc a new map
333  */
334 
335 struct vm_map *
336 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
337     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
338     struct vm_map_kernel *submap)
339 {
340 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
341 
342 	KASSERT(vm_map_pmap(map) == pmap_kernel());
343 
344 	size = round_page(size);	/* round up to pagesize */
345 	size += uvm_mapent_overhead(size, flags);
346 
347 	/*
348 	 * first allocate a blank spot in the parent map
349 	 */
350 
351 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
352 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
353 	    UVM_ADV_RANDOM, mapflags)) != 0) {
354 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
355 	}
356 
357 	/*
358 	 * set VM bounds (vmin is filled in by uvm_map)
359 	 */
360 
361 	*vmax = *vmin + size;
362 
363 	/*
364 	 * add references to pmap and create or init the submap
365 	 */
366 
367 	pmap_reference(vm_map_pmap(map));
368 	if (submap == NULL) {
369 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
370 		if (submap == NULL)
371 			panic("uvm_km_suballoc: unable to create submap");
372 	}
373 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
374 	submap->vmk_map.pmap = vm_map_pmap(map);
375 
376 	/*
377 	 * now let uvm_map_submap plug in it...
378 	 */
379 
380 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
381 		panic("uvm_km_suballoc: submap allocation failed");
382 
383 	return(&submap->vmk_map);
384 }
385 
386 /*
387  * uvm_km_pgremove: remove pages from a kernel uvm_object.
388  *
389  * => when you unmap a part of anonymous kernel memory you want to toss
390  *    the pages right away.    (this gets called from uvm_unmap_...).
391  */
392 
393 void
394 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
395 {
396 	struct uvm_object * const uobj = uvm_kernel_object;
397 	const voff_t start = startva - vm_map_min(kernel_map);
398 	const voff_t end = endva - vm_map_min(kernel_map);
399 	struct vm_page *pg;
400 	voff_t curoff, nextoff;
401 	int swpgonlydelta = 0;
402 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
403 
404 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
405 	KASSERT(startva < endva);
406 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
407 
408 	mutex_enter(&uobj->vmobjlock);
409 
410 	for (curoff = start; curoff < end; curoff = nextoff) {
411 		nextoff = curoff + PAGE_SIZE;
412 		pg = uvm_pagelookup(uobj, curoff);
413 		if (pg != NULL && pg->flags & PG_BUSY) {
414 			pg->flags |= PG_WANTED;
415 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
416 				    "km_pgrm", 0);
417 			mutex_enter(&uobj->vmobjlock);
418 			nextoff = curoff;
419 			continue;
420 		}
421 
422 		/*
423 		 * free the swap slot, then the page.
424 		 */
425 
426 		if (pg == NULL &&
427 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
428 			swpgonlydelta++;
429 		}
430 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
431 		if (pg != NULL) {
432 			mutex_enter(&uvm_pageqlock);
433 			uvm_pagefree(pg);
434 			mutex_exit(&uvm_pageqlock);
435 		}
436 	}
437 	mutex_exit(&uobj->vmobjlock);
438 
439 	if (swpgonlydelta > 0) {
440 		mutex_enter(&uvm_swap_data_lock);
441 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
442 		uvmexp.swpgonly -= swpgonlydelta;
443 		mutex_exit(&uvm_swap_data_lock);
444 	}
445 }
446 
447 
448 /*
449  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
450  *    regions.
451  *
452  * => when you unmap a part of anonymous kernel memory you want to toss
453  *    the pages right away.    (this is called from uvm_unmap_...).
454  * => none of the pages will ever be busy, and none of them will ever
455  *    be on the active or inactive queues (because they have no object).
456  */
457 
458 void
459 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
460 {
461 	struct vm_page *pg;
462 	paddr_t pa;
463 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
464 
465 	KASSERT(VM_MAP_IS_KERNEL(map));
466 	KASSERT(vm_map_min(map) <= start);
467 	KASSERT(start < end);
468 	KASSERT(end <= vm_map_max(map));
469 
470 	for (; start < end; start += PAGE_SIZE) {
471 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
472 			continue;
473 		}
474 		pg = PHYS_TO_VM_PAGE(pa);
475 		KASSERT(pg);
476 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
477 		uvm_pagefree(pg);
478 	}
479 }
480 
481 #if defined(DEBUG)
482 void
483 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
484 {
485 	struct vm_page *pg;
486 	vaddr_t va;
487 	paddr_t pa;
488 
489 	KDASSERT(VM_MAP_IS_KERNEL(map));
490 	KDASSERT(vm_map_min(map) <= start);
491 	KDASSERT(start < end);
492 	KDASSERT(end <= vm_map_max(map));
493 
494 	for (va = start; va < end; va += PAGE_SIZE) {
495 		if (pmap_extract(pmap_kernel(), va, &pa)) {
496 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
497 			    (void *)va, (long long)pa);
498 		}
499 		if ((map->flags & VM_MAP_INTRSAFE) == 0) {
500 			mutex_enter(&uvm_kernel_object->vmobjlock);
501 			pg = uvm_pagelookup(uvm_kernel_object,
502 			    va - vm_map_min(kernel_map));
503 			mutex_exit(&uvm_kernel_object->vmobjlock);
504 			if (pg) {
505 				panic("uvm_km_check_empty: "
506 				    "has page hashed at %p", (const void *)va);
507 			}
508 		}
509 	}
510 }
511 #endif /* defined(DEBUG) */
512 
513 /*
514  * uvm_km_alloc: allocate an area of kernel memory.
515  *
516  * => NOTE: we can return 0 even if we can wait if there is not enough
517  *	free VM space in the map... caller should be prepared to handle
518  *	this case.
519  * => we return KVA of memory allocated
520  */
521 
522 vaddr_t
523 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
524 {
525 	vaddr_t kva, loopva;
526 	vaddr_t offset;
527 	vsize_t loopsize;
528 	struct vm_page *pg;
529 	struct uvm_object *obj;
530 	int pgaflags;
531 	vm_prot_t prot;
532 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
533 
534 	KASSERT(vm_map_pmap(map) == pmap_kernel());
535 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
536 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
537 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
538 
539 	/*
540 	 * setup for call
541 	 */
542 
543 	kva = vm_map_min(map);	/* hint */
544 	size = round_page(size);
545 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
546 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
547 		    map, obj, size, flags);
548 
549 	/*
550 	 * allocate some virtual space
551 	 */
552 
553 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
554 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
555 	    UVM_ADV_RANDOM,
556 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
557 	    | UVM_FLAG_QUANTUM)) != 0)) {
558 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
559 		return(0);
560 	}
561 
562 	/*
563 	 * if all we wanted was VA, return now
564 	 */
565 
566 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
567 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
568 		return(kva);
569 	}
570 
571 	/*
572 	 * recover object offset from virtual address
573 	 */
574 
575 	offset = kva - vm_map_min(kernel_map);
576 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
577 
578 	/*
579 	 * now allocate and map in the memory... note that we are the only ones
580 	 * whom should ever get a handle on this area of VM.
581 	 */
582 
583 	loopva = kva;
584 	loopsize = size;
585 
586 	pgaflags = UVM_FLAG_COLORMATCH;
587 	if (flags & UVM_KMF_NOWAIT)
588 		pgaflags |= UVM_PGA_USERESERVE;
589 	if (flags & UVM_KMF_ZERO)
590 		pgaflags |= UVM_PGA_ZERO;
591 	prot = VM_PROT_READ | VM_PROT_WRITE;
592 	if (flags & UVM_KMF_EXEC)
593 		prot |= VM_PROT_EXECUTE;
594 	while (loopsize) {
595 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
596 
597 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
598 #ifdef UVM_KM_VMFREELIST
599 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
600 #else
601 		   UVM_PGA_STRAT_NORMAL, 0
602 #endif
603 		   );
604 
605 		/*
606 		 * out of memory?
607 		 */
608 
609 		if (__predict_false(pg == NULL)) {
610 			if ((flags & UVM_KMF_NOWAIT) ||
611 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
612 				/* free everything! */
613 				uvm_km_free(map, kva, size,
614 				    flags & UVM_KMF_TYPEMASK);
615 				return (0);
616 			} else {
617 				uvm_wait("km_getwait2");	/* sleep here */
618 				continue;
619 			}
620 		}
621 
622 		pg->flags &= ~PG_BUSY;	/* new page */
623 		UVM_PAGE_OWN(pg, NULL);
624 
625 		/*
626 		 * map it in
627 		 */
628 
629 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
630 		    prot, PMAP_KMPAGE);
631 		loopva += PAGE_SIZE;
632 		offset += PAGE_SIZE;
633 		loopsize -= PAGE_SIZE;
634 	}
635 
636        	pmap_update(pmap_kernel());
637 
638 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
639 	return(kva);
640 }
641 
642 /*
643  * uvm_km_free: free an area of kernel memory
644  */
645 
646 void
647 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
648 {
649 
650 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
651 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
652 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
653 	KASSERT((addr & PAGE_MASK) == 0);
654 	KASSERT(vm_map_pmap(map) == pmap_kernel());
655 
656 	size = round_page(size);
657 
658 	if (flags & UVM_KMF_PAGEABLE) {
659 		uvm_km_pgremove(addr, addr + size);
660 		pmap_remove(pmap_kernel(), addr, addr + size);
661 	} else if (flags & UVM_KMF_WIRED) {
662 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
663 		pmap_kremove(addr, size);
664 	}
665 
666 	/*
667 	 * uvm_unmap_remove calls pmap_update for us.
668 	 */
669 
670 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
671 }
672 
673 /* Sanity; must specify both or none. */
674 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
675     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
676 #error Must specify MAP and UNMAP together.
677 #endif
678 
679 /*
680  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
681  *
682  * => if the pmap specifies an alternate mapping method, we use it.
683  */
684 
685 /* ARGSUSED */
686 vaddr_t
687 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
688 {
689 #if defined(PMAP_MAP_POOLPAGE)
690 	return uvm_km_alloc_poolpage(map, waitok);
691 #else
692 	struct vm_page *pg;
693 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
694 	vaddr_t va;
695 
696 	if ((map->flags & VM_MAP_VACACHE) == 0)
697 		return uvm_km_alloc_poolpage(map, waitok);
698 
699 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
700 	if (va == 0)
701 		return 0;
702 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
703 again:
704 	pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
705 	if (__predict_false(pg == NULL)) {
706 		if (waitok) {
707 			uvm_wait("plpg");
708 			goto again;
709 		} else {
710 			pool_put(pp, (void *)va);
711 			return 0;
712 		}
713 	}
714 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg),
715 	    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
716 	pmap_update(pmap_kernel());
717 
718 	return va;
719 #endif /* PMAP_MAP_POOLPAGE */
720 }
721 
722 vaddr_t
723 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
724 {
725 #if defined(PMAP_MAP_POOLPAGE)
726 	struct vm_page *pg;
727 	vaddr_t va;
728 
729 
730  again:
731 #ifdef PMAP_ALLOC_POOLPAGE
732 	pg = PMAP_ALLOC_POOLPAGE(waitok ? 0 : UVM_PGA_USERESERVE);
733 #else
734 	pg = uvm_pagealloc(NULL, 0, NULL, waitok ? 0 : UVM_PGA_USERESERVE);
735 #endif
736 	if (__predict_false(pg == NULL)) {
737 		if (waitok) {
738 			uvm_wait("plpg");
739 			goto again;
740 		} else
741 			return (0);
742 	}
743 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
744 	if (__predict_false(va == 0))
745 		uvm_pagefree(pg);
746 	return (va);
747 #else
748 	vaddr_t va;
749 
750 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
751 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
752 	return (va);
753 #endif /* PMAP_MAP_POOLPAGE */
754 }
755 
756 /*
757  * uvm_km_free_poolpage: free a previously allocated pool page
758  *
759  * => if the pmap specifies an alternate unmapping method, we use it.
760  */
761 
762 /* ARGSUSED */
763 void
764 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
765 {
766 #if defined(PMAP_UNMAP_POOLPAGE)
767 	uvm_km_free_poolpage(map, addr);
768 #else
769 	struct pool *pp;
770 
771 	if ((map->flags & VM_MAP_VACACHE) == 0) {
772 		uvm_km_free_poolpage(map, addr);
773 		return;
774 	}
775 
776 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
777 	uvm_km_pgremove_intrsafe(map, addr, addr + PAGE_SIZE);
778 	pmap_kremove(addr, PAGE_SIZE);
779 #if defined(DEBUG)
780 	pmap_update(pmap_kernel());
781 #endif
782 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
783 	pp = &vm_map_to_kernel(map)->vmk_vacache;
784 	pool_put(pp, (void *)addr);
785 #endif
786 }
787 
788 /* ARGSUSED */
789 void
790 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
791 {
792 #if defined(PMAP_UNMAP_POOLPAGE)
793 	paddr_t pa;
794 
795 	pa = PMAP_UNMAP_POOLPAGE(addr);
796 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
797 #else
798 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
799 #endif /* PMAP_UNMAP_POOLPAGE */
800 }
801