xref: /netbsd-src/sys/uvm/uvm_km.c (revision d710132b4b8ce7f7cccaaf660cb16aa16b4077a0)
1 /*	$NetBSD: uvm_km.c,v 1.62 2003/05/10 21:10:23 thorpej Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_km.c: handle kernel memory allocation and management
71  */
72 
73 /*
74  * overview of kernel memory management:
75  *
76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79  *
80  * the kernel_map has several "submaps."   submaps can only appear in
81  * the kernel_map (user processes can't use them).   submaps "take over"
82  * the management of a sub-range of the kernel's address space.  submaps
83  * are typically allocated at boot time and are never released.   kernel
84  * virtual address space that is mapped by a submap is locked by the
85  * submap's lock -- not the kernel_map's lock.
86  *
87  * thus, the useful feature of submaps is that they allow us to break
88  * up the locking and protection of the kernel address space into smaller
89  * chunks.
90  *
91  * the vm system has several standard kernel submaps, including:
92  *   kmem_map => contains only wired kernel memory for the kernel
93  *		malloc.   *** access to kmem_map must be protected
94  *		by splvm() because we are allowed to call malloc()
95  *		at interrupt time ***
96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
97  *   pager_map => used to map "buf" structures into kernel space
98  *   exec_map => used during exec to handle exec args
99  *   etc...
100  *
101  * the kernel allocates its private memory out of special uvm_objects whose
102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103  * are "special" and never die).   all kernel objects should be thought of
104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105  * object is equal to the size of kernel virtual address space (i.e. the
106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107  *
108  * most kernel private memory lives in kernel_object.   the only exception
109  * to this is for memory that belongs to submaps that must be protected
110  * by splvm().  pages in these submaps are not assigned to an object.
111  *
112  * note that just because a kernel object spans the entire kernel virutal
113  * address space doesn't mean that it has to be mapped into the entire space.
114  * large chunks of a kernel object's space go unused either because
115  * that area of kernel VM is unmapped, or there is some other type of
116  * object mapped into that range (e.g. a vnode).    for submap's kernel
117  * objects, the only part of the object that can ever be populated is the
118  * offsets that are managed by the submap.
119  *
120  * note that the "offset" in a kernel object is always the kernel virtual
121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122  * example:
123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
126  *   then that means that the page at offset 0x235000 in kernel_object is
127  *   mapped at 0xf8235000.
128  *
129  * kernel object have one other special property: when the kernel virtual
130  * memory mapping them is unmapped, the backing memory in the object is
131  * freed right away.   this is done with the uvm_km_pgremove() function.
132  * this has to be done because there is no backing store for kernel pages
133  * and no need to save them after they are no longer referenced.
134  */
135 
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.62 2003/05/10 21:10:23 thorpej Exp $");
138 
139 #include "opt_uvmhist.h"
140 
141 #include <sys/param.h>
142 #include <sys/systm.h>
143 #include <sys/proc.h>
144 
145 #include <uvm/uvm.h>
146 
147 /*
148  * global data structures
149  */
150 
151 struct vm_map *kernel_map = NULL;
152 
153 /*
154  * local data structues
155  */
156 
157 static struct vm_map		kernel_map_store;
158 
159 /*
160  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161  * KVM already allocated for text, data, bss, and static data structures).
162  *
163  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164  *    we assume that [min -> start] has already been allocated and that
165  *    "end" is the end.
166  */
167 
168 void
169 uvm_km_init(start, end)
170 	vaddr_t start, end;
171 {
172 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
173 
174 	/*
175 	 * next, init kernel memory objects.
176 	 */
177 
178 	/* kernel_object: for pageable anonymous kernel memory */
179 	uao_init();
180 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
181 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
182 
183 	/*
184 	 * init the map and reserve any space that might already
185 	 * have been allocated kernel space before installing.
186 	 */
187 
188 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
189 	kernel_map_store.pmap = pmap_kernel();
190 	if (start != base &&
191 	    uvm_map(&kernel_map_store, &base, start - base, NULL,
192 		    UVM_UNKNOWN_OFFSET, 0,
193 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
194 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED)) != 0)
195 		panic("uvm_km_init: could not reserve space for kernel");
196 
197 	/*
198 	 * install!
199 	 */
200 
201 	kernel_map = &kernel_map_store;
202 }
203 
204 /*
205  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
206  * is allocated all references to that area of VM must go through it.  this
207  * allows the locking of VAs in kernel_map to be broken up into regions.
208  *
209  * => if `fixed' is true, *min specifies where the region described
210  *      by the submap must start
211  * => if submap is non NULL we use that as the submap, otherwise we
212  *	alloc a new map
213  */
214 struct vm_map *
215 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
216 	struct vm_map *map;
217 	vaddr_t *min, *max;		/* IN/OUT, OUT */
218 	vsize_t size;
219 	int flags;
220 	boolean_t fixed;
221 	struct vm_map *submap;
222 {
223 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
224 
225 	size = round_page(size);	/* round up to pagesize */
226 
227 	/*
228 	 * first allocate a blank spot in the parent map
229 	 */
230 
231 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
232 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
233 	    UVM_ADV_RANDOM, mapflags)) != 0) {
234 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
235 	}
236 
237 	/*
238 	 * set VM bounds (min is filled in by uvm_map)
239 	 */
240 
241 	*max = *min + size;
242 
243 	/*
244 	 * add references to pmap and create or init the submap
245 	 */
246 
247 	pmap_reference(vm_map_pmap(map));
248 	if (submap == NULL) {
249 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
250 		if (submap == NULL)
251 			panic("uvm_km_suballoc: unable to create submap");
252 	} else {
253 		uvm_map_setup(submap, *min, *max, flags);
254 		submap->pmap = vm_map_pmap(map);
255 	}
256 
257 	/*
258 	 * now let uvm_map_submap plug in it...
259 	 */
260 
261 	if (uvm_map_submap(map, *min, *max, submap) != 0)
262 		panic("uvm_km_suballoc: submap allocation failed");
263 
264 	return(submap);
265 }
266 
267 /*
268  * uvm_km_pgremove: remove pages from a kernel uvm_object.
269  *
270  * => when you unmap a part of anonymous kernel memory you want to toss
271  *    the pages right away.    (this gets called from uvm_unmap_...).
272  */
273 
274 void
275 uvm_km_pgremove(uobj, start, end)
276 	struct uvm_object *uobj;
277 	vaddr_t start, end;
278 {
279 	struct vm_page *pg;
280 	voff_t curoff, nextoff;
281 	int swpgonlydelta = 0;
282 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
283 
284 	KASSERT(uobj->pgops == &aobj_pager);
285 	simple_lock(&uobj->vmobjlock);
286 
287 	for (curoff = start; curoff < end; curoff = nextoff) {
288 		nextoff = curoff + PAGE_SIZE;
289 		pg = uvm_pagelookup(uobj, curoff);
290 		if (pg != NULL && pg->flags & PG_BUSY) {
291 			pg->flags |= PG_WANTED;
292 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
293 				    "km_pgrm", 0);
294 			simple_lock(&uobj->vmobjlock);
295 			nextoff = curoff;
296 			continue;
297 		}
298 
299 		/*
300 		 * free the swap slot, then the page.
301 		 */
302 
303 		if (pg == NULL &&
304 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
305 			swpgonlydelta++;
306 		}
307 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
308 		if (pg != NULL) {
309 			uvm_lock_pageq();
310 			uvm_pagefree(pg);
311 			uvm_unlock_pageq();
312 		}
313 	}
314 	simple_unlock(&uobj->vmobjlock);
315 
316 	if (swpgonlydelta > 0) {
317 		simple_lock(&uvm.swap_data_lock);
318 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
319 		uvmexp.swpgonly -= swpgonlydelta;
320 		simple_unlock(&uvm.swap_data_lock);
321 	}
322 }
323 
324 
325 /*
326  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
327  *    maps
328  *
329  * => when you unmap a part of anonymous kernel memory you want to toss
330  *    the pages right away.    (this is called from uvm_unmap_...).
331  * => none of the pages will ever be busy, and none of them will ever
332  *    be on the active or inactive queues (because they have no object).
333  */
334 
335 void
336 uvm_km_pgremove_intrsafe(start, end)
337 	vaddr_t start, end;
338 {
339 	struct vm_page *pg;
340 	paddr_t pa;
341 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
342 
343 	for (; start < end; start += PAGE_SIZE) {
344 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
345 			continue;
346 		}
347 		pg = PHYS_TO_VM_PAGE(pa);
348 		KASSERT(pg);
349 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
350 		uvm_pagefree(pg);
351 	}
352 }
353 
354 
355 /*
356  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
357  *
358  * => we map wired memory into the specified map using the obj passed in
359  * => NOTE: we can return NULL even if we can wait if there is not enough
360  *	free VM space in the map... caller should be prepared to handle
361  *	this case.
362  * => we return KVA of memory allocated
363  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
364  *	lock the map
365  */
366 
367 vaddr_t
368 uvm_km_kmemalloc(map, obj, size, flags)
369 	struct vm_map *map;
370 	struct uvm_object *obj;
371 	vsize_t size;
372 	int flags;
373 {
374 	vaddr_t kva, loopva;
375 	vaddr_t offset;
376 	vsize_t loopsize;
377 	struct vm_page *pg;
378 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
379 
380 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
381 		    map, obj, size, flags);
382 	KASSERT(vm_map_pmap(map) == pmap_kernel());
383 
384 	/*
385 	 * setup for call
386 	 */
387 
388 	size = round_page(size);
389 	kva = vm_map_min(map);	/* hint */
390 
391 	/*
392 	 * allocate some virtual space
393 	 */
394 
395 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
396 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
397 			  UVM_ADV_RANDOM,
398 			  (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT))))
399 			!= 0)) {
400 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
401 		return(0);
402 	}
403 
404 	/*
405 	 * if all we wanted was VA, return now
406 	 */
407 
408 	if (flags & UVM_KMF_VALLOC) {
409 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
410 		return(kva);
411 	}
412 
413 	/*
414 	 * recover object offset from virtual address
415 	 */
416 
417 	offset = kva - vm_map_min(kernel_map);
418 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
419 
420 	/*
421 	 * now allocate and map in the memory... note that we are the only ones
422 	 * whom should ever get a handle on this area of VM.
423 	 */
424 
425 	loopva = kva;
426 	loopsize = size;
427 	while (loopsize) {
428 		if (obj) {
429 			simple_lock(&obj->vmobjlock);
430 		}
431 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
432 		if (__predict_true(pg != NULL)) {
433 			pg->flags &= ~PG_BUSY;	/* new page */
434 			UVM_PAGE_OWN(pg, NULL);
435 		}
436 		if (obj) {
437 			simple_unlock(&obj->vmobjlock);
438 		}
439 
440 		/*
441 		 * out of memory?
442 		 */
443 
444 		if (__predict_false(pg == NULL)) {
445 			if ((flags & UVM_KMF_NOWAIT) ||
446 			    ((flags & UVM_KMF_CANFAIL) &&
447 			     uvmexp.swpgonly == uvmexp.swpages)) {
448 				/* free everything! */
449 				uvm_unmap(map, kva, kva + size);
450 				return (0);
451 			} else {
452 				uvm_wait("km_getwait2");	/* sleep here */
453 				continue;
454 			}
455 		}
456 
457 		/*
458 		 * map it in
459 		 */
460 
461 		if (obj == NULL) {
462 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
463 			    VM_PROT_READ | VM_PROT_WRITE);
464 		} else {
465 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
466 			    UVM_PROT_ALL,
467 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
468 		}
469 		loopva += PAGE_SIZE;
470 		offset += PAGE_SIZE;
471 		loopsize -= PAGE_SIZE;
472 	}
473 
474        	pmap_update(pmap_kernel());
475 
476 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
477 	return(kva);
478 }
479 
480 /*
481  * uvm_km_free: free an area of kernel memory
482  */
483 
484 void
485 uvm_km_free(map, addr, size)
486 	struct vm_map *map;
487 	vaddr_t addr;
488 	vsize_t size;
489 {
490 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
491 }
492 
493 /*
494  * uvm_km_free_wakeup: free an area of kernel memory and wake up
495  * anyone waiting for vm space.
496  *
497  * => XXX: "wanted" bit + unlock&wait on other end?
498  */
499 
500 void
501 uvm_km_free_wakeup(map, addr, size)
502 	struct vm_map *map;
503 	vaddr_t addr;
504 	vsize_t size;
505 {
506 	struct vm_map_entry *dead_entries;
507 
508 	vm_map_lock(map);
509 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
510 	    &dead_entries);
511 	wakeup(map);
512 	vm_map_unlock(map);
513 	if (dead_entries != NULL)
514 		uvm_unmap_detach(dead_entries, 0);
515 }
516 
517 /*
518  * uvm_km_alloc1: allocate wired down memory in the kernel map.
519  *
520  * => we can sleep if needed
521  */
522 
523 vaddr_t
524 uvm_km_alloc1(map, size, zeroit)
525 	struct vm_map *map;
526 	vsize_t size;
527 	boolean_t zeroit;
528 {
529 	vaddr_t kva, loopva, offset;
530 	struct vm_page *pg;
531 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
532 
533 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
534 	KASSERT(vm_map_pmap(map) == pmap_kernel());
535 
536 	size = round_page(size);
537 	kva = vm_map_min(map);		/* hint */
538 
539 	/*
540 	 * allocate some virtual space
541 	 */
542 
543 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
544 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
545 					      UVM_INH_NONE, UVM_ADV_RANDOM,
546 					      0)) != 0)) {
547 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
548 		return(0);
549 	}
550 
551 	/*
552 	 * recover object offset from virtual address
553 	 */
554 
555 	offset = kva - vm_map_min(kernel_map);
556 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
557 
558 	/*
559 	 * now allocate the memory.
560 	 */
561 
562 	loopva = kva;
563 	while (size) {
564 		simple_lock(&uvm.kernel_object->vmobjlock);
565 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
566 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
567 		if (pg) {
568 			pg->flags &= ~PG_BUSY;
569 			UVM_PAGE_OWN(pg, NULL);
570 		}
571 		simple_unlock(&uvm.kernel_object->vmobjlock);
572 		if (pg == NULL) {
573 			uvm_wait("km_alloc1w");
574 			continue;
575 		}
576 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
577 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
578 		loopva += PAGE_SIZE;
579 		offset += PAGE_SIZE;
580 		size -= PAGE_SIZE;
581 	}
582 	pmap_update(map->pmap);
583 
584 	/*
585 	 * zero on request (note that "size" is now zero due to the above loop
586 	 * so we need to subtract kva from loopva to reconstruct the size).
587 	 */
588 
589 	if (zeroit)
590 		memset((caddr_t)kva, 0, loopva - kva);
591 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
592 	return(kva);
593 }
594 
595 /*
596  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
597  *
598  * => memory is not allocated until fault time
599  */
600 
601 vaddr_t
602 uvm_km_valloc(map, size)
603 	struct vm_map *map;
604 	vsize_t size;
605 {
606 	return(uvm_km_valloc_align(map, size, 0));
607 }
608 
609 vaddr_t
610 uvm_km_valloc_align(map, size, align)
611 	struct vm_map *map;
612 	vsize_t size;
613 	vsize_t align;
614 {
615 	vaddr_t kva;
616 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
617 
618 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
619 	KASSERT(vm_map_pmap(map) == pmap_kernel());
620 
621 	size = round_page(size);
622 	kva = vm_map_min(map);		/* hint */
623 
624 	/*
625 	 * allocate some virtual space.  will be demand filled by kernel_object.
626 	 */
627 
628 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
629 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
630 					    UVM_INH_NONE, UVM_ADV_RANDOM,
631 					    0)) != 0)) {
632 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
633 		return(0);
634 	}
635 
636 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
637 	return(kva);
638 }
639 
640 /*
641  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
642  *
643  * => memory is not allocated until fault time
644  * => if no room in map, wait for space to free, unless requested size
645  *    is larger than map (in which case we return 0)
646  */
647 
648 vaddr_t
649 uvm_km_valloc_prefer_wait(map, size, prefer)
650 	struct vm_map *map;
651 	vsize_t size;
652 	voff_t prefer;
653 {
654 	vaddr_t kva;
655 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
656 
657 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
658 	KASSERT(vm_map_pmap(map) == pmap_kernel());
659 
660 	size = round_page(size);
661 	if (size > vm_map_max(map) - vm_map_min(map))
662 		return(0);
663 
664 	for (;;) {
665 		kva = vm_map_min(map);		/* hint */
666 
667 		/*
668 		 * allocate some virtual space.   will be demand filled
669 		 * by kernel_object.
670 		 */
671 
672 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
673 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
674 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
675 		    == 0)) {
676 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
677 			return(kva);
678 		}
679 
680 		/*
681 		 * failed.  sleep for a while (on map)
682 		 */
683 
684 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
685 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
686 	}
687 	/*NOTREACHED*/
688 }
689 
690 vaddr_t
691 uvm_km_valloc_wait(map, size)
692 	struct vm_map *map;
693 	vsize_t size;
694 {
695 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
696 }
697 
698 /* Sanity; must specify both or none. */
699 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
700     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
701 #error Must specify MAP and UNMAP together.
702 #endif
703 
704 /*
705  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
706  *
707  * => if the pmap specifies an alternate mapping method, we use it.
708  */
709 
710 /* ARGSUSED */
711 vaddr_t
712 uvm_km_alloc_poolpage1(map, obj, waitok)
713 	struct vm_map *map;
714 	struct uvm_object *obj;
715 	boolean_t waitok;
716 {
717 #if defined(PMAP_MAP_POOLPAGE)
718 	struct vm_page *pg;
719 	vaddr_t va;
720 
721  again:
722 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
723 	if (__predict_false(pg == NULL)) {
724 		if (waitok) {
725 			uvm_wait("plpg");
726 			goto again;
727 		} else
728 			return (0);
729 	}
730 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
731 	if (__predict_false(va == 0))
732 		uvm_pagefree(pg);
733 	return (va);
734 #else
735 	vaddr_t va;
736 	int s;
737 
738 	/*
739 	 * NOTE: We may be called with a map that doens't require splvm
740 	 * protection (e.g. kernel_map).  However, it does not hurt to
741 	 * go to splvm in this case (since unprocted maps will never be
742 	 * accessed in interrupt context).
743 	 *
744 	 * XXX We may want to consider changing the interface to this
745 	 * XXX function.
746 	 */
747 
748 	s = splvm();
749 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE,
750 	    waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK);
751 	splx(s);
752 	return (va);
753 #endif /* PMAP_MAP_POOLPAGE */
754 }
755 
756 /*
757  * uvm_km_free_poolpage: free a previously allocated pool page
758  *
759  * => if the pmap specifies an alternate unmapping method, we use it.
760  */
761 
762 /* ARGSUSED */
763 void
764 uvm_km_free_poolpage1(map, addr)
765 	struct vm_map *map;
766 	vaddr_t addr;
767 {
768 #if defined(PMAP_UNMAP_POOLPAGE)
769 	paddr_t pa;
770 
771 	pa = PMAP_UNMAP_POOLPAGE(addr);
772 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
773 #else
774 	int s;
775 
776 	/*
777 	 * NOTE: We may be called with a map that doens't require splvm
778 	 * protection (e.g. kernel_map).  However, it does not hurt to
779 	 * go to splvm in this case (since unprocted maps will never be
780 	 * accessed in interrupt context).
781 	 *
782 	 * XXX We may want to consider changing the interface to this
783 	 * XXX function.
784 	 */
785 
786 	s = splvm();
787 	uvm_km_free(map, addr, PAGE_SIZE);
788 	splx(s);
789 #endif /* PMAP_UNMAP_POOLPAGE */
790 }
791