1 /* $NetBSD: uvm_km.c,v 1.91 2006/10/12 21:35:00 uwe Exp $ */ 2 3 /* 4 * Copyright (c) 1997 Charles D. Cranor and Washington University. 5 * Copyright (c) 1991, 1993, The Regents of the University of California. 6 * 7 * All rights reserved. 8 * 9 * This code is derived from software contributed to Berkeley by 10 * The Mach Operating System project at Carnegie-Mellon University. 11 * 12 * Redistribution and use in source and binary forms, with or without 13 * modification, are permitted provided that the following conditions 14 * are met: 15 * 1. Redistributions of source code must retain the above copyright 16 * notice, this list of conditions and the following disclaimer. 17 * 2. Redistributions in binary form must reproduce the above copyright 18 * notice, this list of conditions and the following disclaimer in the 19 * documentation and/or other materials provided with the distribution. 20 * 3. All advertising materials mentioning features or use of this software 21 * must display the following acknowledgement: 22 * This product includes software developed by Charles D. Cranor, 23 * Washington University, the University of California, Berkeley and 24 * its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)vm_kern.c 8.3 (Berkeley) 1/12/94 42 * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp 43 * 44 * 45 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 46 * All rights reserved. 47 * 48 * Permission to use, copy, modify and distribute this software and 49 * its documentation is hereby granted, provided that both the copyright 50 * notice and this permission notice appear in all copies of the 51 * software, derivative works or modified versions, and any portions 52 * thereof, and that both notices appear in supporting documentation. 53 * 54 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 55 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 56 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 57 * 58 * Carnegie Mellon requests users of this software to return to 59 * 60 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 61 * School of Computer Science 62 * Carnegie Mellon University 63 * Pittsburgh PA 15213-3890 64 * 65 * any improvements or extensions that they make and grant Carnegie the 66 * rights to redistribute these changes. 67 */ 68 69 /* 70 * uvm_km.c: handle kernel memory allocation and management 71 */ 72 73 /* 74 * overview of kernel memory management: 75 * 76 * the kernel virtual address space is mapped by "kernel_map." kernel_map 77 * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS. 78 * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map). 79 * 80 * the kernel_map has several "submaps." submaps can only appear in 81 * the kernel_map (user processes can't use them). submaps "take over" 82 * the management of a sub-range of the kernel's address space. submaps 83 * are typically allocated at boot time and are never released. kernel 84 * virtual address space that is mapped by a submap is locked by the 85 * submap's lock -- not the kernel_map's lock. 86 * 87 * thus, the useful feature of submaps is that they allow us to break 88 * up the locking and protection of the kernel address space into smaller 89 * chunks. 90 * 91 * the vm system has several standard kernel submaps, including: 92 * kmem_map => contains only wired kernel memory for the kernel 93 * malloc. *** access to kmem_map must be protected 94 * by splvm() because we are allowed to call malloc() 95 * at interrupt time *** 96 * mb_map => memory for large mbufs, *** protected by splvm *** 97 * pager_map => used to map "buf" structures into kernel space 98 * exec_map => used during exec to handle exec args 99 * etc... 100 * 101 * the kernel allocates its private memory out of special uvm_objects whose 102 * reference count is set to UVM_OBJ_KERN (thus indicating that the objects 103 * are "special" and never die). all kernel objects should be thought of 104 * as large, fixed-sized, sparsely populated uvm_objects. each kernel 105 * object is equal to the size of kernel virtual address space (i.e. the 106 * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS"). 107 * 108 * note that just because a kernel object spans the entire kernel virutal 109 * address space doesn't mean that it has to be mapped into the entire space. 110 * large chunks of a kernel object's space go unused either because 111 * that area of kernel VM is unmapped, or there is some other type of 112 * object mapped into that range (e.g. a vnode). for submap's kernel 113 * objects, the only part of the object that can ever be populated is the 114 * offsets that are managed by the submap. 115 * 116 * note that the "offset" in a kernel object is always the kernel virtual 117 * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)). 118 * example: 119 * suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a 120 * uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the 121 * kernel map]. if uvm_km_alloc returns virtual address 0xf8235000, 122 * then that means that the page at offset 0x235000 in kernel_object is 123 * mapped at 0xf8235000. 124 * 125 * kernel object have one other special property: when the kernel virtual 126 * memory mapping them is unmapped, the backing memory in the object is 127 * freed right away. this is done with the uvm_km_pgremove() function. 128 * this has to be done because there is no backing store for kernel pages 129 * and no need to save them after they are no longer referenced. 130 */ 131 132 #include <sys/cdefs.h> 133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.91 2006/10/12 21:35:00 uwe Exp $"); 134 135 #include "opt_uvmhist.h" 136 137 #include <sys/param.h> 138 #include <sys/malloc.h> 139 #include <sys/systm.h> 140 #include <sys/proc.h> 141 #include <sys/pool.h> 142 143 #include <uvm/uvm.h> 144 145 /* 146 * global data structures 147 */ 148 149 struct vm_map *kernel_map = NULL; 150 151 /* 152 * local data structues 153 */ 154 155 static struct vm_map_kernel kernel_map_store; 156 static struct vm_map_entry kernel_first_mapent_store; 157 158 #if !defined(PMAP_MAP_POOLPAGE) 159 160 /* 161 * kva cache 162 * 163 * XXX maybe it's better to do this at the uvm_map layer. 164 */ 165 166 #define KM_VACACHE_SIZE (32 * PAGE_SIZE) /* XXX tune */ 167 168 static void *km_vacache_alloc(struct pool *, int); 169 static void km_vacache_free(struct pool *, void *); 170 static void km_vacache_init(struct vm_map *, const char *, size_t); 171 172 /* XXX */ 173 #define KM_VACACHE_POOL_TO_MAP(pp) \ 174 ((struct vm_map *)((char *)(pp) - \ 175 offsetof(struct vm_map_kernel, vmk_vacache))) 176 177 static void * 178 km_vacache_alloc(struct pool *pp, int flags) 179 { 180 vaddr_t va; 181 size_t size; 182 struct vm_map *map; 183 size = pp->pr_alloc->pa_pagesz; 184 185 map = KM_VACACHE_POOL_TO_MAP(pp); 186 187 va = vm_map_min(map); /* hint */ 188 if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size, 189 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, 190 UVM_ADV_RANDOM, UVM_FLAG_QUANTUM | 191 ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA : 192 UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT)))) 193 return NULL; 194 195 return (void *)va; 196 } 197 198 static void 199 km_vacache_free(struct pool *pp, void *v) 200 { 201 vaddr_t va = (vaddr_t)v; 202 size_t size = pp->pr_alloc->pa_pagesz; 203 struct vm_map *map; 204 205 map = KM_VACACHE_POOL_TO_MAP(pp); 206 uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY); 207 } 208 209 /* 210 * km_vacache_init: initialize kva cache. 211 */ 212 213 static void 214 km_vacache_init(struct vm_map *map, const char *name, size_t size) 215 { 216 struct vm_map_kernel *vmk; 217 struct pool *pp; 218 struct pool_allocator *pa; 219 220 KASSERT(VM_MAP_IS_KERNEL(map)); 221 KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */ 222 223 vmk = vm_map_to_kernel(map); 224 pp = &vmk->vmk_vacache; 225 pa = &vmk->vmk_vacache_allocator; 226 memset(pa, 0, sizeof(*pa)); 227 pa->pa_alloc = km_vacache_alloc; 228 pa->pa_free = km_vacache_free; 229 pa->pa_pagesz = (unsigned int)size; 230 pa->pa_backingmap = map; 231 pa->pa_backingmapptr = NULL; 232 pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa); 233 } 234 235 void 236 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size) 237 { 238 239 map->flags |= VM_MAP_VACACHE; 240 if (size == 0) 241 size = KM_VACACHE_SIZE; 242 km_vacache_init(map, name, size); 243 } 244 245 #else /* !defined(PMAP_MAP_POOLPAGE) */ 246 247 void 248 uvm_km_vacache_init(struct vm_map *map __unused, const char *name __unused, 249 size_t size __unused) 250 { 251 252 /* nothing */ 253 } 254 255 #endif /* !defined(PMAP_MAP_POOLPAGE) */ 256 257 void 258 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags __unused) 259 { 260 struct vm_map_kernel *vmk = vm_map_to_kernel(map); 261 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; 262 int s = 0xdeadbeaf; /* XXX: gcc */ 263 264 if (intrsafe) { 265 s = splvm(); 266 } 267 callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL); 268 if (intrsafe) { 269 splx(s); 270 } 271 } 272 273 /* 274 * uvm_km_init: init kernel maps and objects to reflect reality (i.e. 275 * KVM already allocated for text, data, bss, and static data structures). 276 * 277 * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS. 278 * we assume that [vmin -> start] has already been allocated and that 279 * "end" is the end. 280 */ 281 282 void 283 uvm_km_init(vaddr_t start, vaddr_t end) 284 { 285 vaddr_t base = VM_MIN_KERNEL_ADDRESS; 286 287 /* 288 * next, init kernel memory objects. 289 */ 290 291 /* kernel_object: for pageable anonymous kernel memory */ 292 uao_init(); 293 uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS - 294 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ); 295 296 /* 297 * init the map and reserve any space that might already 298 * have been allocated kernel space before installing. 299 */ 300 301 uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE); 302 kernel_map_store.vmk_map.pmap = pmap_kernel(); 303 if (start != base) { 304 int error; 305 struct uvm_map_args args; 306 307 error = uvm_map_prepare(&kernel_map_store.vmk_map, 308 base, start - base, 309 NULL, UVM_UNKNOWN_OFFSET, 0, 310 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, 311 UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args); 312 if (!error) { 313 kernel_first_mapent_store.flags = 314 UVM_MAP_KERNEL | UVM_MAP_FIRST; 315 error = uvm_map_enter(&kernel_map_store.vmk_map, &args, 316 &kernel_first_mapent_store); 317 } 318 319 if (error) 320 panic( 321 "uvm_km_init: could not reserve space for kernel"); 322 } 323 324 /* 325 * install! 326 */ 327 328 kernel_map = &kernel_map_store.vmk_map; 329 uvm_km_vacache_init(kernel_map, "kvakernel", 0); 330 } 331 332 /* 333 * uvm_km_suballoc: allocate a submap in the kernel map. once a submap 334 * is allocated all references to that area of VM must go through it. this 335 * allows the locking of VAs in kernel_map to be broken up into regions. 336 * 337 * => if `fixed' is true, *vmin specifies where the region described 338 * by the submap must start 339 * => if submap is non NULL we use that as the submap, otherwise we 340 * alloc a new map 341 */ 342 343 struct vm_map * 344 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */, 345 vaddr_t *vmax /* OUT */, vsize_t size, int flags, boolean_t fixed, 346 struct vm_map_kernel *submap) 347 { 348 int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0); 349 350 KASSERT(vm_map_pmap(map) == pmap_kernel()); 351 352 size = round_page(size); /* round up to pagesize */ 353 size += uvm_mapent_overhead(size, flags); 354 355 /* 356 * first allocate a blank spot in the parent map 357 */ 358 359 if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0, 360 UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, 361 UVM_ADV_RANDOM, mapflags)) != 0) { 362 panic("uvm_km_suballoc: unable to allocate space in parent map"); 363 } 364 365 /* 366 * set VM bounds (vmin is filled in by uvm_map) 367 */ 368 369 *vmax = *vmin + size; 370 371 /* 372 * add references to pmap and create or init the submap 373 */ 374 375 pmap_reference(vm_map_pmap(map)); 376 if (submap == NULL) { 377 submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK); 378 if (submap == NULL) 379 panic("uvm_km_suballoc: unable to create submap"); 380 } 381 uvm_map_setup_kernel(submap, *vmin, *vmax, flags); 382 submap->vmk_map.pmap = vm_map_pmap(map); 383 384 /* 385 * now let uvm_map_submap plug in it... 386 */ 387 388 if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0) 389 panic("uvm_km_suballoc: submap allocation failed"); 390 391 return(&submap->vmk_map); 392 } 393 394 /* 395 * uvm_km_pgremove: remove pages from a kernel uvm_object. 396 * 397 * => when you unmap a part of anonymous kernel memory you want to toss 398 * the pages right away. (this gets called from uvm_unmap_...). 399 */ 400 401 void 402 uvm_km_pgremove(vaddr_t startva, vaddr_t endva) 403 { 404 struct uvm_object * const uobj = uvm.kernel_object; 405 const voff_t start = startva - vm_map_min(kernel_map); 406 const voff_t end = endva - vm_map_min(kernel_map); 407 struct vm_page *pg; 408 voff_t curoff, nextoff; 409 int swpgonlydelta = 0; 410 UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist); 411 412 KASSERT(VM_MIN_KERNEL_ADDRESS <= startva); 413 KASSERT(startva < endva); 414 KASSERT(endva <= VM_MAX_KERNEL_ADDRESS); 415 416 simple_lock(&uobj->vmobjlock); 417 418 for (curoff = start; curoff < end; curoff = nextoff) { 419 nextoff = curoff + PAGE_SIZE; 420 pg = uvm_pagelookup(uobj, curoff); 421 if (pg != NULL && pg->flags & PG_BUSY) { 422 pg->flags |= PG_WANTED; 423 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0, 424 "km_pgrm", 0); 425 simple_lock(&uobj->vmobjlock); 426 nextoff = curoff; 427 continue; 428 } 429 430 /* 431 * free the swap slot, then the page. 432 */ 433 434 if (pg == NULL && 435 uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) { 436 swpgonlydelta++; 437 } 438 uao_dropswap(uobj, curoff >> PAGE_SHIFT); 439 if (pg != NULL) { 440 uvm_lock_pageq(); 441 uvm_pagefree(pg); 442 uvm_unlock_pageq(); 443 } 444 } 445 simple_unlock(&uobj->vmobjlock); 446 447 if (swpgonlydelta > 0) { 448 simple_lock(&uvm.swap_data_lock); 449 KASSERT(uvmexp.swpgonly >= swpgonlydelta); 450 uvmexp.swpgonly -= swpgonlydelta; 451 simple_unlock(&uvm.swap_data_lock); 452 } 453 } 454 455 456 /* 457 * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed 458 * regions. 459 * 460 * => when you unmap a part of anonymous kernel memory you want to toss 461 * the pages right away. (this is called from uvm_unmap_...). 462 * => none of the pages will ever be busy, and none of them will ever 463 * be on the active or inactive queues (because they have no object). 464 */ 465 466 void 467 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end) 468 { 469 struct vm_page *pg; 470 paddr_t pa; 471 UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist); 472 473 KASSERT(VM_MIN_KERNEL_ADDRESS <= start); 474 KASSERT(start < end); 475 KASSERT(end <= VM_MAX_KERNEL_ADDRESS); 476 477 for (; start < end; start += PAGE_SIZE) { 478 if (!pmap_extract(pmap_kernel(), start, &pa)) { 479 continue; 480 } 481 pg = PHYS_TO_VM_PAGE(pa); 482 KASSERT(pg); 483 KASSERT(pg->uobject == NULL && pg->uanon == NULL); 484 uvm_pagefree(pg); 485 } 486 } 487 488 #if defined(DEBUG) 489 void 490 uvm_km_check_empty(vaddr_t start, vaddr_t end, boolean_t intrsafe) 491 { 492 vaddr_t va; 493 paddr_t pa; 494 495 KDASSERT(VM_MIN_KERNEL_ADDRESS <= start); 496 KDASSERT(start < end); 497 KDASSERT(end <= VM_MAX_KERNEL_ADDRESS); 498 499 for (va = start; va < end; va += PAGE_SIZE) { 500 if (pmap_extract(pmap_kernel(), va, &pa)) { 501 panic("uvm_km_check_empty: va %p has pa 0x%llx", 502 (void *)va, (long long)pa); 503 } 504 if (!intrsafe) { 505 const struct vm_page *pg; 506 507 simple_lock(&uvm.kernel_object->vmobjlock); 508 pg = uvm_pagelookup(uvm.kernel_object, 509 va - vm_map_min(kernel_map)); 510 simple_unlock(&uvm.kernel_object->vmobjlock); 511 if (pg) { 512 panic("uvm_km_check_empty: " 513 "has page hashed at %p", (const void *)va); 514 } 515 } 516 } 517 } 518 #endif /* defined(DEBUG) */ 519 520 /* 521 * uvm_km_alloc: allocate an area of kernel memory. 522 * 523 * => NOTE: we can return 0 even if we can wait if there is not enough 524 * free VM space in the map... caller should be prepared to handle 525 * this case. 526 * => we return KVA of memory allocated 527 */ 528 529 vaddr_t 530 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags) 531 { 532 vaddr_t kva, loopva; 533 vaddr_t offset; 534 vsize_t loopsize; 535 struct vm_page *pg; 536 struct uvm_object *obj; 537 int pgaflags; 538 vm_prot_t prot; 539 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist); 540 541 KASSERT(vm_map_pmap(map) == pmap_kernel()); 542 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED || 543 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE || 544 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY); 545 546 /* 547 * setup for call 548 */ 549 550 kva = vm_map_min(map); /* hint */ 551 size = round_page(size); 552 obj = (flags & UVM_KMF_PAGEABLE) ? uvm.kernel_object : NULL; 553 UVMHIST_LOG(maphist," (map=0x%x, obj=0x%x, size=0x%x, flags=%d)", 554 map, obj, size, flags); 555 556 /* 557 * allocate some virtual space 558 */ 559 560 if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET, 561 align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE, 562 UVM_ADV_RANDOM, 563 (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA)) 564 | UVM_FLAG_QUANTUM)) != 0)) { 565 UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0); 566 return(0); 567 } 568 569 /* 570 * if all we wanted was VA, return now 571 */ 572 573 if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) { 574 UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0); 575 return(kva); 576 } 577 578 /* 579 * recover object offset from virtual address 580 */ 581 582 offset = kva - vm_map_min(kernel_map); 583 UVMHIST_LOG(maphist, " kva=0x%x, offset=0x%x", kva, offset,0,0); 584 585 /* 586 * now allocate and map in the memory... note that we are the only ones 587 * whom should ever get a handle on this area of VM. 588 */ 589 590 loopva = kva; 591 loopsize = size; 592 593 pgaflags = UVM_PGA_USERESERVE; 594 if (flags & UVM_KMF_ZERO) 595 pgaflags |= UVM_PGA_ZERO; 596 prot = VM_PROT_READ | VM_PROT_WRITE; 597 if (flags & UVM_KMF_EXEC) 598 prot |= VM_PROT_EXECUTE; 599 while (loopsize) { 600 KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL)); 601 602 pg = uvm_pagealloc(NULL, offset, NULL, pgaflags); 603 604 /* 605 * out of memory? 606 */ 607 608 if (__predict_false(pg == NULL)) { 609 if ((flags & UVM_KMF_NOWAIT) || 610 ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) { 611 /* free everything! */ 612 uvm_km_free(map, kva, size, 613 flags & UVM_KMF_TYPEMASK); 614 return (0); 615 } else { 616 uvm_wait("km_getwait2"); /* sleep here */ 617 continue; 618 } 619 } 620 621 pg->flags &= ~PG_BUSY; /* new page */ 622 UVM_PAGE_OWN(pg, NULL); 623 624 /* 625 * map it in 626 */ 627 628 pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot); 629 loopva += PAGE_SIZE; 630 offset += PAGE_SIZE; 631 loopsize -= PAGE_SIZE; 632 } 633 634 pmap_update(pmap_kernel()); 635 636 UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0); 637 return(kva); 638 } 639 640 /* 641 * uvm_km_free: free an area of kernel memory 642 */ 643 644 void 645 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags) 646 { 647 648 KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED || 649 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE || 650 (flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY); 651 KASSERT((addr & PAGE_MASK) == 0); 652 KASSERT(vm_map_pmap(map) == pmap_kernel()); 653 654 size = round_page(size); 655 656 if (flags & UVM_KMF_PAGEABLE) { 657 uvm_km_pgremove(addr, addr + size); 658 pmap_remove(pmap_kernel(), addr, addr + size); 659 } else if (flags & UVM_KMF_WIRED) { 660 uvm_km_pgremove_intrsafe(addr, addr + size); 661 pmap_kremove(addr, size); 662 } 663 664 uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY); 665 } 666 667 /* Sanity; must specify both or none. */ 668 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \ 669 (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE)) 670 #error Must specify MAP and UNMAP together. 671 #endif 672 673 /* 674 * uvm_km_alloc_poolpage: allocate a page for the pool allocator 675 * 676 * => if the pmap specifies an alternate mapping method, we use it. 677 */ 678 679 /* ARGSUSED */ 680 vaddr_t 681 uvm_km_alloc_poolpage_cache(struct vm_map *map, boolean_t waitok) 682 { 683 #if defined(PMAP_MAP_POOLPAGE) 684 return uvm_km_alloc_poolpage(map, waitok); 685 #else 686 struct vm_page *pg; 687 struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache; 688 vaddr_t va; 689 int s = 0xdeadbeaf; /* XXX: gcc */ 690 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; 691 692 if ((map->flags & VM_MAP_VACACHE) == 0) 693 return uvm_km_alloc_poolpage(map, waitok); 694 695 if (intrsafe) 696 s = splvm(); 697 va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT); 698 if (intrsafe) 699 splx(s); 700 if (va == 0) 701 return 0; 702 KASSERT(!pmap_extract(pmap_kernel(), va, NULL)); 703 again: 704 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 705 if (__predict_false(pg == NULL)) { 706 if (waitok) { 707 uvm_wait("plpg"); 708 goto again; 709 } else { 710 if (intrsafe) 711 s = splvm(); 712 pool_put(pp, (void *)va); 713 if (intrsafe) 714 splx(s); 715 return 0; 716 } 717 } 718 pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE); 719 pmap_update(pmap_kernel()); 720 721 return va; 722 #endif /* PMAP_MAP_POOLPAGE */ 723 } 724 725 vaddr_t 726 uvm_km_alloc_poolpage(struct vm_map *map, boolean_t waitok) 727 { 728 #if defined(PMAP_MAP_POOLPAGE) 729 struct vm_page *pg; 730 vaddr_t va; 731 732 again: 733 pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE); 734 if (__predict_false(pg == NULL)) { 735 if (waitok) { 736 uvm_wait("plpg"); 737 goto again; 738 } else 739 return (0); 740 } 741 va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg)); 742 if (__predict_false(va == 0)) 743 uvm_pagefree(pg); 744 return (va); 745 #else 746 vaddr_t va; 747 int s = 0xdeadbeaf; /* XXX: gcc */ 748 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; 749 750 if (intrsafe) 751 s = splvm(); 752 va = uvm_km_alloc(map, PAGE_SIZE, 0, 753 (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED); 754 if (intrsafe) 755 splx(s); 756 return (va); 757 #endif /* PMAP_MAP_POOLPAGE */ 758 } 759 760 /* 761 * uvm_km_free_poolpage: free a previously allocated pool page 762 * 763 * => if the pmap specifies an alternate unmapping method, we use it. 764 */ 765 766 /* ARGSUSED */ 767 void 768 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr) 769 { 770 #if defined(PMAP_UNMAP_POOLPAGE) 771 uvm_km_free_poolpage(map, addr); 772 #else 773 struct pool *pp; 774 int s = 0xdeadbeaf; /* XXX: gcc */ 775 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; 776 777 if ((map->flags & VM_MAP_VACACHE) == 0) { 778 uvm_km_free_poolpage(map, addr); 779 return; 780 } 781 782 KASSERT(pmap_extract(pmap_kernel(), addr, NULL)); 783 uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE); 784 pmap_kremove(addr, PAGE_SIZE); 785 #if defined(DEBUG) 786 pmap_update(pmap_kernel()); 787 #endif 788 KASSERT(!pmap_extract(pmap_kernel(), addr, NULL)); 789 pp = &vm_map_to_kernel(map)->vmk_vacache; 790 if (intrsafe) 791 s = splvm(); 792 pool_put(pp, (void *)addr); 793 if (intrsafe) 794 splx(s); 795 #endif 796 } 797 798 /* ARGSUSED */ 799 void 800 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr) 801 { 802 #if defined(PMAP_UNMAP_POOLPAGE) 803 paddr_t pa; 804 805 pa = PMAP_UNMAP_POOLPAGE(addr); 806 uvm_pagefree(PHYS_TO_VM_PAGE(pa)); 807 #else 808 int s = 0xdeadbeaf; /* XXX: gcc */ 809 const boolean_t intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0; 810 811 if (intrsafe) 812 s = splvm(); 813 uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED); 814 if (intrsafe) 815 splx(s); 816 #endif /* PMAP_UNMAP_POOLPAGE */ 817 } 818