xref: /netbsd-src/sys/uvm/uvm_km.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /*	$NetBSD: uvm_km.c,v 1.144 2017/10/28 00:37:13 pgoyette Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  *
36  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
37  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
38  *
39  *
40  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
41  * All rights reserved.
42  *
43  * Permission to use, copy, modify and distribute this software and
44  * its documentation is hereby granted, provided that both the copyright
45  * notice and this permission notice appear in all copies of the
46  * software, derivative works or modified versions, and any portions
47  * thereof, and that both notices appear in supporting documentation.
48  *
49  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
50  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
51  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
52  *
53  * Carnegie Mellon requests users of this software to return to
54  *
55  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
56  *  School of Computer Science
57  *  Carnegie Mellon University
58  *  Pittsburgh PA 15213-3890
59  *
60  * any improvements or extensions that they make and grant Carnegie the
61  * rights to redistribute these changes.
62  */
63 
64 /*
65  * uvm_km.c: handle kernel memory allocation and management
66  */
67 
68 /*
69  * overview of kernel memory management:
70  *
71  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
72  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
73  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
74  *
75  * the kernel_map has several "submaps."   submaps can only appear in
76  * the kernel_map (user processes can't use them).   submaps "take over"
77  * the management of a sub-range of the kernel's address space.  submaps
78  * are typically allocated at boot time and are never released.   kernel
79  * virtual address space that is mapped by a submap is locked by the
80  * submap's lock -- not the kernel_map's lock.
81  *
82  * thus, the useful feature of submaps is that they allow us to break
83  * up the locking and protection of the kernel address space into smaller
84  * chunks.
85  *
86  * the vm system has several standard kernel submaps/arenas, including:
87  *   kmem_arena => used for kmem/pool (memoryallocators(9))
88  *   pager_map => used to map "buf" structures into kernel space
89  *   exec_map => used during exec to handle exec args
90  *   etc...
91  *
92  * The kmem_arena is a "special submap", as it lives in a fixed map entry
93  * within the kernel_map and is controlled by vmem(9).
94  *
95  * the kernel allocates its private memory out of special uvm_objects whose
96  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
97  * are "special" and never die).   all kernel objects should be thought of
98  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
99  * object is equal to the size of kernel virtual address space (i.e. the
100  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
101  *
102  * note that just because a kernel object spans the entire kernel virtual
103  * address space doesn't mean that it has to be mapped into the entire space.
104  * large chunks of a kernel object's space go unused either because
105  * that area of kernel VM is unmapped, or there is some other type of
106  * object mapped into that range (e.g. a vnode).    for submap's kernel
107  * objects, the only part of the object that can ever be populated is the
108  * offsets that are managed by the submap.
109  *
110  * note that the "offset" in a kernel object is always the kernel virtual
111  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
112  * example:
113  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
114  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
115  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
116  *   then that means that the page at offset 0x235000 in kernel_object is
117  *   mapped at 0xf8235000.
118  *
119  * kernel object have one other special property: when the kernel virtual
120  * memory mapping them is unmapped, the backing memory in the object is
121  * freed right away.   this is done with the uvm_km_pgremove() function.
122  * this has to be done because there is no backing store for kernel pages
123  * and no need to save them after they are no longer referenced.
124  *
125  * Generic arenas:
126  *
127  * kmem_arena:
128  *	Main arena controlling the kernel KVA used by other arenas.
129  *
130  * kmem_va_arena:
131  *	Implements quantum caching in order to speedup allocations and
132  *	reduce fragmentation.  The pool(9), unless created with a custom
133  *	meta-data allocator, and kmem(9) subsystems use this arena.
134  *
135  * Arenas for meta-data allocations are used by vmem(9) and pool(9).
136  * These arenas cannot use quantum cache.  However, kmem_va_meta_arena
137  * compensates this by importing larger chunks from kmem_arena.
138  *
139  * kmem_va_meta_arena:
140  *	Space for meta-data.
141  *
142  * kmem_meta_arena:
143  *	Imports from kmem_va_meta_arena.  Allocations from this arena are
144  *	backed with the pages.
145  *
146  * Arena stacking:
147  *
148  *	kmem_arena
149  *		kmem_va_arena
150  *		kmem_va_meta_arena
151  *			kmem_meta_arena
152  */
153 
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.144 2017/10/28 00:37:13 pgoyette Exp $");
156 
157 #include "opt_uvmhist.h"
158 
159 #include "opt_kmempages.h"
160 
161 #ifndef NKMEMPAGES
162 #define NKMEMPAGES 0
163 #endif
164 
165 /*
166  * Defaults for lower and upper-bounds for the kmem_arena page count.
167  * Can be overridden by kernel config options.
168  */
169 #ifndef NKMEMPAGES_MIN
170 #define NKMEMPAGES_MIN NKMEMPAGES_MIN_DEFAULT
171 #endif
172 
173 #ifndef NKMEMPAGES_MAX
174 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT
175 #endif
176 
177 
178 #include <sys/param.h>
179 #include <sys/systm.h>
180 #include <sys/proc.h>
181 #include <sys/pool.h>
182 #include <sys/vmem.h>
183 #include <sys/vmem_impl.h>
184 #include <sys/kmem.h>
185 
186 #include <uvm/uvm.h>
187 
188 /*
189  * global data structures
190  */
191 
192 struct vm_map *kernel_map = NULL;
193 
194 /*
195  * local data structues
196  */
197 
198 static struct vm_map		kernel_map_store;
199 static struct vm_map_entry	kernel_image_mapent_store;
200 static struct vm_map_entry	kernel_kmem_mapent_store;
201 
202 int nkmempages = 0;
203 vaddr_t kmembase;
204 vsize_t kmemsize;
205 
206 static struct vmem kmem_arena_store;
207 vmem_t *kmem_arena = NULL;
208 static struct vmem kmem_va_arena_store;
209 vmem_t *kmem_va_arena;
210 
211 /*
212  * kmeminit_nkmempages: calculate the size of kmem_arena.
213  */
214 void
215 kmeminit_nkmempages(void)
216 {
217 	int npages;
218 
219 	if (nkmempages != 0) {
220 		/*
221 		 * It's already been set (by us being here before)
222 		 * bail out now;
223 		 */
224 		return;
225 	}
226 
227 #if defined(PMAP_MAP_POOLPAGE)
228 	npages = (physmem / 4);
229 #else
230 	npages = (physmem / 3) * 2;
231 #endif /* defined(PMAP_MAP_POOLPAGE) */
232 
233 #ifndef NKMEMPAGES_MAX_UNLIMITED
234 	if (npages > NKMEMPAGES_MAX)
235 		npages = NKMEMPAGES_MAX;
236 #endif
237 
238 	if (npages < NKMEMPAGES_MIN)
239 		npages = NKMEMPAGES_MIN;
240 
241 	nkmempages = npages;
242 }
243 
244 /*
245  * uvm_km_bootstrap: init kernel maps and objects to reflect reality (i.e.
246  * KVM already allocated for text, data, bss, and static data structures).
247  *
248  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
249  *    we assume that [vmin -> start] has already been allocated and that
250  *    "end" is the end.
251  */
252 
253 void
254 uvm_km_bootstrap(vaddr_t start, vaddr_t end)
255 {
256 	bool kmem_arena_small;
257 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
258 	struct uvm_map_args args;
259 	int error;
260 
261 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
262 	UVMHIST_LOG(maphist, "start=%#jx end=%#jx", start, end, 0,0);
263 
264 	kmeminit_nkmempages();
265 	kmemsize = (vsize_t)nkmempages * PAGE_SIZE;
266 	kmem_arena_small = kmemsize < 64 * 1024 * 1024;
267 
268 	UVMHIST_LOG(maphist, "kmemsize=%#jx", kmemsize, 0,0,0);
269 
270 	/*
271 	 * next, init kernel memory objects.
272 	 */
273 
274 	/* kernel_object: for pageable anonymous kernel memory */
275 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
276 				VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
277 
278 	/*
279 	 * init the map and reserve any space that might already
280 	 * have been allocated kernel space before installing.
281 	 */
282 
283 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
284 	kernel_map_store.pmap = pmap_kernel();
285 	if (start != base) {
286 		error = uvm_map_prepare(&kernel_map_store,
287 		    base, start - base,
288 		    NULL, UVM_UNKNOWN_OFFSET, 0,
289 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
290 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
291 		if (!error) {
292 			kernel_image_mapent_store.flags =
293 			    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
294 			error = uvm_map_enter(&kernel_map_store, &args,
295 			    &kernel_image_mapent_store);
296 		}
297 
298 		if (error)
299 			panic(
300 			    "uvm_km_bootstrap: could not reserve space for kernel");
301 
302 		kmembase = args.uma_start + args.uma_size;
303 	} else {
304 		kmembase = base;
305 	}
306 
307 	error = uvm_map_prepare(&kernel_map_store,
308 	    kmembase, kmemsize,
309 	    NULL, UVM_UNKNOWN_OFFSET, 0,
310 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
311 	    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
312 	if (!error) {
313 		kernel_kmem_mapent_store.flags =
314 		    UVM_MAP_KERNEL | UVM_MAP_STATIC | UVM_MAP_NOMERGE;
315 		error = uvm_map_enter(&kernel_map_store, &args,
316 		    &kernel_kmem_mapent_store);
317 	}
318 
319 	if (error)
320 		panic("uvm_km_bootstrap: could not reserve kernel kmem");
321 
322 	/*
323 	 * install!
324 	 */
325 
326 	kernel_map = &kernel_map_store;
327 
328 	pool_subsystem_init();
329 
330 	kmem_arena = vmem_init(&kmem_arena_store, "kmem",
331 	    kmembase, kmemsize, PAGE_SIZE, NULL, NULL, NULL,
332 	    0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
333 #ifdef PMAP_GROWKERNEL
334 	/*
335 	 * kmem_arena VA allocations happen independently of uvm_map.
336 	 * grow kernel to accommodate the kmem_arena.
337 	 */
338 	if (uvm_maxkaddr < kmembase + kmemsize) {
339 		uvm_maxkaddr = pmap_growkernel(kmembase + kmemsize);
340 		KASSERTMSG(uvm_maxkaddr >= kmembase + kmemsize,
341 		    "%#"PRIxVADDR" %#"PRIxVADDR" %#"PRIxVSIZE,
342 		    uvm_maxkaddr, kmembase, kmemsize);
343 	}
344 #endif
345 
346 	vmem_subsystem_init(kmem_arena);
347 
348 	UVMHIST_LOG(maphist, "kmem vmem created (base=%#jx, size=%#jx",
349 	    kmembase, kmemsize, 0,0);
350 
351 	kmem_va_arena = vmem_init(&kmem_va_arena_store, "kva",
352 	    0, 0, PAGE_SIZE, vmem_alloc, vmem_free, kmem_arena,
353 	    (kmem_arena_small ? 4 : VMEM_QCACHE_IDX_MAX) * PAGE_SIZE,
354 	    VM_NOSLEEP, IPL_VM);
355 
356 	UVMHIST_LOG(maphist, "<- done", 0,0,0,0);
357 }
358 
359 /*
360  * uvm_km_init: init the kernel maps virtual memory caches
361  * and start the pool/kmem allocator.
362  */
363 void
364 uvm_km_init(void)
365 {
366 	kmem_init();
367 }
368 
369 /*
370  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
371  * is allocated all references to that area of VM must go through it.  this
372  * allows the locking of VAs in kernel_map to be broken up into regions.
373  *
374  * => if `fixed' is true, *vmin specifies where the region described
375  *   pager_map => used to map "buf" structures into kernel space
376  *      by the submap must start
377  * => if submap is non NULL we use that as the submap, otherwise we
378  *	alloc a new map
379  */
380 
381 struct vm_map *
382 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
383     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
384     struct vm_map *submap)
385 {
386 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
387 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
388 
389 	KASSERT(vm_map_pmap(map) == pmap_kernel());
390 
391 	size = round_page(size);	/* round up to pagesize */
392 
393 	/*
394 	 * first allocate a blank spot in the parent map
395 	 */
396 
397 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
398 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
399 	    UVM_ADV_RANDOM, mapflags)) != 0) {
400 		panic("%s: unable to allocate space in parent map", __func__);
401 	}
402 
403 	/*
404 	 * set VM bounds (vmin is filled in by uvm_map)
405 	 */
406 
407 	*vmax = *vmin + size;
408 
409 	/*
410 	 * add references to pmap and create or init the submap
411 	 */
412 
413 	pmap_reference(vm_map_pmap(map));
414 	if (submap == NULL) {
415 		submap = kmem_alloc(sizeof(*submap), KM_SLEEP);
416 	}
417 	uvm_map_setup(submap, *vmin, *vmax, flags);
418 	submap->pmap = vm_map_pmap(map);
419 
420 	/*
421 	 * now let uvm_map_submap plug in it...
422 	 */
423 
424 	if (uvm_map_submap(map, *vmin, *vmax, submap) != 0)
425 		panic("uvm_km_suballoc: submap allocation failed");
426 
427 	return(submap);
428 }
429 
430 /*
431  * uvm_km_pgremove: remove pages from a kernel uvm_object and KVA.
432  */
433 
434 void
435 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
436 {
437 	struct uvm_object * const uobj = uvm_kernel_object;
438 	const voff_t start = startva - vm_map_min(kernel_map);
439 	const voff_t end = endva - vm_map_min(kernel_map);
440 	struct vm_page *pg;
441 	voff_t curoff, nextoff;
442 	int swpgonlydelta = 0;
443 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
444 
445 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
446 	KASSERT(startva < endva);
447 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
448 
449 	mutex_enter(uobj->vmobjlock);
450 	pmap_remove(pmap_kernel(), startva, endva);
451 	for (curoff = start; curoff < end; curoff = nextoff) {
452 		nextoff = curoff + PAGE_SIZE;
453 		pg = uvm_pagelookup(uobj, curoff);
454 		if (pg != NULL && pg->flags & PG_BUSY) {
455 			pg->flags |= PG_WANTED;
456 			UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
457 				    "km_pgrm", 0);
458 			mutex_enter(uobj->vmobjlock);
459 			nextoff = curoff;
460 			continue;
461 		}
462 
463 		/*
464 		 * free the swap slot, then the page.
465 		 */
466 
467 		if (pg == NULL &&
468 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
469 			swpgonlydelta++;
470 		}
471 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
472 		if (pg != NULL) {
473 			mutex_enter(&uvm_pageqlock);
474 			uvm_pagefree(pg);
475 			mutex_exit(&uvm_pageqlock);
476 		}
477 	}
478 	mutex_exit(uobj->vmobjlock);
479 
480 	if (swpgonlydelta > 0) {
481 		mutex_enter(&uvm_swap_data_lock);
482 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
483 		uvmexp.swpgonly -= swpgonlydelta;
484 		mutex_exit(&uvm_swap_data_lock);
485 	}
486 }
487 
488 
489 /*
490  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
491  *    regions.
492  *
493  * => when you unmap a part of anonymous kernel memory you want to toss
494  *    the pages right away.    (this is called from uvm_unmap_...).
495  * => none of the pages will ever be busy, and none of them will ever
496  *    be on the active or inactive queues (because they have no object).
497  */
498 
499 void
500 uvm_km_pgremove_intrsafe(struct vm_map *map, vaddr_t start, vaddr_t end)
501 {
502 #define __PGRM_BATCH 16
503 	struct vm_page *pg;
504 	paddr_t pa[__PGRM_BATCH];
505 	int npgrm, i;
506 	vaddr_t va, batch_vastart;
507 
508 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
509 
510 	KASSERT(VM_MAP_IS_KERNEL(map));
511 	KASSERTMSG(vm_map_min(map) <= start,
512 	    "vm_map_min(map) [%#"PRIxVADDR"] <= start [%#"PRIxVADDR"]"
513 	    " (size=%#"PRIxVSIZE")",
514 	    vm_map_min(map), start, end - start);
515 	KASSERT(start < end);
516 	KASSERT(end <= vm_map_max(map));
517 
518 	for (va = start; va < end;) {
519 		batch_vastart = va;
520 		/* create a batch of at most __PGRM_BATCH pages to free */
521 		for (i = 0;
522 		     i < __PGRM_BATCH && va < end;
523 		     va += PAGE_SIZE) {
524 			if (!pmap_extract(pmap_kernel(), va, &pa[i])) {
525 				continue;
526 			}
527 			i++;
528 		}
529 		npgrm = i;
530 		/* now remove the mappings */
531 		pmap_kremove(batch_vastart, va - batch_vastart);
532 		/* and free the pages */
533 		for (i = 0; i < npgrm; i++) {
534 			pg = PHYS_TO_VM_PAGE(pa[i]);
535 			KASSERT(pg);
536 			KASSERT(pg->uobject == NULL && pg->uanon == NULL);
537 			KASSERT((pg->flags & PG_BUSY) == 0);
538 			uvm_pagefree(pg);
539 		}
540 	}
541 #undef __PGRM_BATCH
542 }
543 
544 #if defined(DEBUG)
545 void
546 uvm_km_check_empty(struct vm_map *map, vaddr_t start, vaddr_t end)
547 {
548 	struct vm_page *pg;
549 	vaddr_t va;
550 	paddr_t pa;
551 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
552 
553 	KDASSERT(VM_MAP_IS_KERNEL(map));
554 	KDASSERT(vm_map_min(map) <= start);
555 	KDASSERT(start < end);
556 	KDASSERT(end <= vm_map_max(map));
557 
558 	for (va = start; va < end; va += PAGE_SIZE) {
559 		if (pmap_extract(pmap_kernel(), va, &pa)) {
560 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
561 			    (void *)va, (long long)pa);
562 		}
563 		mutex_enter(uvm_kernel_object->vmobjlock);
564 		pg = uvm_pagelookup(uvm_kernel_object,
565 		    va - vm_map_min(kernel_map));
566 		mutex_exit(uvm_kernel_object->vmobjlock);
567 		if (pg) {
568 			panic("uvm_km_check_empty: "
569 			    "has page hashed at %p", (const void *)va);
570 		}
571 	}
572 }
573 #endif /* defined(DEBUG) */
574 
575 /*
576  * uvm_km_alloc: allocate an area of kernel memory.
577  *
578  * => NOTE: we can return 0 even if we can wait if there is not enough
579  *	free VM space in the map... caller should be prepared to handle
580  *	this case.
581  * => we return KVA of memory allocated
582  */
583 
584 vaddr_t
585 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
586 {
587 	vaddr_t kva, loopva;
588 	vaddr_t offset;
589 	vsize_t loopsize;
590 	struct vm_page *pg;
591 	struct uvm_object *obj;
592 	int pgaflags;
593 	vm_prot_t prot, vaprot;
594 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
595 
596 	KASSERT(vm_map_pmap(map) == pmap_kernel());
597 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
598 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
599 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
600 	KASSERT((flags & UVM_KMF_VAONLY) != 0 || (flags & UVM_KMF_COLORMATCH) == 0);
601 	KASSERT((flags & UVM_KMF_COLORMATCH) == 0 || (flags & UVM_KMF_VAONLY) != 0);
602 
603 	/*
604 	 * setup for call
605 	 */
606 
607 	kva = vm_map_min(map);	/* hint */
608 	size = round_page(size);
609 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
610 	UVMHIST_LOG(maphist,"  (map=0x%#jx, obj=0x%#jx, size=0x%jx, flags=%jd)",
611 	    (uintptr_t)map, (uintptr_t)obj, size, flags);
612 
613 	/*
614 	 * allocate some virtual space
615 	 */
616 
617 	vaprot = (flags & UVM_KMF_EXEC) ? UVM_PROT_ALL : UVM_PROT_RW;
618 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
619 	    align, UVM_MAPFLAG(vaprot, UVM_PROT_ALL, UVM_INH_NONE,
620 	    UVM_ADV_RANDOM,
621 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA
622 	     | UVM_KMF_COLORMATCH)))) != 0)) {
623 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
624 		return(0);
625 	}
626 
627 	/*
628 	 * if all we wanted was VA, return now
629 	 */
630 
631 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
632 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%jx)", kva,0,0,0);
633 		return(kva);
634 	}
635 
636 	/*
637 	 * recover object offset from virtual address
638 	 */
639 
640 	offset = kva - vm_map_min(kernel_map);
641 	UVMHIST_LOG(maphist, "  kva=0x%jx, offset=0x%jx", kva, offset,0,0);
642 
643 	/*
644 	 * now allocate and map in the memory... note that we are the only ones
645 	 * whom should ever get a handle on this area of VM.
646 	 */
647 
648 	loopva = kva;
649 	loopsize = size;
650 
651 	pgaflags = UVM_FLAG_COLORMATCH;
652 	if (flags & UVM_KMF_NOWAIT)
653 		pgaflags |= UVM_PGA_USERESERVE;
654 	if (flags & UVM_KMF_ZERO)
655 		pgaflags |= UVM_PGA_ZERO;
656 	prot = VM_PROT_READ | VM_PROT_WRITE;
657 	if (flags & UVM_KMF_EXEC)
658 		prot |= VM_PROT_EXECUTE;
659 	while (loopsize) {
660 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, NULL),
661 		    "loopva=%#"PRIxVADDR, loopva);
662 
663 		pg = uvm_pagealloc_strat(NULL, offset, NULL, pgaflags,
664 #ifdef UVM_KM_VMFREELIST
665 		   UVM_PGA_STRAT_ONLY, UVM_KM_VMFREELIST
666 #else
667 		   UVM_PGA_STRAT_NORMAL, 0
668 #endif
669 		   );
670 
671 		/*
672 		 * out of memory?
673 		 */
674 
675 		if (__predict_false(pg == NULL)) {
676 			if ((flags & UVM_KMF_NOWAIT) ||
677 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
678 				/* free everything! */
679 				uvm_km_free(map, kva, size,
680 				    flags & UVM_KMF_TYPEMASK);
681 				return (0);
682 			} else {
683 				uvm_wait("km_getwait2");	/* sleep here */
684 				continue;
685 			}
686 		}
687 
688 		pg->flags &= ~PG_BUSY;	/* new page */
689 		UVM_PAGE_OWN(pg, NULL);
690 
691 		/*
692 		 * map it in
693 		 */
694 
695 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
696 		    prot, PMAP_KMPAGE);
697 		loopva += PAGE_SIZE;
698 		offset += PAGE_SIZE;
699 		loopsize -= PAGE_SIZE;
700 	}
701 
702 	pmap_update(pmap_kernel());
703 
704 	UVMHIST_LOG(maphist,"<- done (kva=0x%jx)", kva,0,0,0);
705 	return(kva);
706 }
707 
708 /*
709  * uvm_km_protect: change the protection of an allocated area
710  */
711 
712 int
713 uvm_km_protect(struct vm_map *map, vaddr_t addr, vsize_t size, vm_prot_t prot)
714 {
715 	return uvm_map_protect(map, addr, addr + round_page(size), prot, false);
716 }
717 
718 /*
719  * uvm_km_free: free an area of kernel memory
720  */
721 
722 void
723 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
724 {
725 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
726 
727 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
728 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
729 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
730 	KASSERT((addr & PAGE_MASK) == 0);
731 	KASSERT(vm_map_pmap(map) == pmap_kernel());
732 
733 	size = round_page(size);
734 
735 	if (flags & UVM_KMF_PAGEABLE) {
736 		uvm_km_pgremove(addr, addr + size);
737 	} else if (flags & UVM_KMF_WIRED) {
738 		/*
739 		 * Note: uvm_km_pgremove_intrsafe() extracts mapping, thus
740 		 * remove it after.  See comment below about KVA visibility.
741 		 */
742 		uvm_km_pgremove_intrsafe(map, addr, addr + size);
743 	}
744 
745 	/*
746 	 * Note: uvm_unmap_remove() calls pmap_update() for us, before
747 	 * KVA becomes globally available.
748 	 */
749 
750 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_VAONLY);
751 }
752 
753 /* Sanity; must specify both or none. */
754 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
755     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
756 #error Must specify MAP and UNMAP together.
757 #endif
758 
759 int
760 uvm_km_kmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags,
761     vmem_addr_t *addr)
762 {
763 	struct vm_page *pg;
764 	vmem_addr_t va;
765 	int rc;
766 	vaddr_t loopva;
767 	vsize_t loopsize;
768 
769 	size = round_page(size);
770 
771 #if defined(PMAP_MAP_POOLPAGE)
772 	if (size == PAGE_SIZE) {
773 again:
774 #ifdef PMAP_ALLOC_POOLPAGE
775 		pg = PMAP_ALLOC_POOLPAGE((flags & VM_SLEEP) ?
776 		   0 : UVM_PGA_USERESERVE);
777 #else
778 		pg = uvm_pagealloc(NULL, 0, NULL,
779 		   (flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE);
780 #endif /* PMAP_ALLOC_POOLPAGE */
781 		if (__predict_false(pg == NULL)) {
782 			if (flags & VM_SLEEP) {
783 				uvm_wait("plpg");
784 				goto again;
785 			}
786 			return ENOMEM;
787 		}
788 		va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
789 		if (__predict_false(va == 0)) {
790 			uvm_pagefree(pg);
791 			return ENOMEM;
792 		}
793 		*addr = va;
794 		return 0;
795 	}
796 #endif /* PMAP_MAP_POOLPAGE */
797 
798 	rc = vmem_alloc(vm, size, flags, &va);
799 	if (rc != 0)
800 		return rc;
801 
802 #ifdef PMAP_GROWKERNEL
803 	/*
804 	 * These VA allocations happen independently of uvm_map
805 	 * so this allocation must not extend beyond the current limit.
806 	 */
807 	KASSERTMSG(uvm_maxkaddr >= va + size,
808 	    "%#"PRIxVADDR" %#"PRIxPTR" %#zx",
809 	    uvm_maxkaddr, va, size);
810 #endif
811 
812 	loopva = va;
813 	loopsize = size;
814 
815 	while (loopsize) {
816 		paddr_t pa __diagused;
817 		KASSERTMSG(!pmap_extract(pmap_kernel(), loopva, &pa),
818 		    "loopva=%#"PRIxVADDR" loopsize=%#"PRIxVSIZE
819 		    " pa=%#"PRIxPADDR" vmem=%p",
820 		    loopva, loopsize, pa, vm);
821 
822 		pg = uvm_pagealloc(NULL, loopva, NULL,
823 		    UVM_FLAG_COLORMATCH
824 		    | ((flags & VM_SLEEP) ? 0 : UVM_PGA_USERESERVE));
825 		if (__predict_false(pg == NULL)) {
826 			if (flags & VM_SLEEP) {
827 				uvm_wait("plpg");
828 				continue;
829 			} else {
830 				uvm_km_pgremove_intrsafe(kernel_map, va,
831 				    va + size);
832 				vmem_free(vm, va, size);
833 				return ENOMEM;
834 			}
835 		}
836 
837 		pg->flags &= ~PG_BUSY;	/* new page */
838 		UVM_PAGE_OWN(pg, NULL);
839 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
840 		    VM_PROT_READ|VM_PROT_WRITE, PMAP_KMPAGE);
841 
842 		loopva += PAGE_SIZE;
843 		loopsize -= PAGE_SIZE;
844 	}
845 	pmap_update(pmap_kernel());
846 
847 	*addr = va;
848 
849 	return 0;
850 }
851 
852 void
853 uvm_km_kmem_free(vmem_t *vm, vmem_addr_t addr, size_t size)
854 {
855 
856 	size = round_page(size);
857 #if defined(PMAP_UNMAP_POOLPAGE)
858 	if (size == PAGE_SIZE) {
859 		paddr_t pa;
860 
861 		pa = PMAP_UNMAP_POOLPAGE(addr);
862 		uvm_pagefree(PHYS_TO_VM_PAGE(pa));
863 		return;
864 	}
865 #endif /* PMAP_UNMAP_POOLPAGE */
866 	uvm_km_pgremove_intrsafe(kernel_map, addr, addr + size);
867 	pmap_update(pmap_kernel());
868 
869 	vmem_free(vm, addr, size);
870 }
871 
872 bool
873 uvm_km_va_starved_p(void)
874 {
875 	vmem_size_t total;
876 	vmem_size_t free;
877 
878 	if (kmem_arena == NULL)
879 		return false;
880 
881 	total = vmem_size(kmem_arena, VMEM_ALLOC|VMEM_FREE);
882 	free = vmem_size(kmem_arena, VMEM_FREE);
883 
884 	return (free < (total / 10));
885 }
886