xref: /netbsd-src/sys/uvm/uvm_km.c (revision 9fbd88883c38d0c0fbfcbe66d76fe6b0fab3f9de)
1 /*	$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_km.c: handle kernel memory allocation and management
71  */
72 
73 /*
74  * overview of kernel memory management:
75  *
76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79  *
80  * the kernel_map has several "submaps."   submaps can only appear in
81  * the kernel_map (user processes can't use them).   submaps "take over"
82  * the management of a sub-range of the kernel's address space.  submaps
83  * are typically allocated at boot time and are never released.   kernel
84  * virtual address space that is mapped by a submap is locked by the
85  * submap's lock -- not the kernel_map's lock.
86  *
87  * thus, the useful feature of submaps is that they allow us to break
88  * up the locking and protection of the kernel address space into smaller
89  * chunks.
90  *
91  * the vm system has several standard kernel submaps, including:
92  *   kmem_map => contains only wired kernel memory for the kernel
93  *		malloc.   *** access to kmem_map must be protected
94  *		by splvm() because we are allowed to call malloc()
95  *		at interrupt time ***
96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
97  *   pager_map => used to map "buf" structures into kernel space
98  *   exec_map => used during exec to handle exec args
99  *   etc...
100  *
101  * the kernel allocates its private memory out of special uvm_objects whose
102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103  * are "special" and never die).   all kernel objects should be thought of
104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105  * object is equal to the size of kernel virtual address space (i.e. the
106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107  *
108  * most kernel private memory lives in kernel_object.   the only exception
109  * to this is for memory that belongs to submaps that must be protected
110  * by splvm().  pages in these submaps are not assigned to an object.
111  *
112  * note that just because a kernel object spans the entire kernel virutal
113  * address space doesn't mean that it has to be mapped into the entire space.
114  * large chunks of a kernel object's space go unused either because
115  * that area of kernel VM is unmapped, or there is some other type of
116  * object mapped into that range (e.g. a vnode).    for submap's kernel
117  * objects, the only part of the object that can ever be populated is the
118  * offsets that are managed by the submap.
119  *
120  * note that the "offset" in a kernel object is always the kernel virtual
121  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
122  * example:
123  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
124  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
125  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
126  *   then that means that the page at offset 0x235000 in kernel_object is
127  *   mapped at 0xf8235000.
128  *
129  * kernel object have one other special property: when the kernel virtual
130  * memory mapping them is unmapped, the backing memory in the object is
131  * freed right away.   this is done with the uvm_km_pgremove() function.
132  * this has to be done because there is no backing store for kernel pages
133  * and no need to save them after they are no longer referenced.
134  */
135 
136 #include <sys/cdefs.h>
137 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.55 2001/11/10 07:37:00 lukem Exp $");
138 
139 #include "opt_uvmhist.h"
140 
141 #include <sys/param.h>
142 #include <sys/systm.h>
143 #include <sys/proc.h>
144 
145 #include <uvm/uvm.h>
146 
147 /*
148  * global data structures
149  */
150 
151 struct vm_map *kernel_map = NULL;
152 
153 /*
154  * local data structues
155  */
156 
157 static struct vm_map		kernel_map_store;
158 
159 /*
160  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
161  * KVM already allocated for text, data, bss, and static data structures).
162  *
163  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
164  *    we assume that [min -> start] has already been allocated and that
165  *    "end" is the end.
166  */
167 
168 void
169 uvm_km_init(start, end)
170 	vaddr_t start, end;
171 {
172 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
173 
174 	/*
175 	 * next, init kernel memory objects.
176 	 */
177 
178 	/* kernel_object: for pageable anonymous kernel memory */
179 	uao_init();
180 	uvm.kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
181 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
182 
183 	/*
184 	 * init the map and reserve already allocated kernel space
185 	 * before installing.
186 	 */
187 
188 	uvm_map_setup(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
189 	kernel_map_store.pmap = pmap_kernel();
190 	if (uvm_map(&kernel_map_store, &base, start - base, NULL,
191 	    UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
192 	    UVM_INH_NONE, UVM_ADV_RANDOM,UVM_FLAG_FIXED)) != 0)
193 		panic("uvm_km_init: could not reserve space for kernel");
194 
195 	/*
196 	 * install!
197 	 */
198 
199 	kernel_map = &kernel_map_store;
200 }
201 
202 /*
203  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
204  * is allocated all references to that area of VM must go through it.  this
205  * allows the locking of VAs in kernel_map to be broken up into regions.
206  *
207  * => if `fixed' is true, *min specifies where the region described
208  *      by the submap must start
209  * => if submap is non NULL we use that as the submap, otherwise we
210  *	alloc a new map
211  */
212 struct vm_map *
213 uvm_km_suballoc(map, min, max, size, flags, fixed, submap)
214 	struct vm_map *map;
215 	vaddr_t *min, *max;		/* IN/OUT, OUT */
216 	vsize_t size;
217 	int flags;
218 	boolean_t fixed;
219 	struct vm_map *submap;
220 {
221 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
222 
223 	size = round_page(size);	/* round up to pagesize */
224 
225 	/*
226 	 * first allocate a blank spot in the parent map
227 	 */
228 
229 	if (uvm_map(map, min, size, NULL, UVM_UNKNOWN_OFFSET, 0,
230 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
231 	    UVM_ADV_RANDOM, mapflags)) != 0) {
232 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
233 	}
234 
235 	/*
236 	 * set VM bounds (min is filled in by uvm_map)
237 	 */
238 
239 	*max = *min + size;
240 
241 	/*
242 	 * add references to pmap and create or init the submap
243 	 */
244 
245 	pmap_reference(vm_map_pmap(map));
246 	if (submap == NULL) {
247 		submap = uvm_map_create(vm_map_pmap(map), *min, *max, flags);
248 		if (submap == NULL)
249 			panic("uvm_km_suballoc: unable to create submap");
250 	} else {
251 		uvm_map_setup(submap, *min, *max, flags);
252 		submap->pmap = vm_map_pmap(map);
253 	}
254 
255 	/*
256 	 * now let uvm_map_submap plug in it...
257 	 */
258 
259 	if (uvm_map_submap(map, *min, *max, submap) != 0)
260 		panic("uvm_km_suballoc: submap allocation failed");
261 
262 	return(submap);
263 }
264 
265 /*
266  * uvm_km_pgremove: remove pages from a kernel uvm_object.
267  *
268  * => when you unmap a part of anonymous kernel memory you want to toss
269  *    the pages right away.    (this gets called from uvm_unmap_...).
270  */
271 
272 void
273 uvm_km_pgremove(uobj, start, end)
274 	struct uvm_object *uobj;
275 	vaddr_t start, end;
276 {
277 	struct vm_page *pg;
278 	voff_t curoff, nextoff;
279 	int swpgonlydelta = 0;
280 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
281 
282 	KASSERT(uobj->pgops == &aobj_pager);
283 	simple_lock(&uobj->vmobjlock);
284 
285 	for (curoff = start; curoff < end; curoff = nextoff) {
286 		nextoff = curoff + PAGE_SIZE;
287 		pg = uvm_pagelookup(uobj, curoff);
288 		if (pg != NULL && pg->flags & PG_BUSY) {
289 			pg->flags |= PG_WANTED;
290 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
291 				    "km_pgrm", 0);
292 			simple_lock(&uobj->vmobjlock);
293 			nextoff = curoff;
294 			continue;
295 		}
296 
297 		/*
298 		 * free the swap slot, then the page.
299 		 */
300 
301 		if (pg == NULL &&
302 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) != 0) {
303 			swpgonlydelta++;
304 		}
305 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
306 		if (pg != NULL) {
307 			uvm_lock_pageq();
308 			uvm_pagefree(pg);
309 			uvm_unlock_pageq();
310 		}
311 	}
312 	simple_unlock(&uobj->vmobjlock);
313 
314 	if (swpgonlydelta > 0) {
315 		simple_lock(&uvm.swap_data_lock);
316 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
317 		uvmexp.swpgonly -= swpgonlydelta;
318 		simple_unlock(&uvm.swap_data_lock);
319 	}
320 }
321 
322 
323 /*
324  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for "intrsafe"
325  *    maps
326  *
327  * => when you unmap a part of anonymous kernel memory you want to toss
328  *    the pages right away.    (this is called from uvm_unmap_...).
329  * => none of the pages will ever be busy, and none of them will ever
330  *    be on the active or inactive queues (because they have no object).
331  */
332 
333 void
334 uvm_km_pgremove_intrsafe(start, end)
335 	vaddr_t start, end;
336 {
337 	struct vm_page *pg;
338 	paddr_t pa;
339 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
340 
341 	for (; start < end; start += PAGE_SIZE) {
342 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
343 			continue;
344 		}
345 		pg = PHYS_TO_VM_PAGE(pa);
346 		KASSERT(pg);
347 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
348 		uvm_pagefree(pg);
349 	}
350 }
351 
352 
353 /*
354  * uvm_km_kmemalloc: lower level kernel memory allocator for malloc()
355  *
356  * => we map wired memory into the specified map using the obj passed in
357  * => NOTE: we can return NULL even if we can wait if there is not enough
358  *	free VM space in the map... caller should be prepared to handle
359  *	this case.
360  * => we return KVA of memory allocated
361  * => flags: NOWAIT, VALLOC - just allocate VA, TRYLOCK - fail if we can't
362  *	lock the map
363  */
364 
365 vaddr_t
366 uvm_km_kmemalloc(map, obj, size, flags)
367 	struct vm_map *map;
368 	struct uvm_object *obj;
369 	vsize_t size;
370 	int flags;
371 {
372 	vaddr_t kva, loopva;
373 	vaddr_t offset;
374 	vsize_t loopsize;
375 	struct vm_page *pg;
376 	UVMHIST_FUNC("uvm_km_kmemalloc"); UVMHIST_CALLED(maphist);
377 
378 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
379 		    map, obj, size, flags);
380 	KASSERT(vm_map_pmap(map) == pmap_kernel());
381 
382 	/*
383 	 * setup for call
384 	 */
385 
386 	size = round_page(size);
387 	kva = vm_map_min(map);	/* hint */
388 
389 	/*
390 	 * allocate some virtual space
391 	 */
392 
393 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
394 	      0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
395 			  UVM_ADV_RANDOM, (flags & UVM_KMF_TRYLOCK)))
396 			!= 0)) {
397 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
398 		return(0);
399 	}
400 
401 	/*
402 	 * if all we wanted was VA, return now
403 	 */
404 
405 	if (flags & UVM_KMF_VALLOC) {
406 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
407 		return(kva);
408 	}
409 
410 	/*
411 	 * recover object offset from virtual address
412 	 */
413 
414 	offset = kva - vm_map_min(kernel_map);
415 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
416 
417 	/*
418 	 * now allocate and map in the memory... note that we are the only ones
419 	 * whom should ever get a handle on this area of VM.
420 	 */
421 
422 	loopva = kva;
423 	loopsize = size;
424 	while (loopsize) {
425 		if (obj) {
426 			simple_lock(&obj->vmobjlock);
427 		}
428 		pg = uvm_pagealloc(obj, offset, NULL, UVM_PGA_USERESERVE);
429 		if (__predict_true(pg != NULL)) {
430 			pg->flags &= ~PG_BUSY;	/* new page */
431 			UVM_PAGE_OWN(pg, NULL);
432 		}
433 		if (obj) {
434 			simple_unlock(&obj->vmobjlock);
435 		}
436 
437 		/*
438 		 * out of memory?
439 		 */
440 
441 		if (__predict_false(pg == NULL)) {
442 			if (flags & UVM_KMF_NOWAIT) {
443 				/* free everything! */
444 				uvm_unmap(map, kva, kva + size);
445 				return(0);
446 			} else {
447 				uvm_wait("km_getwait2");	/* sleep here */
448 				continue;
449 			}
450 		}
451 
452 		/*
453 		 * map it in
454 		 */
455 
456 		if (obj == NULL) {
457 			pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg),
458 			    VM_PROT_ALL);
459 		} else {
460 			pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
461 			    UVM_PROT_ALL,
462 			    PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
463 		}
464 		loopva += PAGE_SIZE;
465 		offset += PAGE_SIZE;
466 		loopsize -= PAGE_SIZE;
467 	}
468 
469        	pmap_update(pmap_kernel());
470 
471 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
472 	return(kva);
473 }
474 
475 /*
476  * uvm_km_free: free an area of kernel memory
477  */
478 
479 void
480 uvm_km_free(map, addr, size)
481 	struct vm_map *map;
482 	vaddr_t addr;
483 	vsize_t size;
484 {
485 	uvm_unmap(map, trunc_page(addr), round_page(addr+size));
486 }
487 
488 /*
489  * uvm_km_free_wakeup: free an area of kernel memory and wake up
490  * anyone waiting for vm space.
491  *
492  * => XXX: "wanted" bit + unlock&wait on other end?
493  */
494 
495 void
496 uvm_km_free_wakeup(map, addr, size)
497 	struct vm_map *map;
498 	vaddr_t addr;
499 	vsize_t size;
500 {
501 	struct vm_map_entry *dead_entries;
502 
503 	vm_map_lock(map);
504 	uvm_unmap_remove(map, trunc_page(addr), round_page(addr + size),
505 	    &dead_entries);
506 	wakeup(map);
507 	vm_map_unlock(map);
508 	if (dead_entries != NULL)
509 		uvm_unmap_detach(dead_entries, 0);
510 }
511 
512 /*
513  * uvm_km_alloc1: allocate wired down memory in the kernel map.
514  *
515  * => we can sleep if needed
516  */
517 
518 vaddr_t
519 uvm_km_alloc1(map, size, zeroit)
520 	struct vm_map *map;
521 	vsize_t size;
522 	boolean_t zeroit;
523 {
524 	vaddr_t kva, loopva, offset;
525 	struct vm_page *pg;
526 	UVMHIST_FUNC("uvm_km_alloc1"); UVMHIST_CALLED(maphist);
527 
528 	UVMHIST_LOG(maphist,"(map=0x%x, size=0x%x)", map, size,0,0);
529 	KASSERT(vm_map_pmap(map) == pmap_kernel());
530 
531 	size = round_page(size);
532 	kva = vm_map_min(map);		/* hint */
533 
534 	/*
535 	 * allocate some virtual space
536 	 */
537 
538 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
539 	      UVM_UNKNOWN_OFFSET, 0, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
540 					      UVM_INH_NONE, UVM_ADV_RANDOM,
541 					      0)) != 0)) {
542 		UVMHIST_LOG(maphist,"<- done (no VM)",0,0,0,0);
543 		return(0);
544 	}
545 
546 	/*
547 	 * recover object offset from virtual address
548 	 */
549 
550 	offset = kva - vm_map_min(kernel_map);
551 	UVMHIST_LOG(maphist,"  kva=0x%x, offset=0x%x", kva, offset,0,0);
552 
553 	/*
554 	 * now allocate the memory.
555 	 */
556 
557 	loopva = kva;
558 	while (size) {
559 		simple_lock(&uvm.kernel_object->vmobjlock);
560 		KASSERT(uvm_pagelookup(uvm.kernel_object, offset) == NULL);
561 		pg = uvm_pagealloc(uvm.kernel_object, offset, NULL, 0);
562 		if (pg) {
563 			pg->flags &= ~PG_BUSY;
564 			UVM_PAGE_OWN(pg, NULL);
565 		}
566 		simple_unlock(&uvm.kernel_object->vmobjlock);
567 		if (pg == NULL) {
568 			uvm_wait("km_alloc1w");
569 			continue;
570 		}
571 		pmap_enter(map->pmap, loopva, VM_PAGE_TO_PHYS(pg),
572 		    UVM_PROT_ALL, PMAP_WIRED | VM_PROT_READ | VM_PROT_WRITE);
573 		loopva += PAGE_SIZE;
574 		offset += PAGE_SIZE;
575 		size -= PAGE_SIZE;
576 	}
577 	pmap_update(map->pmap);
578 
579 	/*
580 	 * zero on request (note that "size" is now zero due to the above loop
581 	 * so we need to subtract kva from loopva to reconstruct the size).
582 	 */
583 
584 	if (zeroit)
585 		memset((caddr_t)kva, 0, loopva - kva);
586 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
587 	return(kva);
588 }
589 
590 /*
591  * uvm_km_valloc: allocate zero-fill memory in the kernel's address space
592  *
593  * => memory is not allocated until fault time
594  */
595 
596 vaddr_t
597 uvm_km_valloc(map, size)
598 	struct vm_map *map;
599 	vsize_t size;
600 {
601 	return(uvm_km_valloc_align(map, size, 0));
602 }
603 
604 vaddr_t
605 uvm_km_valloc_align(map, size, align)
606 	struct vm_map *map;
607 	vsize_t size;
608 	vsize_t align;
609 {
610 	vaddr_t kva;
611 	UVMHIST_FUNC("uvm_km_valloc"); UVMHIST_CALLED(maphist);
612 
613 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
614 	KASSERT(vm_map_pmap(map) == pmap_kernel());
615 
616 	size = round_page(size);
617 	kva = vm_map_min(map);		/* hint */
618 
619 	/*
620 	 * allocate some virtual space.  will be demand filled by kernel_object.
621 	 */
622 
623 	if (__predict_false(uvm_map(map, &kva, size, uvm.kernel_object,
624 	    UVM_UNKNOWN_OFFSET, align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL,
625 					    UVM_INH_NONE, UVM_ADV_RANDOM,
626 					    0)) != 0)) {
627 		UVMHIST_LOG(maphist, "<- done (no VM)", 0,0,0,0);
628 		return(0);
629 	}
630 
631 	UVMHIST_LOG(maphist, "<- done (kva=0x%x)", kva,0,0,0);
632 	return(kva);
633 }
634 
635 /*
636  * uvm_km_valloc_wait: allocate zero-fill memory in the kernel's address space
637  *
638  * => memory is not allocated until fault time
639  * => if no room in map, wait for space to free, unless requested size
640  *    is larger than map (in which case we return 0)
641  */
642 
643 vaddr_t
644 uvm_km_valloc_prefer_wait(map, size, prefer)
645 	struct vm_map *map;
646 	vsize_t size;
647 	voff_t prefer;
648 {
649 	vaddr_t kva;
650 	UVMHIST_FUNC("uvm_km_valloc_prefer_wait"); UVMHIST_CALLED(maphist);
651 
652 	UVMHIST_LOG(maphist, "(map=0x%x, size=0x%x)", map, size, 0,0);
653 	KASSERT(vm_map_pmap(map) == pmap_kernel());
654 
655 	size = round_page(size);
656 	if (size > vm_map_max(map) - vm_map_min(map))
657 		return(0);
658 
659 	for (;;) {
660 		kva = vm_map_min(map);		/* hint */
661 
662 		/*
663 		 * allocate some virtual space.   will be demand filled
664 		 * by kernel_object.
665 		 */
666 
667 		if (__predict_true(uvm_map(map, &kva, size, uvm.kernel_object,
668 		    prefer, 0, UVM_MAPFLAG(UVM_PROT_ALL,
669 		    UVM_PROT_ALL, UVM_INH_NONE, UVM_ADV_RANDOM, 0))
670 		    == 0)) {
671 			UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
672 			return(kva);
673 		}
674 
675 		/*
676 		 * failed.  sleep for a while (on map)
677 		 */
678 
679 		UVMHIST_LOG(maphist,"<<<sleeping>>>",0,0,0,0);
680 		tsleep((caddr_t)map, PVM, "vallocwait", 0);
681 	}
682 	/*NOTREACHED*/
683 }
684 
685 vaddr_t
686 uvm_km_valloc_wait(map, size)
687 	struct vm_map *map;
688 	vsize_t size;
689 {
690 	return uvm_km_valloc_prefer_wait(map, size, UVM_UNKNOWN_OFFSET);
691 }
692 
693 /* Sanity; must specify both or none. */
694 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
695     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
696 #error Must specify MAP and UNMAP together.
697 #endif
698 
699 /*
700  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
701  *
702  * => if the pmap specifies an alternate mapping method, we use it.
703  */
704 
705 /* ARGSUSED */
706 vaddr_t
707 uvm_km_alloc_poolpage1(map, obj, waitok)
708 	struct vm_map *map;
709 	struct uvm_object *obj;
710 	boolean_t waitok;
711 {
712 #if defined(PMAP_MAP_POOLPAGE)
713 	struct vm_page *pg;
714 	vaddr_t va;
715 
716  again:
717 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
718 	if (__predict_false(pg == NULL)) {
719 		if (waitok) {
720 			uvm_wait("plpg");
721 			goto again;
722 		} else
723 			return (0);
724 	}
725 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
726 	if (__predict_false(va == 0))
727 		uvm_pagefree(pg);
728 	return (va);
729 #else
730 	vaddr_t va;
731 	int s;
732 
733 	/*
734 	 * NOTE: We may be called with a map that doens't require splvm
735 	 * protection (e.g. kernel_map).  However, it does not hurt to
736 	 * go to splvm in this case (since unprocted maps will never be
737 	 * accessed in interrupt context).
738 	 *
739 	 * XXX We may want to consider changing the interface to this
740 	 * XXX function.
741 	 */
742 
743 	s = splvm();
744 	va = uvm_km_kmemalloc(map, obj, PAGE_SIZE, waitok ? 0 : UVM_KMF_NOWAIT);
745 	splx(s);
746 	return (va);
747 #endif /* PMAP_MAP_POOLPAGE */
748 }
749 
750 /*
751  * uvm_km_free_poolpage: free a previously allocated pool page
752  *
753  * => if the pmap specifies an alternate unmapping method, we use it.
754  */
755 
756 /* ARGSUSED */
757 void
758 uvm_km_free_poolpage1(map, addr)
759 	struct vm_map *map;
760 	vaddr_t addr;
761 {
762 #if defined(PMAP_UNMAP_POOLPAGE)
763 	paddr_t pa;
764 
765 	pa = PMAP_UNMAP_POOLPAGE(addr);
766 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
767 #else
768 	int s;
769 
770 	/*
771 	 * NOTE: We may be called with a map that doens't require splvm
772 	 * protection (e.g. kernel_map).  However, it does not hurt to
773 	 * go to splvm in this case (since unprocted maps will never be
774 	 * accessed in interrupt context).
775 	 *
776 	 * XXX We may want to consider changing the interface to this
777 	 * XXX function.
778 	 */
779 
780 	s = splvm();
781 	uvm_km_free(map, addr, PAGE_SIZE);
782 	splx(s);
783 #endif /* PMAP_UNMAP_POOLPAGE */
784 }
785