xref: /netbsd-src/sys/uvm/uvm_km.c (revision 8b0f9554ff8762542c4defc4f70e1eb76fb508fa)
1 /*	$NetBSD: uvm_km.c,v 1.96 2007/07/21 20:52:59 ad Exp $	*/
2 
3 /*
4  * Copyright (c) 1997 Charles D. Cranor and Washington University.
5  * Copyright (c) 1991, 1993, The Regents of the University of California.
6  *
7  * All rights reserved.
8  *
9  * This code is derived from software contributed to Berkeley by
10  * The Mach Operating System project at Carnegie-Mellon University.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, this list of conditions and the following disclaimer.
17  * 2. Redistributions in binary form must reproduce the above copyright
18  *    notice, this list of conditions and the following disclaimer in the
19  *    documentation and/or other materials provided with the distribution.
20  * 3. All advertising materials mentioning features or use of this software
21  *    must display the following acknowledgement:
22  *	This product includes software developed by Charles D. Cranor,
23  *      Washington University, the University of California, Berkeley and
24  *      its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)vm_kern.c   8.3 (Berkeley) 1/12/94
42  * from: Id: uvm_km.c,v 1.1.2.14 1998/02/06 05:19:27 chs Exp
43  *
44  *
45  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
46  * All rights reserved.
47  *
48  * Permission to use, copy, modify and distribute this software and
49  * its documentation is hereby granted, provided that both the copyright
50  * notice and this permission notice appear in all copies of the
51  * software, derivative works or modified versions, and any portions
52  * thereof, and that both notices appear in supporting documentation.
53  *
54  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
55  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
56  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
57  *
58  * Carnegie Mellon requests users of this software to return to
59  *
60  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
61  *  School of Computer Science
62  *  Carnegie Mellon University
63  *  Pittsburgh PA 15213-3890
64  *
65  * any improvements or extensions that they make and grant Carnegie the
66  * rights to redistribute these changes.
67  */
68 
69 /*
70  * uvm_km.c: handle kernel memory allocation and management
71  */
72 
73 /*
74  * overview of kernel memory management:
75  *
76  * the kernel virtual address space is mapped by "kernel_map."   kernel_map
77  * starts at VM_MIN_KERNEL_ADDRESS and goes to VM_MAX_KERNEL_ADDRESS.
78  * note that VM_MIN_KERNEL_ADDRESS is equal to vm_map_min(kernel_map).
79  *
80  * the kernel_map has several "submaps."   submaps can only appear in
81  * the kernel_map (user processes can't use them).   submaps "take over"
82  * the management of a sub-range of the kernel's address space.  submaps
83  * are typically allocated at boot time and are never released.   kernel
84  * virtual address space that is mapped by a submap is locked by the
85  * submap's lock -- not the kernel_map's lock.
86  *
87  * thus, the useful feature of submaps is that they allow us to break
88  * up the locking and protection of the kernel address space into smaller
89  * chunks.
90  *
91  * the vm system has several standard kernel submaps, including:
92  *   kmem_map => contains only wired kernel memory for the kernel
93  *		malloc.   *** access to kmem_map must be protected
94  *		by splvm() because we are allowed to call malloc()
95  *		at interrupt time ***
96  *   mb_map => memory for large mbufs,  *** protected by splvm ***
97  *   pager_map => used to map "buf" structures into kernel space
98  *   exec_map => used during exec to handle exec args
99  *   etc...
100  *
101  * the kernel allocates its private memory out of special uvm_objects whose
102  * reference count is set to UVM_OBJ_KERN (thus indicating that the objects
103  * are "special" and never die).   all kernel objects should be thought of
104  * as large, fixed-sized, sparsely populated uvm_objects.   each kernel
105  * object is equal to the size of kernel virtual address space (i.e. the
106  * value "VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS").
107  *
108  * note that just because a kernel object spans the entire kernel virutal
109  * address space doesn't mean that it has to be mapped into the entire space.
110  * large chunks of a kernel object's space go unused either because
111  * that area of kernel VM is unmapped, or there is some other type of
112  * object mapped into that range (e.g. a vnode).    for submap's kernel
113  * objects, the only part of the object that can ever be populated is the
114  * offsets that are managed by the submap.
115  *
116  * note that the "offset" in a kernel object is always the kernel virtual
117  * address minus the VM_MIN_KERNEL_ADDRESS (aka vm_map_min(kernel_map)).
118  * example:
119  *   suppose VM_MIN_KERNEL_ADDRESS is 0xf8000000 and the kernel does a
120  *   uvm_km_alloc(kernel_map, PAGE_SIZE) [allocate 1 wired down page in the
121  *   kernel map].    if uvm_km_alloc returns virtual address 0xf8235000,
122  *   then that means that the page at offset 0x235000 in kernel_object is
123  *   mapped at 0xf8235000.
124  *
125  * kernel object have one other special property: when the kernel virtual
126  * memory mapping them is unmapped, the backing memory in the object is
127  * freed right away.   this is done with the uvm_km_pgremove() function.
128  * this has to be done because there is no backing store for kernel pages
129  * and no need to save them after they are no longer referenced.
130  */
131 
132 #include <sys/cdefs.h>
133 __KERNEL_RCSID(0, "$NetBSD: uvm_km.c,v 1.96 2007/07/21 20:52:59 ad Exp $");
134 
135 #include "opt_uvmhist.h"
136 
137 #include <sys/param.h>
138 #include <sys/malloc.h>
139 #include <sys/systm.h>
140 #include <sys/proc.h>
141 #include <sys/pool.h>
142 
143 #include <uvm/uvm.h>
144 
145 /*
146  * global data structures
147  */
148 
149 struct vm_map *kernel_map = NULL;
150 
151 /*
152  * local data structues
153  */
154 
155 static struct vm_map_kernel	kernel_map_store;
156 static struct vm_map_entry	kernel_first_mapent_store;
157 
158 #if !defined(PMAP_MAP_POOLPAGE)
159 
160 /*
161  * kva cache
162  *
163  * XXX maybe it's better to do this at the uvm_map layer.
164  */
165 
166 #define	KM_VACACHE_SIZE	(32 * PAGE_SIZE) /* XXX tune */
167 
168 static void *km_vacache_alloc(struct pool *, int);
169 static void km_vacache_free(struct pool *, void *);
170 static void km_vacache_init(struct vm_map *, const char *, size_t);
171 
172 /* XXX */
173 #define	KM_VACACHE_POOL_TO_MAP(pp) \
174 	((struct vm_map *)((char *)(pp) - \
175 	    offsetof(struct vm_map_kernel, vmk_vacache)))
176 
177 static void *
178 km_vacache_alloc(struct pool *pp, int flags)
179 {
180 	vaddr_t va;
181 	size_t size;
182 	struct vm_map *map;
183 	size = pp->pr_alloc->pa_pagesz;
184 
185 	map = KM_VACACHE_POOL_TO_MAP(pp);
186 
187 	va = vm_map_min(map); /* hint */
188 	if (uvm_map(map, &va, size, NULL, UVM_UNKNOWN_OFFSET, size,
189 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
190 	    UVM_ADV_RANDOM, UVM_FLAG_QUANTUM |
191 	    ((flags & PR_WAITOK) ? UVM_FLAG_WAITVA :
192 	    UVM_FLAG_TRYLOCK | UVM_FLAG_NOWAIT))))
193 		return NULL;
194 
195 	return (void *)va;
196 }
197 
198 static void
199 km_vacache_free(struct pool *pp, void *v)
200 {
201 	vaddr_t va = (vaddr_t)v;
202 	size_t size = pp->pr_alloc->pa_pagesz;
203 	struct vm_map *map;
204 
205 	map = KM_VACACHE_POOL_TO_MAP(pp);
206 	uvm_unmap1(map, va, va + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
207 }
208 
209 /*
210  * km_vacache_init: initialize kva cache.
211  */
212 
213 static void
214 km_vacache_init(struct vm_map *map, const char *name, size_t size)
215 {
216 	struct vm_map_kernel *vmk;
217 	struct pool *pp;
218 	struct pool_allocator *pa;
219 	int ipl;
220 
221 	KASSERT(VM_MAP_IS_KERNEL(map));
222 	KASSERT(size < (vm_map_max(map) - vm_map_min(map)) / 2); /* sanity */
223 
224 	vmk = vm_map_to_kernel(map);
225 	pp = &vmk->vmk_vacache;
226 	pa = &vmk->vmk_vacache_allocator;
227 	memset(pa, 0, sizeof(*pa));
228 	pa->pa_alloc = km_vacache_alloc;
229 	pa->pa_free = km_vacache_free;
230 	pa->pa_pagesz = (unsigned int)size;
231 	pa->pa_backingmap = map;
232 	pa->pa_backingmapptr = NULL;
233 
234 	if ((map->flags & VM_MAP_INTRSAFE) != 0)
235 		ipl = IPL_VM;
236 	else
237 		ipl = IPL_NONE;
238 
239 	pool_init(pp, PAGE_SIZE, 0, 0, PR_NOTOUCH | PR_RECURSIVE, name, pa,
240 	    ipl);
241 }
242 
243 void
244 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
245 {
246 
247 	map->flags |= VM_MAP_VACACHE;
248 	if (size == 0)
249 		size = KM_VACACHE_SIZE;
250 	km_vacache_init(map, name, size);
251 }
252 
253 #else /* !defined(PMAP_MAP_POOLPAGE) */
254 
255 void
256 uvm_km_vacache_init(struct vm_map *map, const char *name, size_t size)
257 {
258 
259 	/* nothing */
260 }
261 
262 #endif /* !defined(PMAP_MAP_POOLPAGE) */
263 
264 void
265 uvm_km_va_drain(struct vm_map *map, uvm_flag_t flags)
266 {
267 	struct vm_map_kernel *vmk = vm_map_to_kernel(map);
268 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
269 	int s = 0xdeadbeaf; /* XXX: gcc */
270 
271 	if (intrsafe) {
272 		s = splvm();
273 	}
274 	callback_run_roundrobin(&vmk->vmk_reclaim_callback, NULL);
275 	if (intrsafe) {
276 		splx(s);
277 	}
278 }
279 
280 /*
281  * uvm_km_init: init kernel maps and objects to reflect reality (i.e.
282  * KVM already allocated for text, data, bss, and static data structures).
283  *
284  * => KVM is defined by VM_MIN_KERNEL_ADDRESS/VM_MAX_KERNEL_ADDRESS.
285  *    we assume that [vmin -> start] has already been allocated and that
286  *    "end" is the end.
287  */
288 
289 void
290 uvm_km_init(vaddr_t start, vaddr_t end)
291 {
292 	vaddr_t base = VM_MIN_KERNEL_ADDRESS;
293 
294 	/*
295 	 * next, init kernel memory objects.
296 	 */
297 
298 	/* kernel_object: for pageable anonymous kernel memory */
299 	uao_init();
300 	uvm_kernel_object = uao_create(VM_MAX_KERNEL_ADDRESS -
301 				 VM_MIN_KERNEL_ADDRESS, UAO_FLAG_KERNOBJ);
302 
303 	/*
304 	 * init the map and reserve any space that might already
305 	 * have been allocated kernel space before installing.
306 	 */
307 
308 	uvm_map_setup_kernel(&kernel_map_store, base, end, VM_MAP_PAGEABLE);
309 	kernel_map_store.vmk_map.pmap = pmap_kernel();
310 	if (start != base) {
311 		int error;
312 		struct uvm_map_args args;
313 
314 		error = uvm_map_prepare(&kernel_map_store.vmk_map,
315 		    base, start - base,
316 		    NULL, UVM_UNKNOWN_OFFSET, 0,
317 		    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
318 		    		UVM_ADV_RANDOM, UVM_FLAG_FIXED), &args);
319 		if (!error) {
320 			kernel_first_mapent_store.flags =
321 			    UVM_MAP_KERNEL | UVM_MAP_FIRST;
322 			error = uvm_map_enter(&kernel_map_store.vmk_map, &args,
323 			    &kernel_first_mapent_store);
324 		}
325 
326 		if (error)
327 			panic(
328 			    "uvm_km_init: could not reserve space for kernel");
329 	}
330 
331 	/*
332 	 * install!
333 	 */
334 
335 	kernel_map = &kernel_map_store.vmk_map;
336 	uvm_km_vacache_init(kernel_map, "kvakernel", 0);
337 }
338 
339 /*
340  * uvm_km_suballoc: allocate a submap in the kernel map.   once a submap
341  * is allocated all references to that area of VM must go through it.  this
342  * allows the locking of VAs in kernel_map to be broken up into regions.
343  *
344  * => if `fixed' is true, *vmin specifies where the region described
345  *      by the submap must start
346  * => if submap is non NULL we use that as the submap, otherwise we
347  *	alloc a new map
348  */
349 
350 struct vm_map *
351 uvm_km_suballoc(struct vm_map *map, vaddr_t *vmin /* IN/OUT */,
352     vaddr_t *vmax /* OUT */, vsize_t size, int flags, bool fixed,
353     struct vm_map_kernel *submap)
354 {
355 	int mapflags = UVM_FLAG_NOMERGE | (fixed ? UVM_FLAG_FIXED : 0);
356 
357 	KASSERT(vm_map_pmap(map) == pmap_kernel());
358 
359 	size = round_page(size);	/* round up to pagesize */
360 	size += uvm_mapent_overhead(size, flags);
361 
362 	/*
363 	 * first allocate a blank spot in the parent map
364 	 */
365 
366 	if (uvm_map(map, vmin, size, NULL, UVM_UNKNOWN_OFFSET, 0,
367 	    UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
368 	    UVM_ADV_RANDOM, mapflags)) != 0) {
369 	       panic("uvm_km_suballoc: unable to allocate space in parent map");
370 	}
371 
372 	/*
373 	 * set VM bounds (vmin is filled in by uvm_map)
374 	 */
375 
376 	*vmax = *vmin + size;
377 
378 	/*
379 	 * add references to pmap and create or init the submap
380 	 */
381 
382 	pmap_reference(vm_map_pmap(map));
383 	if (submap == NULL) {
384 		submap = malloc(sizeof(*submap), M_VMMAP, M_WAITOK);
385 		if (submap == NULL)
386 			panic("uvm_km_suballoc: unable to create submap");
387 	}
388 	uvm_map_setup_kernel(submap, *vmin, *vmax, flags);
389 	submap->vmk_map.pmap = vm_map_pmap(map);
390 
391 	/*
392 	 * now let uvm_map_submap plug in it...
393 	 */
394 
395 	if (uvm_map_submap(map, *vmin, *vmax, &submap->vmk_map) != 0)
396 		panic("uvm_km_suballoc: submap allocation failed");
397 
398 	return(&submap->vmk_map);
399 }
400 
401 /*
402  * uvm_km_pgremove: remove pages from a kernel uvm_object.
403  *
404  * => when you unmap a part of anonymous kernel memory you want to toss
405  *    the pages right away.    (this gets called from uvm_unmap_...).
406  */
407 
408 void
409 uvm_km_pgremove(vaddr_t startva, vaddr_t endva)
410 {
411 	struct uvm_object * const uobj = uvm_kernel_object;
412 	const voff_t start = startva - vm_map_min(kernel_map);
413 	const voff_t end = endva - vm_map_min(kernel_map);
414 	struct vm_page *pg;
415 	voff_t curoff, nextoff;
416 	int swpgonlydelta = 0;
417 	UVMHIST_FUNC("uvm_km_pgremove"); UVMHIST_CALLED(maphist);
418 
419 	KASSERT(VM_MIN_KERNEL_ADDRESS <= startva);
420 	KASSERT(startva < endva);
421 	KASSERT(endva <= VM_MAX_KERNEL_ADDRESS);
422 
423 	simple_lock(&uobj->vmobjlock);
424 
425 	for (curoff = start; curoff < end; curoff = nextoff) {
426 		nextoff = curoff + PAGE_SIZE;
427 		pg = uvm_pagelookup(uobj, curoff);
428 		if (pg != NULL && pg->flags & PG_BUSY) {
429 			pg->flags |= PG_WANTED;
430 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
431 				    "km_pgrm", 0);
432 			simple_lock(&uobj->vmobjlock);
433 			nextoff = curoff;
434 			continue;
435 		}
436 
437 		/*
438 		 * free the swap slot, then the page.
439 		 */
440 
441 		if (pg == NULL &&
442 		    uao_find_swslot(uobj, curoff >> PAGE_SHIFT) > 0) {
443 			swpgonlydelta++;
444 		}
445 		uao_dropswap(uobj, curoff >> PAGE_SHIFT);
446 		if (pg != NULL) {
447 			uvm_lock_pageq();
448 			uvm_pagefree(pg);
449 			uvm_unlock_pageq();
450 		}
451 	}
452 	simple_unlock(&uobj->vmobjlock);
453 
454 	if (swpgonlydelta > 0) {
455 		mutex_enter(&uvm_swap_data_lock);
456 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
457 		uvmexp.swpgonly -= swpgonlydelta;
458 		mutex_exit(&uvm_swap_data_lock);
459 	}
460 }
461 
462 
463 /*
464  * uvm_km_pgremove_intrsafe: like uvm_km_pgremove(), but for non object backed
465  *    regions.
466  *
467  * => when you unmap a part of anonymous kernel memory you want to toss
468  *    the pages right away.    (this is called from uvm_unmap_...).
469  * => none of the pages will ever be busy, and none of them will ever
470  *    be on the active or inactive queues (because they have no object).
471  */
472 
473 void
474 uvm_km_pgremove_intrsafe(vaddr_t start, vaddr_t end)
475 {
476 	struct vm_page *pg;
477 	paddr_t pa;
478 	UVMHIST_FUNC("uvm_km_pgremove_intrsafe"); UVMHIST_CALLED(maphist);
479 
480 	KASSERT(VM_MIN_KERNEL_ADDRESS <= start);
481 	KASSERT(start < end);
482 	KASSERT(end <= VM_MAX_KERNEL_ADDRESS);
483 
484 	for (; start < end; start += PAGE_SIZE) {
485 		if (!pmap_extract(pmap_kernel(), start, &pa)) {
486 			continue;
487 		}
488 		pg = PHYS_TO_VM_PAGE(pa);
489 		KASSERT(pg);
490 		KASSERT(pg->uobject == NULL && pg->uanon == NULL);
491 		uvm_pagefree(pg);
492 	}
493 }
494 
495 #if defined(DEBUG)
496 void
497 uvm_km_check_empty(vaddr_t start, vaddr_t end, bool intrsafe)
498 {
499 	vaddr_t va;
500 	paddr_t pa;
501 
502 	KDASSERT(VM_MIN_KERNEL_ADDRESS <= start);
503 	KDASSERT(start < end);
504 	KDASSERT(end <= VM_MAX_KERNEL_ADDRESS);
505 
506 	for (va = start; va < end; va += PAGE_SIZE) {
507 		if (pmap_extract(pmap_kernel(), va, &pa)) {
508 			panic("uvm_km_check_empty: va %p has pa 0x%llx",
509 			    (void *)va, (long long)pa);
510 		}
511 		if (!intrsafe) {
512 			const struct vm_page *pg;
513 
514 			simple_lock(&uvm_kernel_object->vmobjlock);
515 			pg = uvm_pagelookup(uvm_kernel_object,
516 			    va - vm_map_min(kernel_map));
517 			simple_unlock(&uvm_kernel_object->vmobjlock);
518 			if (pg) {
519 				panic("uvm_km_check_empty: "
520 				    "has page hashed at %p", (const void *)va);
521 			}
522 		}
523 	}
524 }
525 #endif /* defined(DEBUG) */
526 
527 /*
528  * uvm_km_alloc: allocate an area of kernel memory.
529  *
530  * => NOTE: we can return 0 even if we can wait if there is not enough
531  *	free VM space in the map... caller should be prepared to handle
532  *	this case.
533  * => we return KVA of memory allocated
534  */
535 
536 vaddr_t
537 uvm_km_alloc(struct vm_map *map, vsize_t size, vsize_t align, uvm_flag_t flags)
538 {
539 	vaddr_t kva, loopva;
540 	vaddr_t offset;
541 	vsize_t loopsize;
542 	struct vm_page *pg;
543 	struct uvm_object *obj;
544 	int pgaflags;
545 	vm_prot_t prot;
546 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
547 
548 	KASSERT(vm_map_pmap(map) == pmap_kernel());
549 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
550 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
551 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
552 
553 	/*
554 	 * setup for call
555 	 */
556 
557 	kva = vm_map_min(map);	/* hint */
558 	size = round_page(size);
559 	obj = (flags & UVM_KMF_PAGEABLE) ? uvm_kernel_object : NULL;
560 	UVMHIST_LOG(maphist,"  (map=0x%x, obj=0x%x, size=0x%x, flags=%d)",
561 		    map, obj, size, flags);
562 
563 	/*
564 	 * allocate some virtual space
565 	 */
566 
567 	if (__predict_false(uvm_map(map, &kva, size, obj, UVM_UNKNOWN_OFFSET,
568 	    align, UVM_MAPFLAG(UVM_PROT_ALL, UVM_PROT_ALL, UVM_INH_NONE,
569 	    UVM_ADV_RANDOM,
570 	    (flags & (UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT | UVM_KMF_WAITVA))
571 	    | UVM_FLAG_QUANTUM)) != 0)) {
572 		UVMHIST_LOG(maphist, "<- done (no VM)",0,0,0,0);
573 		return(0);
574 	}
575 
576 	/*
577 	 * if all we wanted was VA, return now
578 	 */
579 
580 	if (flags & (UVM_KMF_VAONLY | UVM_KMF_PAGEABLE)) {
581 		UVMHIST_LOG(maphist,"<- done valloc (kva=0x%x)", kva,0,0,0);
582 		return(kva);
583 	}
584 
585 	/*
586 	 * recover object offset from virtual address
587 	 */
588 
589 	offset = kva - vm_map_min(kernel_map);
590 	UVMHIST_LOG(maphist, "  kva=0x%x, offset=0x%x", kva, offset,0,0);
591 
592 	/*
593 	 * now allocate and map in the memory... note that we are the only ones
594 	 * whom should ever get a handle on this area of VM.
595 	 */
596 
597 	loopva = kva;
598 	loopsize = size;
599 
600 	pgaflags = UVM_PGA_USERESERVE;
601 	if (flags & UVM_KMF_ZERO)
602 		pgaflags |= UVM_PGA_ZERO;
603 	prot = VM_PROT_READ | VM_PROT_WRITE;
604 	if (flags & UVM_KMF_EXEC)
605 		prot |= VM_PROT_EXECUTE;
606 	while (loopsize) {
607 		KASSERT(!pmap_extract(pmap_kernel(), loopva, NULL));
608 
609 		pg = uvm_pagealloc(NULL, offset, NULL, pgaflags);
610 
611 		/*
612 		 * out of memory?
613 		 */
614 
615 		if (__predict_false(pg == NULL)) {
616 			if ((flags & UVM_KMF_NOWAIT) ||
617 			    ((flags & UVM_KMF_CANFAIL) && !uvm_reclaimable())) {
618 				/* free everything! */
619 				uvm_km_free(map, kva, size,
620 				    flags & UVM_KMF_TYPEMASK);
621 				return (0);
622 			} else {
623 				uvm_wait("km_getwait2");	/* sleep here */
624 				continue;
625 			}
626 		}
627 
628 		pg->flags &= ~PG_BUSY;	/* new page */
629 		UVM_PAGE_OWN(pg, NULL);
630 
631 		/*
632 		 * map it in
633 		 */
634 
635 		pmap_kenter_pa(loopva, VM_PAGE_TO_PHYS(pg), prot);
636 		loopva += PAGE_SIZE;
637 		offset += PAGE_SIZE;
638 		loopsize -= PAGE_SIZE;
639 	}
640 
641        	pmap_update(pmap_kernel());
642 
643 	UVMHIST_LOG(maphist,"<- done (kva=0x%x)", kva,0,0,0);
644 	return(kva);
645 }
646 
647 /*
648  * uvm_km_free: free an area of kernel memory
649  */
650 
651 void
652 uvm_km_free(struct vm_map *map, vaddr_t addr, vsize_t size, uvm_flag_t flags)
653 {
654 
655 	KASSERT((flags & UVM_KMF_TYPEMASK) == UVM_KMF_WIRED ||
656 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_PAGEABLE ||
657 		(flags & UVM_KMF_TYPEMASK) == UVM_KMF_VAONLY);
658 	KASSERT((addr & PAGE_MASK) == 0);
659 	KASSERT(vm_map_pmap(map) == pmap_kernel());
660 
661 	size = round_page(size);
662 
663 	if (flags & UVM_KMF_PAGEABLE) {
664 		uvm_km_pgremove(addr, addr + size);
665 		pmap_remove(pmap_kernel(), addr, addr + size);
666 	} else if (flags & UVM_KMF_WIRED) {
667 		uvm_km_pgremove_intrsafe(addr, addr + size);
668 		pmap_kremove(addr, size);
669 	}
670 
671 	uvm_unmap1(map, addr, addr + size, UVM_FLAG_QUANTUM|UVM_FLAG_VAONLY);
672 }
673 
674 /* Sanity; must specify both or none. */
675 #if (defined(PMAP_MAP_POOLPAGE) || defined(PMAP_UNMAP_POOLPAGE)) && \
676     (!defined(PMAP_MAP_POOLPAGE) || !defined(PMAP_UNMAP_POOLPAGE))
677 #error Must specify MAP and UNMAP together.
678 #endif
679 
680 /*
681  * uvm_km_alloc_poolpage: allocate a page for the pool allocator
682  *
683  * => if the pmap specifies an alternate mapping method, we use it.
684  */
685 
686 /* ARGSUSED */
687 vaddr_t
688 uvm_km_alloc_poolpage_cache(struct vm_map *map, bool waitok)
689 {
690 #if defined(PMAP_MAP_POOLPAGE)
691 	return uvm_km_alloc_poolpage(map, waitok);
692 #else
693 	struct vm_page *pg;
694 	struct pool *pp = &vm_map_to_kernel(map)->vmk_vacache;
695 	vaddr_t va;
696 	int s = 0xdeadbeaf; /* XXX: gcc */
697 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
698 
699 	if ((map->flags & VM_MAP_VACACHE) == 0)
700 		return uvm_km_alloc_poolpage(map, waitok);
701 
702 	if (intrsafe)
703 		s = splvm();
704 	va = (vaddr_t)pool_get(pp, waitok ? PR_WAITOK : PR_NOWAIT);
705 	if (intrsafe)
706 		splx(s);
707 	if (va == 0)
708 		return 0;
709 	KASSERT(!pmap_extract(pmap_kernel(), va, NULL));
710 again:
711 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
712 	if (__predict_false(pg == NULL)) {
713 		if (waitok) {
714 			uvm_wait("plpg");
715 			goto again;
716 		} else {
717 			if (intrsafe)
718 				s = splvm();
719 			pool_put(pp, (void *)va);
720 			if (intrsafe)
721 				splx(s);
722 			return 0;
723 		}
724 	}
725 	pmap_kenter_pa(va, VM_PAGE_TO_PHYS(pg), VM_PROT_READ|VM_PROT_WRITE);
726 	pmap_update(pmap_kernel());
727 
728 	return va;
729 #endif /* PMAP_MAP_POOLPAGE */
730 }
731 
732 vaddr_t
733 uvm_km_alloc_poolpage(struct vm_map *map, bool waitok)
734 {
735 #if defined(PMAP_MAP_POOLPAGE)
736 	struct vm_page *pg;
737 	vaddr_t va;
738 
739  again:
740 	pg = uvm_pagealloc(NULL, 0, NULL, UVM_PGA_USERESERVE);
741 	if (__predict_false(pg == NULL)) {
742 		if (waitok) {
743 			uvm_wait("plpg");
744 			goto again;
745 		} else
746 			return (0);
747 	}
748 	va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
749 	if (__predict_false(va == 0))
750 		uvm_pagefree(pg);
751 	return (va);
752 #else
753 	vaddr_t va;
754 	int s = 0xdeadbeaf; /* XXX: gcc */
755 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
756 
757 	if (intrsafe)
758 		s = splvm();
759 	va = uvm_km_alloc(map, PAGE_SIZE, 0,
760 	    (waitok ? 0 : UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK) | UVM_KMF_WIRED);
761 	if (intrsafe)
762 		splx(s);
763 	return (va);
764 #endif /* PMAP_MAP_POOLPAGE */
765 }
766 
767 /*
768  * uvm_km_free_poolpage: free a previously allocated pool page
769  *
770  * => if the pmap specifies an alternate unmapping method, we use it.
771  */
772 
773 /* ARGSUSED */
774 void
775 uvm_km_free_poolpage_cache(struct vm_map *map, vaddr_t addr)
776 {
777 #if defined(PMAP_UNMAP_POOLPAGE)
778 	uvm_km_free_poolpage(map, addr);
779 #else
780 	struct pool *pp;
781 	int s = 0xdeadbeaf; /* XXX: gcc */
782 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
783 
784 	if ((map->flags & VM_MAP_VACACHE) == 0) {
785 		uvm_km_free_poolpage(map, addr);
786 		return;
787 	}
788 
789 	KASSERT(pmap_extract(pmap_kernel(), addr, NULL));
790 	uvm_km_pgremove_intrsafe(addr, addr + PAGE_SIZE);
791 	pmap_kremove(addr, PAGE_SIZE);
792 #if defined(DEBUG)
793 	pmap_update(pmap_kernel());
794 #endif
795 	KASSERT(!pmap_extract(pmap_kernel(), addr, NULL));
796 	pp = &vm_map_to_kernel(map)->vmk_vacache;
797 	if (intrsafe)
798 		s = splvm();
799 	pool_put(pp, (void *)addr);
800 	if (intrsafe)
801 		splx(s);
802 #endif
803 }
804 
805 /* ARGSUSED */
806 void
807 uvm_km_free_poolpage(struct vm_map *map, vaddr_t addr)
808 {
809 #if defined(PMAP_UNMAP_POOLPAGE)
810 	paddr_t pa;
811 
812 	pa = PMAP_UNMAP_POOLPAGE(addr);
813 	uvm_pagefree(PHYS_TO_VM_PAGE(pa));
814 #else
815 	int s = 0xdeadbeaf; /* XXX: gcc */
816 	const bool intrsafe = (map->flags & VM_MAP_INTRSAFE) != 0;
817 
818 	if (intrsafe)
819 		s = splvm();
820 	uvm_km_free(map, addr, PAGE_SIZE, UVM_KMF_WIRED);
821 	if (intrsafe)
822 		splx(s);
823 #endif /* PMAP_UNMAP_POOLPAGE */
824 }
825